• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    利用固態(tài)核磁共振研究100LiO1/2-(100-x)PO5/2-xTeO2快離子導(dǎo)電玻璃的結(jié)構(gòu)

    2020-12-25 01:35:48張宗輝任進軍胡麗麗
    物理化學(xué)學(xué)報 2020年11期
    關(guān)鍵詞:精密機械高功率麗麗

    張宗輝 ,任進軍 ,*,胡麗麗 ,*

    1中國科學(xué)院上海光學(xué)精密機械研究所,高功率激光單元技術(shù)實驗室,上海 201800

    2中國科學(xué)院大學(xué),材料與光電研究中心,北京 100049

    1 Introduction

    Phosphate glasses have been widely applied in high power laser devices1-3, biological materials4-7, and fast ionic conducting glasses8,9. Phosphate ionic conducting glasses,which can be used in “all-solid-state” batteries, are attracting more attention. “All-solid-state” battery is considered to be a very important solution for next-generation rechargeable batteries due to the simple structure, high energy density, and great safety. The properties of phosphate ionic conducting glasses, as potential solid-state electrolyte or cathode materials,can be improved by incorporating various components due to the flexible compositions and admirable vitrification abilities10,11.For instance, a series of Na2O-FeO-P2O5glasses were evaluated as the cathodes for sodium-ion batteries, the conductivity increased with the increase of FeO and 30Na2O-40FeO-30P2O5glass exhibited high reversible discharge capacity as 115 mAh·g-1with a Na anode12. In the AgI-P2O5conducting glass system, the addition of tungsten oxide (WO3) can adjust the glass transition temperature, thermal expansion coefficient, refractive index, optical band edge, electrical conductivity, and improve considerably glass stability against water and humidity in the environment, which are important for drawing conductive fibers13,14.

    The properties of fast ionic conducting glasses are strongly related to the glass network structures. The structure investigations can help to establish the connection between the glass structure and the composition. However, further structural investigations are rarely reported. With the help of mature vibration spectroscopy technologies, such as FTIR and Raman spectra, the structures of ionic conducting glasses can be analyzed. FTIR and Raman spectroscopy was used to study the structures of solid-state glass electrolytes with the compositions ofxLi2O-(1-x)[yB2O3-(1-y)P2O5], in which more P2O5could convert the [BO3] into [BO4] and reduce the Li+ion conductivity,while more B2O3could increase [BO3] thus increasing the Li+ion conductivity of glass electrolyte15.

    Recent years, advanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy technologies have shown outstanding advantages on probing the structures of vitreous materials, due to their flexible and powerful capabilities on detecting the glass networks within short- and medium-range16-20.The structures of AgI-AgPO3-Ag2WO4ionic conducting glasses were investigated using multiple SSNMR technologies, the successive conversion from P―O―P into P―O―W linkages were observed, and the Q(2)-like chain were broken into Q(1)and Q(0)species linked tungsten species and this structural transformation increased the glass rigidity and stability against hydrolysis reactions19.

    In this work, the structures of the glasses with the compositions of 100LiO1/2-(100-x)PO5/2-xTeO2(x= 0, 10, 20,25, 30) are investigated using Ramanspectroscopy and multiple SSNMR technologies. The evolution of phosphorus species is tracked using31P MAS NMR and Raman spectra. The connectivities between phosphorus species are identified by 2D refocused INADEQUATE spectra.125Te WURST-QCPMG experiments are employed to probing the local chemical environments of Te atoms. The correlations between different structure units are discussed based on a random distribution model. Summarized from all discussions, a comprehensive depiction of glass networks is presented.

    2 Experimental

    2.1 Sample preparation and characterization

    All these glass samples with the compositions of 100LiO1/2-(100-x)PO5/2-xTeO2(x= 0, 10, 20, 25, 30) were prepared from LiPO3(99.9%), Li2CO3(99.9%) and TeO2(99.99%). These raw materials were weighed according to the compositions with a total weight of 5 g, and then mixed in a platinum crucible. All these glasses were melted at 800 °C for 20 min and then the melts were cast on a preheated stainless-steel mold. These glass samples are labeled as 0Te, 10Te, 20Te, 25Te and 30Te forx=0, 10, 20, 25, 30, respectively. The differential scanning calorimetry (DSC) curves were obtained using a METTLER TOLEDO TGA/DSC-1600 differential scanning calorimeter.During these measurements, glass samples were heated under N2atmosphere with a heating rate of 10 K·min-1. Raman spectra were obtained by a Renishaw inviaRaman microscope with an excitation wavelength of 488 nm.

    2.2 Solid-state NMR experiments

    In this work, all NMR measurements were operated on a Bruker Avance III HD 500 MHz spectrometer (11.7 T). All31P single pulse MAS NMR spectra were obtained at 202.5 MHz using a 4 mm probe with experimental conditions as followed:the spinning rate is 12 kHz, the length of 90° pulse is 2.5 μs, the recycle delays are 320 s for all samples. And crystalline NH4H2PO4(chemical shift = 1.12 ppm) were employed to calibrate the chemical shifts of31P.

    Fig. 1 The pulse scheme of refocused INADEQUATE and homologous coherence transfer pathway.

