• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    烷基鏈工程對(duì)兩親有機(jī)半導(dǎo)體熱力學(xué)性能影響的研究

    2020-12-25 01:35:48李明亮李碩王國(guó)治郭雪峰
    物理化學(xué)學(xué)報(bào) 2020年11期
    關(guān)鍵詞:總院納米技術(shù)北京大學(xué)

    李明亮,李碩,王國(guó)治,郭雪峰

    1有研工程技術(shù)研究院有限公司,北京 101407

    2北京有色金屬研究總院智能傳感功能材料國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100088

    3北京大學(xué)化學(xué)與分子工程學(xué)院,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,分子動(dòng)態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100871

    4北京大學(xué)工學(xué)院先進(jìn)材料與納米技術(shù)系,北京 100871

    1 Introduction

    With the development of the information industry, demands and requirements of organic semiconductors (OSC) in artificial intelligence and wearable devices are rapidly increasing1-5.Among them, the functional amphiphilic semiconductor (FAS)molecule has great potential in fabrication of biomimetic thin film morphology6-8and functional electronic devices9-11, for the reason that FAS has a special structure, is simple to process,low in cost and easy to form a thin film with good structure and morphology. The amphiphilic semiconductor molecule generally consists of a hydrophilic polar group and a hydrophobic semiconductor group12, but so far, the interaction between the two groups and the correspondence between the molecular property and structure are still blurred. This makes it more difficult to design and optimize semiconductor materials to realize the good performance and target properties.

    Thermodynamics is an important material research methodology13. It can get information on the phase, structure and stability of materials through methods based on thermodynamics14-17. This method is fast and efficient,and has gradually attracted more attention by initially applying to amphiphilic semiconductor materials18. Therefore,in this work we designed and synthesized a FAS molecule(benzo[b]benzo[4,5] thieno[2,3-d]thiophene, named CnPABTBT,n= 3-11, the structures shown in Scheme 1). We connected the hydrophilic group and the hydrophobic group through alkyl chains with different lengths to study the effects of the chain length on the thermodynamic property of FAS19,20.The laws summarized from the thermodynamic performance provide an experimental basis for synthesizing and screening functional materials for different purposes.

    2 Experimental and computational section

    2.1 General methods and information

    All reagents and chemicals were analytical reagents obtained from Innochem and Sinopharm, China. They are used without further purification unless otherwise noted. The synthetic route is outlined in Scheme 2. All reactions were performed under an inert atmosphere of argon in dry solvents by using standard Schlenk techniques.1H and13C NMR spectra were recorded on Bruker-400 MHz NMR ARX400, Germany. Chemical shifts of1H and13C NMR signals were quoted to tetramethylsilane (δ=0.00) and CDCl3(δ= 77.00) as internal standards, respectively.Mass spectra (MS) were recorded on a Bruker APEX IV mass spectrometer, Germany. Ultraviolet-visible (UV-Vis) absorption measurement of organic semiconductors in solution and in thin films (on quartz substrates) were determined with a Perkin-Elmer Lambda 950 UV/Vis spectrometer, USA.Thermogravimetric Analysis (TGA) measurements were performed on TA Instruments Q600 SDT thermal analysis system, USA under N2at a heating rate of 10 °C·min-1.Differential Scanning Calorimeter analysis (DSC)measurements were performed by using a TA Instruments Q2000 differential scanning calorimeter, USA under N2. Both heating and cooling speed were 10 °C·min-1. Polarized optical microscopy (POM) with heat stage were obtained on silicon substrates by using Nikon Eclipse LV100 POL, Japan in reflection mode on a home-made heat stage.

    Scheme 1 Molecular Structures of CnPA-BTBT (n = 3-11).The semiconductor backbone and the polar group are red and blue,respectively. Color online.

    Scheme 2 Synthetic routine of CnPA-BTBT (n = 3-11).

    2.2 Synthetics procedures and characterization

    Synthetic Routine of CnPA-BTBT (n= 3-11) were synthesized according to the literature21,22. To a solution of CnPBTBT (0.168 mmol) in dry dichloromethane (1 mL) was added bromotrimethylsilane (0.3 mL). The mixture was stirred at the room temperature under argon atmosphere overnight. 2 mL methanol was added to the mixture and the mixture was further stirred for 2 h. All solvent and reagent were removed under reduced pressure to give a white solid.

    C3PA-BTBT:1H NMR (d-THF, 500 MHz, 40 °C):δ7.95 (d,1H,J= 8.0 Hz), 7.87 (d, 1H,J= 7.8 Hz), 7.82 (s, 1H), 7.79 (d,1H,J= 8.1 Hz), 7.39 (m, 2H), 7.32 (d, 1H,J= 8.3 Hz), 2.88 (t,2H,J= 7.2 Hz), 2.00 (m, 2H), 1.30 (m, 2H);31P NMR (d-THF,200 MHz):δ31.44. EI-MS: Calcd. for [M - H]-: 361.012747.Found: 361.012749.

