胡曉東,楊?媛,常新宇,盧鈞勝
具有寬頻帶高靈敏度的微振動(dòng)外差干涉測(cè)試儀
胡曉東,楊?媛,常新宇,盧鈞勝
(天津大學(xué)精密儀器與光電子工程學(xué)院,天津 300072)
針對(duì)微機(jī)電系統(tǒng)等微納米尺度器件的振幅測(cè)量,基于外差干涉原理設(shè)計(jì)開(kāi)發(fā)一種微振動(dòng)模態(tài)測(cè)試系統(tǒng),由光路和解析電路兩部分構(gòu)成,在光路中利用載波技術(shù)將被測(cè)樣品的振幅信息加載到被測(cè)光信號(hào)上,被測(cè)光信號(hào)與參考光信號(hào)之間原本存在一個(gè)由聲光調(diào)制器產(chǎn)生的頻率差,當(dāng)被測(cè)信號(hào)與參考信號(hào)經(jīng)光電探測(cè)器混頻后,可得到一個(gè)參考差頻信號(hào)及一個(gè)載有被測(cè)物理量信息的差頻信號(hào),之后在電路中對(duì)這兩個(gè)信號(hào)進(jìn)行電路解調(diào)即可得到被測(cè)樣品的振幅信息.該測(cè)量方式降低了測(cè)量過(guò)程對(duì)光強(qiáng)的要求,降低了樣品所需的激勵(lì)電壓,避免了對(duì)樣品表面的破壞,同時(shí)測(cè)量不會(huì)受到光程波動(dòng)和電磁反饋的影響,提高了測(cè)量速度,降低了測(cè)量誤差.通過(guò)實(shí)驗(yàn)測(cè)試了諧振頻率為2.1889GHz的薄膜體聲波諧振器的振幅和原子力顯微鏡微懸臂梁探針前三階諧振動(dòng)模態(tài)的振幅,實(shí)驗(yàn)表明該系統(tǒng)可以測(cè)量的振動(dòng)頻率范圍約為幾十Hz到數(shù)GHz,振幅范圍約為1pm~10nm,因此本振動(dòng)模態(tài)測(cè)量系統(tǒng)可以同時(shí)滿(mǎn)足高測(cè)量帶寬和高測(cè)試靈敏度的測(cè)試需求.
微機(jī)電系統(tǒng);外差干涉測(cè)量;薄膜體聲波諧振器;微懸臂梁;振幅
筆者采用了外差干涉方法將帶有樣品振動(dòng)信息的物光和經(jīng)聲光調(diào)制器產(chǎn)生差頻的參考光對(duì)比進(jìn)行非接觸式測(cè)量,降低了測(cè)量過(guò)程對(duì)光強(qiáng)的要求,降低了樣品所需的激勵(lì)電壓,避免了對(duì)樣品表面的破壞,同時(shí)測(cè)量不會(huì)受到光程波動(dòng)和電磁反饋[8]的影響.通過(guò)偏振分光棱鏡調(diào)整物光和參考光的光強(qiáng),在解析電路中調(diào)整功率放大器和衰減器數(shù)量及位置提高了測(cè)試精度.對(duì)FBAR和微懸臂梁兩種不同諧振頻率的MEMS器件進(jìn)行測(cè)量.該系統(tǒng)的振動(dòng)頻率范圍約為幾十Hz到數(shù)GHz,振幅范圍約為1pm~10nm,與現(xiàn)有的測(cè)試技術(shù)相比,實(shí)現(xiàn)了高測(cè)量帶寬和高測(cè)試靈敏度.
帶有樣品振動(dòng)信息的被測(cè)信號(hào)和經(jīng)過(guò)聲光調(diào)制器產(chǎn)生的參考信號(hào)在光路系統(tǒng)中混合、干涉,干涉后的光信號(hào)由光電探測(cè)器接收并轉(zhuǎn)化為電信號(hào),然后傳輸?shù)诫娐废到y(tǒng)中進(jìn)行信號(hào)處理.