    To identify different31P spices and obtain the correlations between these31P species, two-dimensional (2D) refocused INADEQUATE experiments were adopted, in which the31P species involved in P―O―P linkages can be detected by a double quantum (DQ) coherence process created based onJ-coupling effect through P―O―P bond, while the isolated31P species will be filtered out21,22. Fig. 1 shows the pulse scheme of the refocused INADEQUATE and homologous coherence transfer pathway. In 2D refocused INADEQUATE spectra, the F2 dimension and the F1 dimension show the regular one quantum coherence spectrum and double quantum coherence resonance frequency, respectively. The double quantum coherence resonance frequency in the F1 dimension equals the sum of their offset frequencies and autocorrelation peaks will appear at both sides of the diagonal. In this work, 2D refocused INADEQUATE experiments were done using a 2.5 mm probe with a spinning rate of 25 kHz. The length ofπ/2 pulse is 2.0 μs and the recycle delay is 60 s. The DQ filtered coherence was created using an excitation sequence of 90°-τ-180°-τ- 90°, and the mixing timeτwas optimized to be 3.32 ms.

    The chemical environment of125Te nuclei was detected using the static wideband uniform-rate smooth truncation quadrupolar Carr-Purcell-Meiboom-Gill (WURST-QCPMG) technique23.The WURST-80 pulse shape was employed using an 8-step phase cycling. The pulses length of WURST excitation and refocusing were both 50 μs, and the excitation bandwidth was 700 kHz. To compensate the line shape distortions, which originate from transverse relaxation during the formation of frequency-dispersed echoes, the frequency was swept twice in two opposite directions and these two spectra after Fourier transformation were summed into a final spectrum23. The recycle delays were 100 s for all glass samples. The chemical shifts of125Te are calibrated by CdTe. All processing and deconvolutions of solid-state NMR spectra were done by DMFIT software package24.

    3 Results

    3.1 DSC curves and Raman spectra

    Fig. 2 The DSC curves of the glasses with the compositions of 100LiO1/2-(100-x)PO5/2-xTeO2. The line on the top is the Tg depended on composition (x).

    Fig. 3 The Raman spectra of the glasses with the compositions of 100LiO1/2-(100-x)PO5/2-xTeO2. The vibration positions are marked by T1 [v(TeOTe)sym], T2 [v(TeO4)asym], T3 [v(TeO3)],P1 [v(POP)long-chain], P2 [v(POP)short-chain], P3 [v(PO3)sym],P4 [v(PO2)sym] and P5 [v(PO2)asym].

    Fig. 2 shows the DSC curves of 100LiO1/2-(100-x)PO5/2-xTeO2(x= 0, 10, 20, 25, 30) glasses. The glass transition temperature (Tg) of these glasses is almost constant within a measurement error of 10 °C, which is due to the little change of bridging oxygen fractions in these glasses (as discussed below).Fig. 3 shows the Raman spectra of glass 0Te, 10Te, 20Te, 25Te and 30Te. The assignments of Raman vibration bands in this work refer to the previous literature25-30. In glass 0Te (i.e.LiPO3), all phosphorus species should be metaphosphate Q(2)0Tespecies, where the Q(n)mTerepresents the phosphorus species with n bridging oxygen atoms (the oxygen atoms in P―O―P and P―O―Te linkages are both considered to be bridging oxygen atoms) and m Te atoms are connected to this [PO4] tetrahedron.The band at 1175 cm-1corresponds to the symmetric stretching vibration of (PO2) units involving two P―O―Li linkages(v(PO2)sym). And the shoulder at 1255 cm-1can be assigned to the asymmetric stretching vibration of (PO2) units (v(PO2)asym).The bands at 695 cm-1are ascribed to the symmetric stretching vibration of the bridging oxygen between P―O―P linkages(v(POP)sym) in long-chain phosphate structures, while the bands at 745 cm-1are ascribed tov(POP)symin short-chain phosphate structures. After TeO2is incorporated into glasses, a minor band at 1035 cm-1can be observed, which is the symmetric stretching vibrations of (PO3) involving three P―O―Li linkages in Q(1)0Tespecies. The vibration bands associated with (TeO) structural units can be found at 480 and 635 cm-1, which are due to the symmetric stretching vibration of Te―O―Te (v(TeOTe)sym) and the asymmetric stretching of the continuous network composed of[TeO4] trigonal bipyramid (tbp), respectively. The vibration band at 820 cm-1is ascribed to the [TeO3] trigonal pyramid (tp)25,29.

    With the increase of TeO2, the intensity ofv(POP)symin long chains is gradually suppressed, while the band ofv(POP)symin short chains is raised, indicating that long P―O―P chains are broken into short P―O―P chains and more Q(2)0Tespecies transform into Q(1)0Teand Q(2)1Tespecies. Simultaneously, the transformation from Q(2)0Tespecies to Q(2)1Tespecies results in a slight broadening and shifting to lower wavenumber ofv(PO2)symandv(PO2)asymbands, since the symmetric and asymmetricv(PO2) in Q(2)1Tespecies have lower vibration frequency than that in Q(2)0Tespecies. Besides, when TeO2is added into glasses, both three- and four-coordinated Te can be observed. Te-correlated vibration bands gradually rise as TeO2increases.