    C4PA-BTBT:1H NMR (d-THF, 500 MHz, 40 °C):δ7.96 (d,1H,J= 7.8 Hz), 7.87 (d, 1H,J= 7.1 Hz), 7.80 (m, 2H), 7.41 (m,2H), 7.32 (d, 1H,J= 8.4 Hz), 2.80 (t, 2H,J= 7.7 Hz), 1.83 (m,4H), 1.31 (m, 2H);31P NMR (d-THF, 200 MHz):δ31.50. EIMS: Calcd. for [M - H]-: 375.028397. Found: 375.027394.

    C5PA-BTBT:1H NMR (d-THF, 500 MHz, 40 °C):δ7.95 (d,1H,J= 7.9 Hz), 7.87 (d, 1H,J= 7.6 Hz), 7.80 (m, 2H), 7.40 (m,2H), 7.30 (d, 1H,J= 9.2 Hz), 2.78 (t, 2H,J= 7.7 Hz), 1.67 (m,6H), 1.50 (m, 2H);31P NMR (d-THF, 200 MHz):δ32.03. EIMS: Calcd. for [M - H]-: 389.044047. Found: 389.044994.

    C6PA-BTBT:1H NMR (d-THF, 500 MHz, 40 °C):δ7.95 (d,1H,J= 8.0 Hz), 7.87 (d, 1H,J= 7.2 Hz), 7.80 (m, 2H), 7.41 (m,2H), 7.30 (d, 1H,J= 8.1 Hz), 2.78 (m, 2H), 1.62 (m, 2H), 1.31(m, 8H);31P NMR (d-THF, 200 MHz):δ32.06. EI-MS: Calcd.for [M - H]-: 403.059697. Found: 403.059647.

    C7PA-BTBT:1H NMR (d-THF, 500 MHz, 40 °C):δ7.95 (d,1H,J= 8.0 Hz), 7.87 (d, 1H,J= 7.5 Hz), 7.80 (m, 2H), 7.41 (m,2H), 7.31 (d, 1H,J= 8.2 Hz), 2.78 (t, 2H,J= 7.6 Hz), 1.62 (m,4H), 1.31 (m, 8H);31P NMR (d-THF, 200 MHz):δ32.03. EIMS: Calcd. for [M - H]-: 417.075347. Found: 417.076116.

    C8PA-BTBT:1H NMR (d-THF, 500 MHz, 40 °C):δ7.95 (d,1H,J= 8.0 Hz), 7.88 (d, 1H,J= 7.6 Hz), 7.80 (m, 2H), 7.41 (m,2H), 7.30 (d, 1H,J= 7.9 Hz), 2.78 (t, 2H,J= 7.6 Hz), 1.61 (m,4H), 1.31 (m, 10H);31P NMR (d-THF, 200 MHz):δ32.05. EIMS: Calcd. for [M - H]-: 431.090989. Found: 431.091066.

    C9PA-BTBT:1H NMR (d-THF, 500 MHz, 40 °C):δ7.95 (d,1H,J= 8.0 Hz), 7.88 (d, 1H,J= 7.6 Hz), 7.80 (m, 2H), 7.41 (m,2H), 7.31 (d, 1H,J= 7.9 Hz), 2.78 (t, 2H,J= 7.6 Hz), 1.60 (m,4H), 1.31 (m, 12H);31P NMR (d-THF, 200 MHz):δ32.02. EIMS: Calcd. for [M - H]-: 445.106648. Found: 445.106766.

    C10PA-BTBT:1H NMR (d-THF, 500 MHz, 40 °C):δ7.95 (d,1H,J= 8.0 Hz), 7.88 (d, 1H,J= 7.6 Hz), 7.80 (m, 2H), 7.41 (m,2H), 7.30 (d, 1H,J= 8.1 Hz), 2.78 (t, 2H,J= 7.6 Hz), 1.61 (m,4H), 1.31 (m, 14H);31P NMR (d-THF, 200 MHz):δ32.03. EIMS: Calcd. for [M - H]-: 459.122298. Found: 459.122675.

    C11PA-BTBT:1H NMR (d-THF, 500 MHz, 40 °C):δ7.95 (d,1H,J= 7.9 Hz), 7.88 (d, 1H,J= 7.5 Hz), 7.80 (m, 2H), 7.41 (m,2H), 7.30 (d, 1H,J= 7.8 Hz), 2.78 (t, 2H,J= 7.7 Hz), 1.60 (m,4H), 1.31 (m, 16H);31P NMR (d-THF, 200 MHz):δ32.04. ESIMS: Calcd. for [M + H]+: 475.15250. Found: 475.15220.