經(jīng)余弦展開(kāi)可得
經(jīng)積化和差可得光電檢測(cè)器接收到的信號(hào)近似正?比于
(7)
激光器發(fā)出的單模穩(wěn)頻激光經(jīng)過(guò)光隔離器、反射鏡、1/2 波片到達(dá)偏振分光棱鏡.1/2 波片起到調(diào)節(jié)物光和參考光強(qiáng)弱的作用.光束經(jīng)過(guò)偏振分光棱鏡分為向上傳播的反射光(作為測(cè)量所用的參考光),以及向前傳播的透射光(作為物光).參考光繼續(xù)傳播經(jīng)過(guò)聲光調(diào)制器進(jìn)行調(diào)制,產(chǎn)生一個(gè)40MHz的頻移,經(jīng)過(guò)兩次反光鏡的反射照到分光棱鏡上面,其中經(jīng)過(guò)聲光調(diào)制器的激光分為兩束,一束為一級(jí)衍射光,一束為 0級(jí)衍射光,0級(jí)衍射光的頻率未發(fā)生改變,作為干擾光,通過(guò)在分光棱鏡上放置空間濾波器進(jìn)行過(guò)濾,一級(jí)衍射光經(jīng)過(guò)偏振分光棱鏡的反射進(jìn)入光電探測(cè)器.物光經(jīng)過(guò)偏振分光棱鏡、1/4 波片后經(jīng)過(guò)反射鏡、物鏡匯聚照射在樣品上,之后經(jīng)被測(cè)樣品反射,原路返回并照射到偏振分光棱鏡上,物光經(jīng)過(guò)兩次 1/4 波片,偏振方向和原來(lái)相比發(fā)生了對(duì)稱(chēng)變換,因此經(jīng)過(guò)偏振分光棱鏡時(shí)只能被反射,之后照射到反射鏡上,然后透過(guò)分光棱鏡與參考光發(fā)生干涉,之后被光電探測(cè)器接收.外差干涉測(cè)量系統(tǒng)的光路部分如圖1所示.
圖 1?外差干涉測(cè)量系統(tǒng)光路部分
外差干涉測(cè)量系統(tǒng)的電路部分如圖2所示.
1—光電探測(cè)器;2~6—射頻信號(hào)發(fā)生器;7—功率分離器;8~10—低噪聲放大器;11、12—混頻器;13、14—低通濾波器;15、16—鎖相放大器;17—數(shù)據(jù)采集卡;18—位移臺(tái);19—樣品;20—聲光調(diào)制器
首先介紹本套系統(tǒng)中鎖相放大器和計(jì)算機(jī)中的信號(hào)處理過(guò)程.鎖相放大器將輸入信號(hào)和內(nèi)部的參考信號(hào)混頻,然后混頻信號(hào)經(jīng)過(guò)一個(gè)低通濾波器實(shí)現(xiàn)低通濾波.圖3為混頻之后的信號(hào)處理過(guò)程.
口岸的工作在一年四季中都沒(méi)有停歇的時(shí)刻,堅(jiān)守口岸工作崗位的各類(lèi)工作人員是口岸運(yùn)行得以暢通、平穩(wěn)、高效的基礎(chǔ)。這份工作責(zé)任重大,每一次邊檢不僅僅是代表從一地區(qū)進(jìn)入另一地區(qū)的簡(jiǎn)單檢查,更代表的是國(guó)家形象,是國(guó)家能力、國(guó)家技術(shù)水平和國(guó)家形象的綜合體現(xiàn)。而常年駐守在這里的另一批人,是來(lái)自全國(guó)各地的邊防戰(zhàn)士和武警官兵,二連浩特的冬天是十分寒冷的,即使是大白天提著杯子出去走一圈杯子里的水也會(huì)結(jié)冰。二連浩特口岸是距離祖國(guó)偉大首都最近的陸上口岸,是保衛(wèi)首都安危的重要門(mén)戶(hù),即使環(huán)境在如何艱苦,他們都無(wú)怨無(wú)悔,駐守在祖國(guó)北方的門(mén)戶(hù),忠誠(chéng)守護(hù)著祖國(guó)的北大門(mén),保衛(wèi)著祖國(guó)北方領(lǐng)土、主權(quán)的完整和安全。
圖3?信號(hào)處理過(guò)程
當(dāng)系統(tǒng)滿(mǎn)足
Tab.1 Solutions to Eq.(14),theof alone,and the figure of merit
此時(shí)測(cè)試帶寬變?yōu)?/p>
通過(guò)對(duì)薄膜體聲波諧振器和微懸臂梁兩種諧振頻率和振幅差別較大的MEMS器件進(jìn)行測(cè)量來(lái)表征本外差干涉測(cè)量系統(tǒng)的性能.射頻器件對(duì)不同頻率的信號(hào)的輸出效率并不同,而光外差法是對(duì)兩個(gè)不同頻率信號(hào)求比值的方式求得幅值,需要將頻率響應(yīng)計(jì)算在內(nèi),頻率響應(yīng)通過(guò)掃頻和最小二乘擬合計(jì)算得出.采集了位移臺(tái)控制軟件允許范圍內(nèi)的90μm×90μm的大面積掃圖.
對(duì)諧振頻率為2.1889GHz的FBAR進(jìn)行測(cè)試,樣品模型如圖4所示.