    3.2 31P MAS NMR spectra

    Fig. 4 shows the31P MAS NMR spectra and deconvolution models of all these glasses. For glass 0Te (i.e.LiPO3), a main peak at -22.7 ppm is observed, which is assigned to Q(2)0Tespecies. There is also a very small signal at -4.9 ppm corresponding to Q(1)0Tespecies. This is because the excess Li2O,due to a small number of volatilization of P2O5during the melting, provides more nonbridging oxygen atoms to form Q(1)0Tespecies. When TeO2is added into the glass, a new peak(at -13.6 ppm for 10Te glass) appears between the positions of Q(2)0Teand Q(1)0Te, which can be ascribed to Q(2)1Tespecies according to the chemical shift position. With the increase of TeO2, Q(2)0Tespecies decrease significantly while Q(2)1Teand Q(1)0Tespecies increase, which is consistent with the results of Raman spectra.

    3.3 31P refocused INADEQUATE spectra

    Fig. 4 (a) The 31P MAS NMR spectra of glasses in 100LiO1/2-(100-x)PO5/2-xTeO2. The spinning sidebands are marked by asterisks.(b) The deconvolutions of 31P MAS NMR spectra. Dash lines represent Q(2)0Te (red), Q(2)1Te (yellow) and Q(1)0Te (green) species, respectively.

    Fig. 5 The 2D 31P refocused INADEQUATE spectra of glass 30Te.Nine translucent red dots in (b) represent nine autocorrelation peaks involving six possible connectivities between Q(2)0Te(-20.0 ppm), Q(2)1Te (-10.6 ppm) and Q(1)0Te (-3.1 ppm) species.

    31P refocused INADEQUATE spectra are employed to identify the31P species and detect the correlations between31P species. Fig. 5 shows 2D31P refocused INADEQUATE spectrum of glass 30Te. In the F2 dimension, all peaks observed in ordinary31P single pulse MAS NMR spectra (see Fig. 4) can also be found, which indicates that there are no isolated31P species in 30Te glass. Six connectivities Q(1)0Te-Q(1)0Te, Q(1)0Te-Q(2)1Te,be observed, corresponding to nine correlation peaks marked by nine translucent red dots in Fig. 5. These results indicate that all the phosphorus species are connected with each other through P―O―P bond.

    3.4 Static 125Te WURST-QCPMG spectra

    Static125Te WURST-QCPMG spectra are generally preferred to probe the chemical environment of125Te rather than magic angle spinning due to the very wide125Te NMR chemical shift distributions18. Fig. 6 illustrates the125Te WURST-QCPMG spectra and deconvolution models. The deconvolution parameters are list in Table 1. There are two components in each spectrum. For 10Te glass, the positions of two components are 2898 and 2262 ppm, which can be assigned to three- and fourcoordinated Te ([TeO3] and [TeO4] species), respectively. [TeO4]species are dominant when the concentration of TeO2is low, but as more PO5/2is substituted by TeO2, the relative proportion of[TeO3] gradually increases.

    Fig. 6 The 125Te WURST-QCPMG spectra and the dash lines show the deconvolution shapes. The whole peaks are deconvoluted into threecoordinated (green) [TeO3] and four-coordinates (red) [TeO4].

    Table 1 The deconvolution parameters of 125Te WURST-QCPMG spectra.

    4 Discussion

    The deconvolution parameters of the31P MAS NMR spectra(shown in Fig. 4) are summarized in Table 2. With the increase ofxvalue, the proportion of Q(2)0Tespecies decreases while that of Q(1)0Teand Q(2)1Tespecies continuously increase. All the structures ofphosphorus and tellurium units are shown in Fig. 7.Both Q(2)0Teand Q(2)1Tespecies have one Li+ion on average while Q(1)0Tehas two Li+ions. The increase of Q(1)0Tewith TeO2indicates that Li+ions prefer to stay around [PO4] units rather than tellurium oxygen polyhedrons. However, a minor number of Li+ions still interact with tellurium oxygen polyhedrons to form [TeO3]. With the increase of TeO2, more Li+ions interact with tellurium oxygen polyhedrons and resulting in the formation of more [TeO3].

    The oxygen atoms in P―O―P, P―O―Te and Te―O―Te are all considered to be bridging oxygen (BO). Thus, the content of Te―BO― bond can be obtained as follows:

    whereF(TeOn) is the relative fraction of TeOnspecies listed in Table 1,N(Te) is the total content of Te under the stoichiometry of 100LiO1/2- (100-x)PO5/2-xTeO2. Similarly, the content of P―BO― bond can be calculated as follows:

    Table 2 The deconvolution parameters of 31P MAS NMR spectra.

    Fig. 7 The structural sketches of phosphorus of Q(2)0Te, Q(2)1Te,Q(1)0Te, three- and four-coordinated Te species. The single, double and dash lines represent the single, double and noninteger bonds,respectively. Every Te atom has a pair of lone electrons and TeOn represents n-coordinated Te.