    3 Results and discussion

    3.1 Molecular design

    We designed and synthesized CnPA-BTBT (n= 3-11, Scheme 1) functional molecules with benzo[b]benzo[4,5]thieno[2,3-d]thiophene (BTBT) as the rigidπ-backbone, phosphate groups as polar functional groups, and the two parts were linked through alkyl chains with different lengths (the synthetic procedure in Scheme 2). The molecular design is mainly based on the following three considerations: (i) BTBT is a high-performance semiconductor backbone23,24. The strongπ-πinteraction between BTBT groups is beneficial to ensure the performance of electronic devices; (ii) Phosphate groups with strong polar interaction are low in synthesis cost and simple to process25. (iii)Alkyl chains with different lengths are introduced into the system as substituent, and thus adjust the properties13,14. The conjugate interaction of BTBT groups, the polar interaction of phosphate groups and van der Waals interaction of alkyl chains enrich the diversity of the thermodynamic performance and enhance the ability of self-assembly.

    3.2 Fundamental properties.

    The fundamental properties of the functional materials CnPABTBT (n= 3-11) were first studied. The UV-Vis spectroscopy is a molecular spectrum formed by valence electron transitions.The band gap of FAS can be calculated from the initial absorption value of UV-Vis. Fig. 1a, b are the UV-Vis curves of the functional molecule solution in chloroform (10-5mol·L-1)and in the solid film, respectively. We found that in the solution,the UV-Vis curves of all functional molecules are substantially coincident, while in the solid phase film, the curves vary greatly.Statistical calculation of the energy gap is shown in Fig. 1c.Compared with the band gaps of solution system atca.4.4 eV,the ones of solid film fluctuate and areca.1 eV lower on average.This is due to the better arrangement of FAS molecules in the solid film, which makes the transition of valence electrons easier.The curves show a trough and a peak whenn= 3 andn= 7,respectively, which may be due to the comprehensive effect of the alkyl chain on the intermolecular arrangement and the conjugation of intramolecular groups. On the other hand, in the case of short alkyl chains (n= 3, 4), the polar group and the semiconductor group are significantly coupled. As shown in Fig.1d,31P NMR of phosphate group was conducted. Whenn= 3 and 4, the phosphorus atom in the phosphate group is chemically shielded from the conjugated BTBT group, which makes a chemical shift up to 0.4 to the low field in comparison with those whennis more than 5. It indicates that whenn= 3 and 4, the coupling of the phosphate group and BTBT is much stronger than when alkyl chains are longer (n> 5).

    Fig. 1 Fundamental properties of CnPA-BTBT (n = 3-11).(a) and (b) are initial absorption range of UV-Vis in solution (10-5 mol·L-1) and film, respectively. (c) band gaps calculated from (a) and (b); (d) 31P NMR spectrum.

    3.3 Thermodynamic studies

    Fig. 2 (a) TGA plot and (b) DTG plot of CnPA-BTBT (n = 3-11); (c) fitting curve of the temperatures of the first peak in DTG in (b).The heating rate is 10 °C·min-1.

    Fig. 3 DSC spectra of CnPA-BTBT (n = 3-11).The heating rate are 10 °C·min-1.

    Table 1 Summaries of DSC thermodynamic parameters of CnPA-BTBT (n = 3-11).