圖4?實(shí)驗(yàn)樣品模型
分別對(duì)樣品施加幅值為0dBm、18dBm的驅(qū)動(dòng)電壓,采集的圖像質(zhì)量相同,測(cè)試結(jié)果如圖5所示,其中橫縱坐標(biāo)表示樣品上的不同位置,色標(biāo)表示的是不同樣品點(diǎn)上的振幅.測(cè)得FBAR在18dBm驅(qū)動(dòng)下振幅約為0.2~0.3nm,在0dBm驅(qū)動(dòng)下振幅約為25~50pm,整個(gè)工作區(qū)域的振幅重復(fù)性較好.采集的圖像會(huì)出現(xiàn)某些不合格點(diǎn),這種現(xiàn)象是由于放大器電源不穩(wěn)定以及樣品表面存在缺陷引起的.
圖5?不同驅(qū)動(dòng)電壓下獲得的樣品大范圍振幅
對(duì)固定在壓電陶瓷上并由其驅(qū)動(dòng)的微懸臂梁樣品前三階諧振模態(tài)的振幅測(cè)量.掃頻得出其一階諧振頻率為342.22kHz,二階諧振頻率為1.9555MHz,三階諧振頻率為5.075MHz.由于隨著樣品諧振模態(tài)階數(shù)的增加,所施加的激勵(lì)信號(hào)頻率也逐漸增大,超過(guò)了壓電陶瓷的諧振頻率,因此為了獲得較為明顯的振幅圖像,在微懸臂梁的高階諧振模態(tài)下需要給壓電陶瓷施加更大的驅(qū)動(dòng)電壓.一階諧振頻率下所施加的驅(qū)動(dòng)為5mV的交流信號(hào),二階諧振頻率下施加的驅(qū)動(dòng)為60mV的交流信號(hào),三階諧振頻率下施加的驅(qū)動(dòng)為800mV的交流信號(hào).測(cè)試結(jié)果如圖6所示.
圖6?測(cè)量所得的微懸臂梁不同諧振模態(tài)下的振幅
理論上矩形梁的前三階諧振模態(tài)如圖7所示.
圖6中,樣品振幅的正負(fù)代表樣品不同的振動(dòng)方向.對(duì)比圖6和圖7可知,通過(guò)光學(xué)測(cè)量方法得到的振動(dòng)信息和矩形梁的前三階諧振模態(tài)的理論振型具有較好的一致性.即測(cè)量結(jié)果和理論振型均為一階諧振頻率下,懸臂梁的振幅從固定端到尖端逐漸增大,尖端的振幅達(dá)到最大值,二階諧振頻率下,懸臂梁的振幅從固定端由0開(kāi)始先增大后減小,減小到0后開(kāi)始反方向逐漸增長(zhǎng),到梁的尖端達(dá)到最大值.三階諧振頻率下,懸臂梁的振幅從固定端由0開(kāi)始先增大后減小,減小到0后開(kāi)始反方向先增大后減小,再減小到0后繼續(xù)反方向增大,到梁的尖端達(dá)到最大值.
圖7?矩形梁的前三階理論振型
MEMS器件由于具有體積小、能耗低、品質(zhì)因數(shù)高、易于集成等優(yōu)良特性,在射頻和傳感領(lǐng)域占據(jù)著越來(lái)越重要的地位,而對(duì)MEMS的研究離不開(kāi)對(duì)其振動(dòng)特性的測(cè)量.基于外差干涉測(cè)量的思想搭建了一套MEMS振動(dòng)模態(tài)測(cè)量系統(tǒng),介紹了系統(tǒng)的設(shè)計(jì)原理及組成部分.通過(guò)對(duì)FBAR和微懸臂梁兩種樣品的振幅測(cè)試表征了本系統(tǒng)的測(cè)試性能.該系統(tǒng)可以測(cè)量的振動(dòng)頻率范圍約幾十Hz到數(shù)GHz,振幅范圍約為1pm~10nm.本系統(tǒng)在具有較大測(cè)試帶寬的同時(shí)具有較高的測(cè)試靈敏度,可幫助研究者設(shè)計(jì)性能更加優(yōu)良的器件,也能在工業(yè)生產(chǎn)中用于檢測(cè)器件的缺陷,評(píng)價(jià)生產(chǎn)工藝.
[1] Bogue R. Recent developments in MEMS sensors:A review of applications,markets and technologies[J]. Sensor Review,2013,33(4):300-304.
[2] Fattinger G,Tikka P. Modified Mach-Zender laser interferometer for probing bulk acoustic waves[J]. Appllied Physics Letter,2001,79(3):290-292.
[3] Graebner J,Barber B,Gammel P,et al. Dynamic visualization of subangstrom high frequency surface vibrations[J]. Appllied Physics Letters,2001,78(2):159-161.