    Thus, the fractions of P―BO― and Te―BO― bonds can be calculated as follows:

    Here, we propose a random distribution model. We assume that all P―BO― and Te―BO― randomly bond to form P―O―P, P―O―Te and Te―O―Te linkages, then the probabilities to form P―O―P, P―O―Te and Te―O―Te linkages are:

    And the total content of these three kinds of linkages is equal to the total content of BO as follows:

    Thus, the theoretical contents of P―O―P, P―O―Te and Te―O―Te (under the stoichiometry of 100LiO1/2-(100-x)PO5/2-xTeO2.) can be calculated according to the random distribution model as follows:

    Fig. 8 Comparison between the theoretical contents calculated according to random distribution model (red) and experimental contents (black) of the P―O―P (a), P―O―Te (b) and Te―O―Te (c) linkages. All the contents are relative to the stoichiometry of 100LiO1/2-(100-x)PO5/2-xTeO2.

    Simultaneously, the experimental contents of P―O―P,P―O―Te, Te―O―Te can be calculated from the deconvolutions of125Te WURST-QCPMG and31P MAS NMR spectra (list in Table 1 and Table 2) as follows:

    Fig. 8 shows the comparisons between the theoretical (red)and experimental (black) contents of P―O―P, P―O―Te and Te―O―Te linkages. For both P―O―P and Te―O―Te linkages, the experimental values are slightly higher than the theoretical ones. And for P―O―Te linkage, it is inverse. These indicate that P and Te atoms slightly prefer homonuclear connectivity than heteronuclear connectivity.

    In this glass system, the fractions of BO in total oxygen atoms can be calculated:

    Fig. 9 The fractions of bridging oxygen atom and Tg of the glasses with the compositions of 100LiO1/2-(100-x)PO5/2-xTeO2.

    Fig. 9 shows the change trends of the total fractions of BO and theTgvalues. With the increase of TeO2, the fraction of BO andTghave similar change trends that they almost remain constant within errors. This is not unexpected since the strength of the glass network depends on the fraction of BO. The similar BO fractions indicate the similar glass network connectivities and similarTgin this glass system.

    5 Conclusions

    The structures of the glasses in 100LiO1/2-(100-x)PO5/2-xTeO2 (x= 0, 10, 20, 25, 30) system are investigated by solidstate NMR technologies and Raman spectroscopy. When TeO2is incorporated into these glasses, long P―O―P chains involved in glass networks are broken into short chains and Q(2)0Tespecies gradually transform into Q(2)1Teand Q(1)0Tespecies. Q(2)0Te, Q(2)1Teand Q(1)0Te species are connected with each other through P―O―P. With the addition of TeO2, a minor number of Li+ions interact with tellurium oxygen polyhedrons resulting in the formation of [TeO3]. However, Li+ions prefer to stay around[PO4] units rather than tellurium oxygen polyhedrons. Therefore,only a small fraction of [TeO3] is formed, which increases with the content of TeO2. Most Te atoms exist as [TeO4] in all these glasses. With PO5/2 being gradually replaced by TeO2, both theTgand the fraction of bridging oxygen are almost unchanged,which means the glass network connectivity has no obvious change. The homonuclear connectivities P―O―P and Te―O―Te show slight priority over the heteronuclear connectivity P―O―Te. In summary, this study presents a comprehensive structure study of Li-doped tellurium phosphate ionic conducting glasses. This work could promote the understanding of the glass structure dependence on compositions and the development of new ionic conducting glasses.

    Acknowledgment:We thank Yujing Shen (Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) and Sasa Yan (Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) for theirassistance on the DSC and Raman measurements, respectively.