    Thermodynamic studies of functional materials are based on TGA and DSC. The TGA curves are shown in Fig. 2a, and the functional molecules rapidly decompose atca.450 °C. The derivatives of the TGA curve are then processed to obtain a differential thermal gravity (DTG) curve, as shown in Fig. 2b. It is found that the FAS molecules show a weak decomposition peak at 180-250 °C, at which time the materials lose the crystal water bound with phosphate groups. The temperature value of the first weight loss peak was extracted and shown in Fig. 2c. It was found that the temperature of the water loss peak fluctuated and fell with the increase of the alkyl chain, indicating that the binding ability of the FAS molecule to water molecules was regulated by the odd-even alternating effect of the alkyl chain and the intramolecular coupling with BTBT. Based on the TGA test, we performed a detailed DSC characterization of the FAS molecules CnPA-BTBT (n= 3-11), as shown in Fig. 3. The temperature is heating and cooling at a rate of 10 °C·min-1. The first cycle (black solid line) aims to eliminate the effects of thermal history left during processing and remove crystal water to study the intrinsic properties of the FAS molecule. Therefore,the analysis subject is the second cycle (red solid line), in which the thermodynamic temperatures and enthalpy values are listed in Table 1. According to the thermodynamic performance of the FAS molecules, it is found that when the alkyl chain length is 3 or 4, the molecules do not show any thermodynamic peak below the thermal decomposition temperature, so there is no thermodynamic transition and molecular rearrangement during the heating process. It indicates that the molecules have good stability and rigidity for BTBT is strongly coupled with the phosphate group, and the influence of alkyl chain can be neglected, which further confirms the conclusions in UV-Vis and31P NMR tests. However, at this time, due to excessive rigidity,the material may not be suitable for a simple solution processing method such as spin-coating, and it may increase the difficulty of post-processing of device fabrication. As the length of the alkyl chain increases (n= 5, 7), the distance between BTBT and phosphoric acid increases and the coupling degree decreases, the alkyl chain acts in equilibrium with the conjugation of BTBT and phosphate groups, and a pair of classical fusion and solidification peaks appear in the DSC plots. Furthermore, when the alkyl chain lengthnis more than 8, the DSC plots show two pairs of thermodynamic peaks and a liquid crystal region between the thermodynamic peaks in the heating or cooling processes. At this time, the length of the alkyl chain in the FAS molecule is sufficient to block the coupling of BTBT and phosphate groups, and dominate the performance of the alkyl chain. In order to demonstrate this, FAS molecules with alkyl chain length of 10 and 11 were selected and incubated at 203.2 °C and 185.3 °C, respectively, according to the liquid crystal temperature region in DSC. As shown in Fig. 4a, b, by the POM, Maltese cross of spherulites, which is the mark of a liquid crystal, was observed in both FAS molecules, which confirmed the liquid crystal properties of the designed FAS materials. It is worth noting that unlike other molecules, the molecular chain length of molecule 6 is moderate, but it has a standard liquid crystal curve of two thermodynamic transitions,which may be caused by fluctuations of the odd-even alternating effect. Moreover, the molecular peak of C11PA-BTBT appeared at the position of 208.3 °C after the main melting peak of 201.4 °C, indicating that the alkyl chain was incompletely free during the melting process due to the excessive length of the alkyl chain, and further structure adjustments need to be carried out. The thermodynamic peak temperatures and enthalpy values were extracted and summarized in Fig. 4d, e. It was found that both the clearing point and the freezing point temperatures and the enthalpy values showed strong odd-even alternating effects.the phase transition temperature was negatively correlated with the chain length, which means the increase in alkyl chain gives the material a degree of freedom, allowing longer alkyl chain molecules to act the same phase transition at lower temperatures.For enthalpy, whennis less than 7, the temperatures of the freezing point and the clearing point go synchronously. But when the alkyl chain length is greater than 7, the peak value of the two peaks in the same process alternates, indicating that the main thermodynamic phase transition is switching. The performance exhibited by the material is a combination of odd-even alternating effects, intramolecular coupling, intermolecular interactions and other related effects. According to the law of material properties, it is the ultimate goal to select and synthesize the most suitable functional semiconductor molecules to meet actual needs.

    3.4 Molecular models

    Accordingly, it can be divided into three models as the alkyl chain grows as shown in Fig. 5. When the alkyl chain is short (n=3, 4, Fig. 5a), the BTBT is strongly coupled with the phosphate group, molecular rigidity predominates and alkyl chain interaction is negligible. Molecules do not exhibit the thermodynamic phase transition, which can be described by brick-like model. As the length of the alkyl chain increases (n=5, 7, Fig. 5b), BTBT and the phosphate group go separately,which leads to a comparatively weaken coupling. The functional molecule is equivalent in rigidity and flexibility, showing a certain degree of freedom by a simple thermodynamic phase transition. However, as the alkyl chain is further lengthened (n=6, 8-11, Fig. 5c), BTBT and the phosphate group are completely independent by volume effect. The role of the alkyl chain is dominant at this time, and the material can show prominent liquid crystal properties.

    Fig. 4 (a) and (b) are POM images showing Maltese cross of C10PA-BTBT preserved at 203.2 °C and C11PA-BTBT preserved at 185.3 °C,respectively. (c) and (d) are temperatures and enthalpy curves of phase transitions from the cooling process. The molecule has only one thermodynamic transition, when the freezing point meets the clearing point.

    Fig. 5 Molecular models for CnPA-BTBT (n = 3-11).Left (n = 3, 4): brick-like model, the coupling between functional groups and semiconductors is so strong that the molecule shows no flexibility; Middle (n = 5, 7):Functional molecule model with medium chain length; Right (n = 6, 8-11): the liquid crystal model, long alkyl chains predominate with phosphate group and BTBT ignored.The purple dashed line indicates liquid crystal region. Red rectangle, blue circle and black line are the BTBT backbone, phosphate group and alkyl chain, respectively. Color online.

    4 Conclusions

    In summary, this project designed and synthesized a class of FAS molecules CnPA-BTBT (n= 3-11). Based on alkyl-chain engineering, the molecule links the semiconductor backbone and the polar group through alkyl chains of different lengths, thereby utilizing the volume effect, the odd-even alternating effect and the flexibility of the alkyl chain to adjust the intermolecular and intramolecular coupling. The project analyzes and summarizes the material properties through TGA and DSC-based thermodynamics studies, and proposes a molecular model,which provides experimental basis for material screening and organic synthesis methodology with target properties.