[4] Lipi?inen L,Kokkonen K,Kaivola M. Phase sensitive absolute amplitude detection of surface vibrations using homodyne interferometry without active stabilization[J]. Appllied Physics,2010,108(11):114510-1-114510-5.
[5] Lipi?inen L,Kokkonen K,Kaivola M. Homodyne full-field interferometer for measuring dynamic surface phenomena in microstructures[J]. Opt Laser Eng,2017,88:178-183.
[6] Paulo A S,Liu X,Bokor J. Scanning acoustic force microscopy characterization of thermal expansion effects on the electromechanical properties of film bulk acoustic resonators[J]. Applied Physics Letters,2005,86:1-3.
[7] Ryder S,Lee K B,Meng X,et al. AFM characterization of out-of-plane high frequency microresonators[J]. Sensors & Actuators A Physical,2004,114(2):135-140.
[8] Kokkonen K. Laser interferometers in physical acoustics[C]// 2009 IEEE International Ultrasonics Symposium. Roma,Italy,2009:1036-1043.
[9] Knuuttila J V,Tikka P T,Salomaa M M. Scanning Michelson interferometer for imaging surface acoustic wave fields[J]. Optics Letters,2000,25(9):613-615.
[10] Telschow K L,Deason V A,Cottle D L. Full-field imaging of gigahertz film bulk acoustic resonator motion[J]. IEEE Trans Ultrason Ferroelect Freq Contr,2003,50:1279-1285.
[11] Tachizaki T,Muroya T,Matsuda O,et al. Scanning ultrafast Sagnac interferometry for imaging two-dimensional surface wave propagation[J]. Review of Scientific Instruments,2006,77(4):27-29.
[12] Kimmo K,Matti K. Scanning heterodyne laser interferometer for phase-sensitive absolute-amplitude measurements of surface vibrations[J]. Applied Physics Letters,2008,92(6):063502.
[13] Nilsson J W,Riedel S A. Nilsson,Riedel—Electric Circuits[M]. 6th ed. Upper Saddle River:Prentice Hall,2003.
Heterodyne Interferometer for Characterizing Microstructures over Wide Frequency Range with High Sensitivity
Hu Xiaodong,Yang Yuan,Chang Xinyu,Lu Junsheng
(School of Precision Instruments and Optoelectronics Engineering,Tianjin University,Tianjin 300072,China)
In this paper,we introduce a heterodyne interferometer for measuring the amplitudes of the highly sensitive vibrations of microstructures such as micro electro mechanical systems(MEMS)devices. The interferometer consists of an optical setup and a signal extraction circuit. The amplitude information of the sample is loaded onto the object beam using carrier technology. There is a frequency difference between the object beam and the reference beam produced by the acousto-optic modulator,and these two beams are combined in the mixer. The mixer outputs contain the original difference frequency signal and the difference frequency of the measurement information. The mixer outputs are demodulated via a signal extraction circuit and the amplitude information is subsequently calculated. This process requires low light intensity and effectively reduces the necessary excitation voltage,thus enabling less invasive measurements. It is also less vulnerable to slow but large ?uctuations in the optical path length and magnetic feedback. To demonstrate the effectiveness of the interferometer,we performed measurements on a film bulk acoustic resonator with a 2.1889GHz resonant frequency and a microcantilever probe of an atomic force microscope. The experimental results show that the heterodyne interferometer features measurement frequencies ranging from several tens of Hertz to 12GHz and amplitudes ranging from about 1pm to 10nm. Thus,the heterodyne interferometer meets the demands for vibration measurements with wide ranges of frequency and amplitude.
micro electro mechanical systems;heterodyne interferometry;film bulk acoustic resonator;microcantilever;amplitude
TK448.21
A
0493-2137(2021)05-0526-07
10.11784/tdxbz202003017
2020-03-12;
2020-09-20.
胡曉東(1974—??),男,博士,教授,xdhu@tju.edu.cn.
楊?媛,565295963@qq.com.
國(guó)家重大科學(xué)儀器設(shè)備開(kāi)發(fā)專(zhuān)項(xiàng)資助項(xiàng)目(2017YFF0107001);國(guó)家自然科學(xué)基金資助項(xiàng)目(51775381);天津市應(yīng)用基礎(chǔ)與前沿技術(shù)研究計(jì)劃資助項(xiàng)目(2017KJ182).
Supported by the National Key Scientific Instruments and Equipment Development Project(No. 2017YFF0107001),the National Natural Science Foundation of China(No. 51775381),Tianjin Research Program of Application Foundation and Advanced Technolgy (No. 2017KJ182).
(責(zé)任編輯:王曉燕)