    猜你喜歡
    精密機械高功率麗麗
    EPIRUS Leonidas反無人機/反電子高功率微波系統(tǒng)
    軍事文摘(2023年15期)2023-09-20 02:08:18
    快點 快點
    昆山邁晟科精密機械有限公司
    模具制造(2022年1期)2022-02-23 01:13:34
    昆山邁晟科精密機械有限公司
    模具制造(2021年7期)2021-09-14 00:28:20
    昆山邁晟科精密機械有限公司
    模具制造(2021年6期)2021-08-06 01:07:54
    畫一畫
    昆山邁晟科精密機械有限公司
    模具制造(2020年12期)2020-02-06 08:05:18
    I love my family
    賴麗麗
    中國篆刻(2016年3期)2016-09-26 12:19:28
    一種90W高功率以太網(wǎng)供電系統(tǒng)的設(shè)計
    国产成+人综合+亚洲专区| 精品人妻一区二区三区麻豆| 成年动漫av网址| 十八禁网站网址无遮挡| 中文字幕人妻丝袜一区二区| 捣出白浆h1v1| 国产一区二区三区av在线| 伦理电影免费视频| 亚洲精品成人av观看孕妇| 日韩电影二区| 69av精品久久久久久 | 精品国产国语对白av| 亚洲精品第二区| 久久精品熟女亚洲av麻豆精品| 国产有黄有色有爽视频| 最黄视频免费看| 夫妻午夜视频| 下体分泌物呈黄色| 日韩欧美一区二区三区在线观看 | 99久久人妻综合| 国产一区二区三区综合在线观看| 亚洲美女黄色视频免费看| 制服人妻中文乱码| 国产无遮挡羞羞视频在线观看| 国产精品国产av在线观看| 大型av网站在线播放| 国产成人欧美在线观看 | 99国产精品99久久久久| 亚洲精品国产av蜜桃| 十八禁网站免费在线| 一区二区三区精品91| 久久久久精品国产欧美久久久 | 免费女性裸体啪啪无遮挡网站| 亚洲av男天堂| av电影中文网址| 亚洲精品一区蜜桃| 亚洲七黄色美女视频| 操美女的视频在线观看| 国产精品熟女久久久久浪| 国产一区有黄有色的免费视频| 国产精品av久久久久免费| 久久这里只有精品19| 国产1区2区3区精品| 悠悠久久av| 国产欧美日韩精品亚洲av| 日本av免费视频播放| 亚洲国产精品一区三区| 纯流量卡能插随身wifi吗| 国产一区二区三区综合在线观看| 少妇人妻久久综合中文| 国产精品熟女久久久久浪| 巨乳人妻的诱惑在线观看| 性色av乱码一区二区三区2| 亚洲精品乱久久久久久| 97人妻天天添夜夜摸| 午夜福利乱码中文字幕| 青草久久国产| 午夜福利视频精品| 午夜影院在线不卡| 国产黄色免费在线视频| 一级毛片女人18水好多| 乱人伦中国视频| videosex国产| 91麻豆av在线| 亚洲中文字幕日韩| 国产一区二区三区综合在线观看| 99热网站在线观看| 亚洲自偷自拍图片 自拍| 在线观看一区二区三区激情| 午夜福利在线观看吧| 国产男女内射视频| 一级黄色大片毛片| 欧美黄色片欧美黄色片| 国产精品秋霞免费鲁丝片| 欧美乱码精品一区二区三区| tube8黄色片| 亚洲国产毛片av蜜桃av| 国产精品久久久久久人妻精品电影 | 美女高潮到喷水免费观看| 99香蕉大伊视频| 久久国产亚洲av麻豆专区| 亚洲全国av大片| 午夜福利在线免费观看网站| 老司机午夜福利在线观看视频 | 蜜桃国产av成人99| 亚洲精品国产精品久久久不卡| 99精品久久久久人妻精品| 黄色毛片三级朝国网站| 日本欧美视频一区| 免费高清在线观看视频在线观看| 久久国产亚洲av麻豆专区| av天堂在线播放| 中文字幕另类日韩欧美亚洲嫩草| 欧美另类一区| 12—13女人毛片做爰片一| 女人久久www免费人成看片| 国产国语露脸激情在线看| 国产免费一区二区三区四区乱码| 天天影视国产精品| 免费高清在线观看视频在线观看| 中文字幕高清在线视频| 久久亚洲精品不卡| 在线观看免费午夜福利视频| 不卡av一区二区三区| 日韩精品免费视频一区二区三区| 伊人亚洲综合成人网| 欧美人与性动交α欧美精品济南到| 精品一区在线观看国产| 超碰97精品在线观看| 亚洲精品粉嫩美女一区| 久久久国产一区二区| 国产精品免费视频内射| 女性生殖器流出的白浆| 亚洲精品国产一区二区精华液| av国产精品久久久久影院| www日本在线高清视频| 999久久久精品免费观看国产| 十八禁高潮呻吟视频| 亚洲男人天堂网一区| 在线看a的网站| 欧美日韩一级在线毛片| 日本猛色少妇xxxxx猛交久久| 欧美乱码精品一区二区三区| 12—13女人毛片做爰片一| 两个人免费观看高清视频| 国产精品一区二区在线观看99| 