    猜你喜歡
    總院納米技術(shù)北京大學(xué)
    大自然
    懂納米技術(shù)的變色龍
    北京大學(xué)首都發(fā)展新年論壇(2021)舉行
    就任北京大學(xué)校長(zhǎng)之演說(shuō)
    納米技術(shù)在食品科學(xué)工程中的體系構(gòu)建
    納米技術(shù)浮選技術(shù)研究進(jìn)展
    中核戰(zhàn)略規(guī)劃研究總院有限公司
    Le r?le de la lecture dans la formation desétudiants de langues vivantes
    La solitude
    設(shè)計(jì)的春天——訪天津大學(xué)建筑設(shè)計(jì)規(guī)劃研究總院院長(zhǎng)洪再生
    国产又黄又爽又无遮挡在线| 一本久久中文字幕| 午夜福利在线在线| 手机成人av网站| 啦啦啦观看免费观看视频高清| 欧美成狂野欧美在线观看| 老汉色av国产亚洲站长工具| 男人舔奶头视频| 国语自产精品视频在线第100页| 欧美国产日韩亚洲一区| 精品欧美国产一区二区三| 99国产综合亚洲精品| 国产精品久久久av美女十八| 亚洲专区国产一区二区| 久久午夜综合久久蜜桃| 99国产综合亚洲精品| 日韩欧美精品v在线| 全区人妻精品视频| 欧美日韩国产亚洲二区| 中文在线观看免费www的网站| 狂野欧美白嫩少妇大欣赏| 观看美女的网站| 97超视频在线观看视频| 亚洲欧美日韩无卡精品| 全区人妻精品视频| 老司机在亚洲福利影院| 啦啦啦观看免费观看视频高清| 在线看三级毛片| 亚洲aⅴ乱码一区二区在线播放| 国产私拍福利视频在线观看| 国产野战对白在线观看| 一二三四在线观看免费中文在| 国产成人精品久久二区二区免费| 国产日本99.免费观看| 免费人成视频x8x8入口观看| 国产一区二区激情短视频| 亚洲国产精品999在线| 精品一区二区三区视频在线观看免费| 搡老熟女国产l中国老女人| 国产av一区在线观看免费| 久久久精品欧美日韩精品| 搡老岳熟女国产| 动漫黄色视频在线观看| 一二三四社区在线视频社区8| 国产精品综合久久久久久久免费| 欧美精品啪啪一区二区三区| 免费在线观看日本一区| 精品午夜福利视频在线观看一区| 久99久视频精品免费| 成人午夜高清在线视频| 国产高清视频在线观看网站| 少妇人妻一区二区三区视频| 久久久久久九九精品二区国产| 国产精品一区二区精品视频观看| 好看av亚洲va欧美ⅴa在| 男女那种视频在线观看| 久久草成人影院| 亚洲人成伊人成综合网2020| 麻豆国产av国片精品| 国产精品 国内视频| 国产黄色小视频在线观看| 19禁男女啪啪无遮挡网站| 美女黄网站色视频| 国产免费av片在线观看野外av| 成人国产一区最新在线观看| 麻豆久久精品国产亚洲av| 亚洲成人免费电影在线观看| 欧美不卡视频在线免费观看| 看片在线看免费视频| 最新美女视频免费是黄的| 欧美极品一区二区三区四区| aaaaa片日本免费| 日韩有码中文字幕| 禁无遮挡网站| 一边摸一边抽搐一进一小说| 亚洲av第一区精品v没综合| 亚洲无线在线观看| 亚洲精品美女久久久久99蜜臀| av欧美777| 成人国产一区最新在线观看| 18禁观看日本| 亚洲一区二区三区色噜噜| 亚洲成人免费电影在线观看| 婷婷精品国产亚洲av| 亚洲专区字幕在线| 久久久久久久久中文| 免费观看精品视频网站| 亚洲欧洲精品一区二区精品久久久| 中出人妻视频一区二区| av片东京热男人的天堂| 97超级碰碰碰精品色视频在线观看| 午夜免费激情av| 在线观看午夜福利视频| 亚洲aⅴ乱码一区二区在线播放| 欧美一区二区国产精品久久精品| 亚洲精品国产精品久久久不卡| 香蕉av资源在线| 亚洲国产看品久久| 女人高潮潮喷娇喘18禁视频| 国内少妇人妻偷人精品xxx网站 | 男女床上黄色一级片免费看| 国产欧美日韩一区二区三| 国产精品av视频在线免费观看| 热99在线观看视频| 少妇丰满av| 少妇丰满av| 在线观看一区二区三区| 丁香欧美五月| 精华霜和精华液先用哪个| 国产男靠女视频免费网站| 老熟妇仑乱视频hdxx| 三级国产精品欧美在线观看 | 亚洲中文av在线| 九色成人免费人妻av| 国产一区二区在线av高清观看| 一二三四社区在线视频社区8| 国产精品一区二区三区四区久久| 国产精品,欧美在线| 精华霜和精华液先用哪个| 老熟妇仑乱视频hdxx| 18禁观看日本| www.