国产精品成人在线| 人妻久久中文字幕网| 热re99久久国产66热| 侵犯人妻中文字幕一二三四区| 少妇精品久久久久久久| 久久国产精品大桥未久av| 中文字幕人妻熟女乱码| 中国国产av一级| 国产在视频线精品| 国产精品影院久久| 国产亚洲欧美在线一区二区| 大香蕉久久成人网| 久久久精品94久久精品| 男人爽女人下面视频在线观看| 精品人妻一区二区三区麻豆| 另类亚洲欧美激情| 久久精品成人免费网站| 久久综合国产亚洲精品| 啦啦啦啦在线视频资源| 亚洲男人天堂网一区| 亚洲一卡2卡3卡4卡5卡精品中文| 青春草亚洲视频在线观看| 亚洲五月婷婷丁香| 成人影院久久| 国产亚洲av高清不卡| 午夜影院在线不卡| 叶爱在线成人免费视频播放| 美女大奶头黄色视频| 777米奇影视久久| 9191精品国产免费久久| 丝袜在线中文字幕| 欧美激情 高清一区二区三区| 嫁个100分男人电影在线观看| 日本猛色少妇xxxxx猛交久久| 精品少妇一区二区三区视频日本电影| a级片在线免费高清观看视频| 69av精品久久久久久 | 国产区一区二久久| 黑人操中国人逼视频| 自线自在国产av| 日韩一区二区三区影片| 在线十欧美十亚洲十日本专区| 国产欧美日韩一区二区三区在线| 国产免费av片在线观看野外av| 亚洲人成电影观看| 精品一区在线观看国产| 黄色视频在线播放观看不卡| 国产又色又爽无遮挡免| 国产欧美日韩一区二区精品| 日日爽夜夜爽网站| 国产野战对白在线观看| 久久精品国产亚洲av高清一级| 最新在线观看一区二区三区| 国产av国产精品国产| 国产精品一区二区精品视频观看| 免费黄频网站在线观看国产| 黄色视频,在线免费观看| 波多野结衣一区麻豆| 高清av免费在线| 在线十欧美十亚洲十日本专区| 我要看黄色一级片免费的| 久久国产精品影院| 三上悠亚av全集在线观看| 97人妻天天添夜夜摸| 曰老女人黄片| 乱人伦中国视频| 高清视频免费观看一区二区| 亚洲精品美女久久久久99蜜臀| 久久中文字幕一级| 精品国产乱码久久久久久小说| 日本vs欧美在线观看视频| 欧美久久黑人一区二区| 免费在线观看视频国产中文字幕亚洲 | 午夜精品久久久久久毛片777| 波多野结衣一区麻豆| 大片电影免费在线观看免费| 一本综合久久免费| 国产高清videossex| 日本av手机在线免费观看| 亚洲精品第二区| 国产日韩欧美在线精品| 国产在线视频一区二区| 高清黄色对白视频在线免费看| 嫁个100分男人电影在线观看| 亚洲伊人久久精品综合| 色播在线永久视频| 成年av动漫网址| 亚洲专区字幕在线| 女人被躁到高潮嗷嗷叫费观| 精品人妻在线不人妻| 国产在线免费精品| 丝袜人妻中文字幕| 亚洲av男天堂| 国产精品熟女久久久久浪| 国产亚洲av片在线观看秒播厂| 女人久久www免费人成看片| av福利片在线| 成人18禁高潮啪啪吃奶动态图| 国产免费视频播放在线视频| 建设人人有责人人尽责人人享有的| 考比视频在线观看| 欧美在线一区亚洲| 日本撒尿小便嘘嘘汇集6| 天天躁日日躁夜夜躁夜夜| 老熟妇仑乱视频hdxx| 久久久欧美国产精品| a在线观看视频网站| 成年女人毛片免费观看观看9 | 午夜激情av网站| 亚洲国产精品999| 一区在线观看完整版| 天堂8中文在线网| 午夜精品国产一区二区电影| 黑丝袜美女国产一区| 欧美一级毛片孕妇| 欧美人与性动交α欧美软件| 国产淫语在线视频| 69精品国产乱码久久久| 国产在视频线精品| 久久毛片免费看一区二区三区| 亚洲激情五月婷婷啪啪| 国产成人av激情在线播放| 黑人巨大精品欧美一区二区蜜桃| 久久中文字幕一级| 亚洲欧洲精品一区二区精品久久久| 三上悠亚av全集在线观看| 国内毛片毛片毛片毛片毛片| 多毛熟女@视频| 少妇粗大呻吟视频| 99精国产麻豆久久婷婷| 老司机福利观看| 国产亚洲一区二区精品| 亚洲精品美女久久av网站| 三级毛片av免费| 国产精品久久久久久精品电影小说| 80岁老熟妇乱子伦牲交| 欧美日韩福利视频一区二区| 热99国产精品久久久久久7| 黄片小视频在线播放| 欧美日韩福利视频一区二区| 一区二区三区乱码不卡18| 国产精品香港三级国产av潘金莲| 久久九九热精品免费| 黄色毛片三级朝国网站| 飞空精品影院首页| 美女福利国产在线| 国产高清视频在线播放一区 | 90打野战视频偷拍视频| 久久久精品国产亚洲av高清涩受| 老司机深夜福利视频在线观看 | 欧美另类亚洲清纯唯美| 少妇 在线观看| 日本精品一区二区三区蜜桃| 一本—道久久a久久精品蜜桃钙片| 黄片播放在线免费| 亚洲avbb在线观看| 高清在线国产一区| 悠悠久久av| 高清黄色对白视频在线免费看| av国产精品久久久久影院| 日韩电影二区| 麻豆国产av国片精品| 老司机亚洲免费影院| 欧美黄色片欧美黄色片| 亚洲精品乱久久久久久| 老司机靠b影院| 国产精品 国内视频| 少妇猛男粗大的猛烈进出视频| 国产一区有黄有色的免费视频| 男人操女人黄网站| 在线 av 中文字幕| 久久毛片免费看一区二区三区| 夜夜夜夜夜久久久久| 国产视频一区二区在线看| 久久天堂一区二区三区四区| 久9热在线精品视频| 精品卡一卡二卡四卡免费| 午夜精品国产一区二区电影| 久久国产精品大桥未久av| 日本vs欧美在线观看视频| 免费高清在线观看日韩| 最近最新免费中文字幕在线| 久久国产精品人妻蜜桃| 久久久久久久大尺度免费视频| 国产精品九九99| 三级毛片av免费| 九色亚洲精品在线播放| 精品人妻熟女毛片av久久网站| 亚洲欧美成人综合另类久久久| 欧美人与性动交α欧美软件| 亚洲男人天堂网一区| 大码成人一级视频| 久久国产精品影院| 国产一区二区激情短视频 | 国产在视频线精品| av欧美777| 亚洲熟女精品中文字幕| 久久精品国产综合久久久| 日韩电影二区| 香蕉国产在线看| 一本综合久久免费| 十八禁高潮呻吟视频| 汤姆久久久久久久影院中文字幕| 在线观看免费高清a一片| 日韩 欧美 亚洲 中文字幕| 两性夫妻黄色片| 人妻人人澡人人爽人人| 久久亚洲国产成人精品v| 一进一出抽搐动态| 男人爽女人下面视频在线观看| 人人妻人人爽人人添夜夜欢视频| 国产成人免费观看mmmm| 久久国产精品影院| 国产一区二区三区在线臀色熟女 | 亚洲精品一卡2卡三卡4卡5卡 | 国产男人的电影天堂91| 亚洲精品中文字幕在线视频| 欧美激情高清一区二区三区| 国产日韩一区二区三区精品不卡| 免费在线观看影片大全网站| 99精国产麻豆久久婷婷| av网站在线播放免费| 国产精品1区2区在线观看. | 国产精品成人在线| 一级毛片精品| 国产国语露脸激情在线看| 成人18禁高潮啪啪吃奶动态图| 人人妻,人人澡人人爽秒播| 国产色视频综合| 热99国产精品久久久久久7| 午夜福利,免费看| 色婷婷av一区二区三区视频| 性色av一级| 亚洲av日韩在线播放| 精品少妇内射三级| 99精品欧美一区二区三区四区| 两人在一起打扑克的视频| 999久久久国产精品视频| 中文字幕另类日韩欧美亚洲嫩草| 国产人伦9x9x在线观看| 天天影视国产精品| 少妇人妻久久综合中文| 国产一级毛片在线| 一级片免费观看大全| 一区二区三区乱码不卡18| 国产欧美日韩一区二区三 | 91国产中文字幕| 国产精品偷伦视频观看了| 在线观看免费高清a一片| 久久精品aⅴ一区二区三区四区| 日韩制服骚丝袜av| 秋霞在线观看毛片| 国产福利在线免费观看视频| 国产亚洲精品一区二区www | 伦理电影免费视频| 国产成人欧美| 亚洲av日韩在线播放| 国产一区二区 视频在线| 性色av一级| 亚洲国产精品一区二区三区在线| 亚洲av电影在线观看一区二区三区| 久久人人97超碰香蕉20202| 国产有黄有色有爽视频| 亚洲国产精品一区三区| 午夜免费成人在线视频| 黄片大片在线免费观看| 中文字幕av电影在线播放| 午夜福利乱码中文字幕| 精品一区二区三区四区五区乱码| 色婷婷久久久亚洲欧美| 一二三四社区在线视频社区8| 91麻豆av在线| 亚洲全国av大片| 久久久久国内视频| 亚洲专区字幕在线| 国产亚洲欧美在线一区二区| 久久久久久久久免费视频了| 国产免费视频播放在线视频| 精品国产超薄肉色丝袜足j| 亚洲七黄色美女视频| 午夜免费鲁丝| av视频免费观看在线观看| 日韩一卡2卡3卡4卡2021年| 精品福利观看| 国产又色又爽无遮挡免| 日韩人妻精品一区2区三区| 亚洲国产精品一区三区| 不卡一级毛片| 男女之事视频高清在线观看| 99国产精品99久久久久| 欧美黑人欧美精品刺激| 多毛熟女@视频| 在线观看一区二区三区激情| 久久久精品国产亚洲av高清涩受| 妹子高潮喷水视频| 伊人亚洲综合成人网| av不卡在线播放| 国产精品av久久久久免费| 脱女人内裤的视频| 国产又色又爽无遮挡免| 熟女少妇亚洲综合色aaa.