自偷自拍.com| www.自偷自拍.com| 欧美+亚洲+日韩+国产| 午夜视频精品福利| 精品电影一区二区在线| 超碰成人久久| 99热精品在线国产| 成年免费大片在线观看| 欧美色视频一区免费| 久9热在线精品视频| 国产亚洲av嫩草精品影院| 男插女下体视频免费在线播放| 十八禁人妻一区二区| 母亲3免费完整高清在线观看| 欧美黑人巨大hd| 男女视频在线观看网站免费| 久久亚洲真实| 国产高清视频在线观看网站| 国产精品久久久久久精品电影| 色综合亚洲欧美另类图片| 色吧在线观看| 色吧在线观看| АⅤ资源中文在线天堂| 久久久久久大精品| 叶爱在线成人免费视频播放| 琪琪午夜伦伦电影理论片6080| 亚洲精品美女久久av网站| 成年女人永久免费观看视频| 国产精品九九99| or卡值多少钱| 日韩欧美免费精品| 国产成人精品无人区| 啪啪无遮挡十八禁网站| 色播亚洲综合网| 欧美成人一区二区免费高清观看 | 亚洲av成人一区二区三| 看片在线看免费视频| 国产伦一二天堂av在线观看| 国产精品99久久久久久久久| 天天一区二区日本电影三级| 一级黄色大片毛片| 一二三四在线观看免费中文在| 女同久久另类99精品国产91| 国产乱人伦免费视频| 九九在线视频观看精品| 黄色 视频免费看| 此物有八面人人有两片| 老熟妇仑乱视频hdxx| 2021天堂中文幕一二区在线观| 久久人人精品亚洲av| 成人三级黄色视频| 草草在线视频免费看| 国产私拍福利视频在线观看| 久久香蕉国产精品| a级毛片在线看网站| 夜夜爽天天搞| 一本一本综合久久| 在线看三级毛片| 色综合欧美亚洲国产小说| 国产人伦9x9x在线观看| 日日夜夜操网爽| 亚洲av成人一区二区三| 超碰成人久久| 国产亚洲av高清不卡| 麻豆久久精品国产亚洲av| 亚洲av成人不卡在线观看播放网| 人人妻人人澡欧美一区二区| 久久精品aⅴ一区二区三区四区| 国产精品一区二区三区四区久久| 90打野战视频偷拍视频| 精品免费久久久久久久清纯| a在线观看视频网站| 国产精品美女特级片免费视频播放器 | 国产成人精品无人区| 久久久久九九精品影院| 亚洲人与动物交配视频| 国产v大片淫在线免费观看| 中文字幕最新亚洲高清| 天堂av国产一区二区熟女人妻| 熟妇人妻久久中文字幕3abv| 激情在线观看视频在线高清| 日本黄色视频三级网站网址| 欧美三级亚洲精品| 亚洲一区二区三区色噜噜| 神马国产精品三级电影在线观看| 日韩成人在线观看一区二区三区| 九九久久精品国产亚洲av麻豆 | 舔av片在线| 91在线精品国自产拍蜜月 | 99久久无色码亚洲精品果冻| 99在线视频只有这里精品首页| 操出白浆在线播放| 色av中文字幕| 看黄色毛片网站| 在线国产一区二区在线| 不卡av一区二区三区| 国产极品精品免费视频能看的| 91字幕亚洲| 97人妻精品一区二区三区麻豆| 一进一出好大好爽视频| a级毛片a级免费在线| 亚洲av熟女| 欧美色视频一区免费| 久久久国产成人精品二区| 国产 一区 欧美 日韩| 欧美高清成人免费视频www| 真人做人爱边吃奶动态| 国产亚洲精品综合一区在线观看| 熟妇人妻久久中文字幕3abv| 国产午夜福利久久久久久| 婷婷精品国产亚洲av在线| 婷婷六月久久综合丁香| 亚洲无线在线观看| a级毛片在线看网站| 亚洲人成电影免费在线| 99热这里只有精品一区 | 好男人电影高清在线观看| 亚洲国产欧美人成| 亚洲av日韩精品久久久久久密| 日日干狠狠操夜夜爽| 国产淫片久久久久久久久 | 亚洲av中文字字幕乱码综合| 国语自产精品视频在线第100页| 亚洲 国产 在线| 1024香蕉在线观看| 国产伦人伦偷精品视频| 一级作爱视频免费观看| 老司机福利观看| 天堂av国产一区二区熟女人妻| 婷婷精品国产亚洲av| 此物有八面人人有两片| 国产欧美日韩一区二区三| 黄色视频,在线免费观看| 精品久久久久久久末码| 久久这里只有精品19| 久久草成人影院| 一级毛片高清免费大全| 两性午夜刺激爽爽歪歪视频在线观看| 99视频精品全部免费 在线 | 国产成人影院久久av| 首页视频小说图片口味搜索| 久久人妻av系列| 特级一级黄色大片| 精品不卡国产一区二区三区| 此物有八面人人有两片| 色吧在线观看| 亚洲精品中文字幕一二三四区| 国产美女午夜福利| 一本精品99久久精品77| 一个人看视频在线观看www免费 | 国产黄片美女视频| 少妇人妻一区二区三区视频| 久久香蕉国产精品| 高清毛片免费观看视频网站| 午夜福利成人在线免费观看| 中文字幕高清在线视频| 日本黄色视频三级网站网址| 18禁黄网站禁片免费观看直播| 亚洲国产欧美人成| 性色avwww在线观看| 成熟少妇高潮喷水视频| 国产亚洲精品一区二区www| 999久久久国产精品视频| 丰满人妻一区二区三区视频av | 国产男靠女视频免费网站| 久久精品影院6| 久久久久九九精品影院| 天堂影院成人在线观看| 熟妇人妻久久中文字幕3abv| 男女下面进入的视频免费午夜| 久久中文字幕人妻熟女| 高清毛片免费观看视频网站| 亚洲av电影不卡..在线观看| 亚洲午夜理论影院| 伊人久久大香线蕉亚洲五| 日韩欧美三级三区| a级毛片在线看网站| 免费观看精品视频网站| av国产免费在线观看| 精品欧美国产一区二区三| 亚洲一区二区三区不卡视频| 1024香蕉在线观看| 亚洲成a人片在线一区二区| 国产精品一区二区精品视频观看| 99在线人妻在线中文字幕| 亚洲男人的天堂狠狠| 国产一级毛片七仙女欲春2| 极品教师在线免费播放| 最新在线观看一区二区三区| 国产精品野战在线观看| 亚洲中文字幕一区二区三区有码在线看 | 丰满的人妻完整版| 99riav亚洲国产免费| 男女那种视频在线观看| 黄色 视频免费看| 宅男免费午夜| 国产精品久久视频播放| 成熟少妇高潮喷水视频| 亚洲专区字幕在线| 欧美在线黄色| 亚洲五月天丁香| 国内久久婷婷六月综合欲色啪| 两性午夜刺激爽爽歪歪视频在线观看| 午夜免费成人在线视频| 少妇裸体淫交视频免费看高清| 国产单亲对白刺激| 成人高潮视频无遮挡免费网站| 最好的美女福利视频网| 淫秽高清视频在线观看| 操出白浆在线播放| 日韩大尺度精品在线看网址| 黑人巨大精品欧美一区二区mp4| 午夜免费观看网址| 精品久久久久久久末码| 精品99又大又爽又粗少妇毛片 | 亚洲自偷自拍图片 自拍| 此物有八面人人有两片| 成年女人永久免费观看视频| 久9热在线精品视频| 亚洲欧美日韩高清在线视频| 国产精品久久久久久久电影 | 国产又色又爽无遮挡免费看| 男女视频在线观看网站免费| 国产成人啪精品午夜网站| 国产精品1区2区在线观看.| 男人舔女人下体高潮全视频| 日日干狠狠操夜夜爽| 欧美一级毛片孕妇| 老司机在亚洲福利影院| 最新中文字幕久久久久 | 夜夜夜夜夜久久久久| 9191精品国产免费久久| 麻豆国产97在线/欧美| 午夜精品在线福利| 国产精品电影一区二区三区| 久久精品91蜜桃| 免费av毛片视频| 久久久久国内视频| 日韩欧美国产在线观看| 九九在线视频观看精品| 亚洲av美国av| 精品一区二区三区视频在线 | 可以在线观看毛片的网站| 午夜福利在线在线| 免费大片18禁| 成人鲁丝片一二三区免费| 国产成+人综合+亚洲专区| 男人舔女人下体高潮全视频| 免费看十八禁软件| 国内精品久久久久精免费| 婷婷精品国产亚洲av在线| 国产精品av久久久久免费| 亚洲成a人片在线一区二区| 亚洲无线观看免费| 男人舔女人下体高潮全视频| 99久久无色码亚洲精品果冻| 观看免费一级毛片| 999久久久国产精品视频| 亚洲av电影在线进入| 亚洲成a人片在线一区二区| 搡老熟女国产l中国老女人| 久久国产乱子伦精品免费另类| 国产黄色小视频在线观看| 亚洲av电影不卡..