| 国产在线一区二区三区精| 久久久国产成人免费| 午夜两性在线视频| 最近最新免费中文字幕在线| 五月开心婷婷网| 亚洲av电影在线观看一区二区三区| 国产欧美日韩精品亚洲av| 男男h啪啪无遮挡| 叶爱在线成人免费视频播放| a级毛片黄视频| 男女边摸边吃奶| 天堂俺去俺来也www色官网| 亚洲天堂av无毛| av天堂在线播放| 亚洲综合色网址| 午夜福利一区二区在线看| 天堂8中文在线网| 色94色欧美一区二区| 中文字幕精品免费在线观看视频| 亚洲av欧美aⅴ国产| 丰满饥渴人妻一区二区三| 美女主播在线视频| 国产成人系列免费观看| 久久午夜综合久久蜜桃| 成人免费观看视频高清| 在线 av 中文字幕| 成年人黄色毛片网站| 嫩草影视91久久| 女人精品久久久久毛片| 亚洲精品久久成人aⅴ小说| 欧美久久黑人一区二区| 日韩视频一区二区在线观看| 亚洲av片天天在线观看| 国产一区二区激情短视频 | 国产人伦9x9x在线观看| 亚洲熟女毛片儿| 满18在线观看网站| 久久青草综合色| 欧美黑人精品巨大| 午夜激情久久久久久久| 午夜影院在线不卡| 亚洲精品乱久久久久久| 午夜精品国产一区二区电影| a在线观看视频网站| 国产精品免费视频内射| 亚洲黑人精品在线| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩国产mv在线观看视频| 国产欧美亚洲国产| 亚洲欧美日韩高清在线视频 | 国产精品一区二区在线观看99| 国精品久久久久久国模美| 十八禁网站免费在线| 天堂8中文在线网| 国产伦理片在线播放av一区| 欧美大码av| 18禁国产床啪视频网站| 国产亚洲午夜精品一区二区久久| 波多野结衣av一区二区av| 日韩大片免费观看网站| 日本91视频免费播放| 性少妇av在线| 精品人妻1区二区| 日韩一卡2卡3卡4卡2021年| 嫩草影视91久久| 国产国语露脸激情在线看| 国产欧美日韩一区二区三区在线| 成人黄色视频免费在线看| 另类精品久久| 亚洲五月婷婷丁香| 亚洲中文字幕日韩| 狠狠婷婷综合久久久久久88av| 真人做人爱边吃奶动态| 国产欧美亚洲国产| 中国美女看黄片| 国产极品粉嫩免费观看在线| 久久国产精品影院| 亚洲第一青青草原| 欧美国产精品一级二级三级| 国产淫语在线视频| 亚洲精品国产一区二区精华液| 一个人免费看片子| 国产97色在线日韩免费| 男女午夜视频在线观看| 国产精品亚洲av一区麻豆| 午夜影院在线不卡| 老司机午夜福利在线观看视频 | 久久人人爽av亚洲精品天堂| 久久毛片免费看一区二区三区| 高清在线国产一区| 在线永久观看黄色视频| 精品一区在线观看国产| 久久天堂一区二区三区四区| 日本猛色少妇xxxxx猛交久久| 欧美变态另类bdsm刘玥| av天堂久久9| 国产精品二区激情视频| 亚洲精品av麻豆狂野| 一个人免费在线观看的高清视频 | 日本91视频免费播放| 成人三级做爰电影| 久久久精品免费免费高清| 91大片在线观看| 国产精品二区激情视频| 精品国内亚洲2022精品成人 | 丰满人妻熟妇乱又伦精品不卡| 久久亚洲国产成人精品v| 午夜免费鲁丝| videosex国产| 一本综合久久免费| 纵有疾风起免费观看全集完整版| 午夜激情av网站| 国产成人影院久久av| 久久久久久免费高清国产稀缺| 久久久国产成人免费| 欧美+亚洲+日韩+国产| 爱豆传媒免费全集在线观看| 亚洲久久久国产精品| 国产精品熟女久久久久浪| 69精品国产乱码久久久| 国产淫语在线视频| 精品少妇内射三级| 欧美亚洲 丝袜 人妻 在线| 丁香六月天网| 青春草亚洲视频在线观看| 精品国产乱码久久久久久男人| 热re99久久精品国产66热6| 国产精品亚洲av一区麻豆| 99re6热这里在线精品视频| 岛国在线观看网站| 人人妻人人澡人人看| 热99久久久久精品小说推荐| 一本久久精品| 久9热在线精品视频| 一区福利在线观看| 色播在线永久视频| 一区二区三区精品91| 午夜影院在线不卡| 丁香六月欧美| 久久久久国内视频| 亚洲欧美色中文字幕在线| av在线播放精品| 色精品久久人妻99蜜桃| 亚洲少妇的诱惑av| 高潮久久久久久久久久久不卡| cao死你这个sao货| 亚洲精品一区蜜桃| 久久综合国产亚洲精品| 国产成人精品久久二区二区91| 好男人电影高清在线观看| 欧美大码av| 亚洲欧美一区二区三区黑人| 18禁观看日本| 91大片在线观看| 免费观看av网站的网址| 久久久久久久大尺度免费视频| svipshipincom国产片| 叶爱在线成人免费视频播放| 丝袜在线中文字幕| 成年女人毛片免费观看观看9 | 日韩欧美国产一区二区入口| av天堂久久9| 狠狠狠狠99中文字幕| 嫩草影视91久久| 国产精品一区二区免费欧美 | 欧美日韩亚洲高清精品| 高清av免费在线| 大陆偷拍与自拍| 飞空精品影院首页| 伦理电影免费视频| 亚洲欧美一区二区三区黑人| 自线自在国产av| 91老司机精品| 久久久久久久久久久久大奶| 国产亚洲av片在线观看秒播厂| 精品少妇久久久久久888优播| 亚洲av欧美aⅴ国产| 乱人伦中国视频| 天堂8中文在线网| a级毛片在线看网站| 天天躁狠狠躁夜夜躁狠狠躁| 国产av国产精品国产| 十八禁人妻一区二区| 国产淫语在线视频| 人妻人人澡人人爽人人| 精品熟女少妇八av免费久了| 亚洲第一青青草原| a 毛片基地|