在线观看| 亚洲中文字幕日韩| 国产黄色小视频在线观看| 最近最新中文字幕大全电影3| 亚洲中文字幕日韩| 天堂√8在线中文| www国产在线视频色| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产欧洲综合997久久,| 欧美日韩福利视频一区二区| 麻豆一二三区av精品| 亚洲欧美日韩无卡精品| 国产精品久久视频播放| 两个人看的免费小视频| 每晚都被弄得嗷嗷叫到高潮| 女生性感内裤真人,穿戴方法视频| 两人在一起打扑克的视频| 国产精品亚洲美女久久久| 少妇丰满av| 美女cb高潮喷水在线观看 | 长腿黑丝高跟| 国产视频内射| 欧美激情久久久久久爽电影| 亚洲激情在线av| av女优亚洲男人天堂 | 老汉色av国产亚洲站长工具| bbb黄色大片| 国产免费男女视频| 久久99热这里只有精品18| 后天国语完整版免费观看| 欧美高清成人免费视频www| 五月伊人婷婷丁香| www.www免费av| 中文字幕久久专区| 女人高潮潮喷娇喘18禁视频| 国产成人精品无人区| 国产综合懂色| 国产三级中文精品| 国产高清有码在线观看视频| 天堂影院成人在线观看| 日韩欧美 国产精品| 亚洲精品中文字幕一二三四区| 观看免费一级毛片| 亚洲精品在线观看二区| 亚洲av熟女| 国产精品一区二区免费欧美| 91字幕亚洲| 亚洲欧美日韩卡通动漫| 啦啦啦韩国在线观看视频| 国产一区在线观看成人免费| 黄片大片在线免费观看| 色综合婷婷激情| 亚洲片人在线观看| 成人性生交大片免费视频hd| 欧美日韩精品网址| 视频区欧美日本亚洲| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲欧美98| 成人国产综合亚洲| 免费高清视频大片| 久久久国产成人精品二区| 在线a可以看的网站| 国产成人福利小说| 欧美一级毛片孕妇| 亚洲精品在线美女| 亚洲性夜色夜夜综合| 脱女人内裤的视频| 黄色女人牲交| 两人在一起打扑克的视频| 精品一区二区三区视频在线观看免费| 久久久久久大精品| 亚洲精品乱码久久久v下载方式 | 全区人妻精品视频| 精品久久久久久久毛片微露脸| 亚洲男人的天堂狠狠| 一区二区三区高清视频在线| 免费搜索国产男女视频| 一区二区三区国产精品乱码| 1024香蕉在线观看| 又爽又黄无遮挡网站| 老熟妇仑乱视频hdxx| 中亚洲国语对白在线视频| 久久久久免费精品人妻一区二区| 在线永久观看黄色视频| 美女 人体艺术 gogo| 网址你懂的国产日韩在线| 国产精品自产拍在线观看55亚洲| 亚洲欧洲精品一区二区精品久久久| 久久久久亚洲av毛片大全| 19禁男女啪啪无遮挡网站| 狂野欧美白嫩少妇大欣赏| 免费看光身美女| 精品久久久久久,| www.www免费av| 香蕉久久夜色| 99精品欧美一区二区三区四区| www国产在线视频色| 国内精品美女久久久久久| 久久久久久久精品吃奶| 麻豆一二三区av精品| 久久婷婷人人爽人人干人人爱| 国产成人一区二区三区免费视频网站| 国语自产精品视频在线第100页| 九九热线精品视视频播放| 老司机午夜福利在线观看视频| 999久久久精品免费观看国产| 亚洲黑人精品在线| 看黄色毛片网站| 香蕉av资源在线| 欧美中文日本在线观看视频| 身体一侧抽搐| 91久久精品国产一区二区成人 | 久久久国产成人免费| 在线观看免费视频日本深夜| 91av网站免费观看| 国产探花在线观看一区二区| 一a级毛片在线观看| 免费在线观看成人毛片| 日韩中文字幕欧美一区二区| 亚洲av第一区精品v没综合| 日日夜夜操网爽| 精品国产美女av久久久久小说| 国产69精品久久久久777片 | 成人无遮挡网站| 欧美日韩国产亚洲二区| 日韩三级视频一区二区三区| 国产人伦9x9x在线观看| 成人三级黄色视频| 亚洲成人久久爱视频| 九九在线视频观看精品| 18禁美女被吸乳视频| 色综合婷婷激情| 男女床上黄色一级片免费看| 日韩欧美在线二视频| 美女免费视频网站| 非洲黑人性xxxx精品又粗又长| 国产99白浆流出| 欧美xxxx黑人xx丫x性爽| 国产精品乱码一区二三区的特点| 久久久久久久午夜电影| 精品一区二区三区av网在线观看| 久久亚洲精品不卡| 成人三级做爰电影| 五月伊人婷婷丁香| 99久国产av精品| 亚洲av成人不卡在线观看播放网| 真人一进一出gif抽搐免费| 婷婷精品国产亚洲av| 黄频高清免费视频| 久久精品亚洲精品国产色婷小说| 国产三级黄色录像| 亚洲在线观看片| 免费av毛片视频| 一卡2卡三卡四卡精品乱码亚洲| 午夜免费成人在线视频| 别揉我奶头~嗯~啊~动态视频| 熟女电影av网| 亚洲国产欧美一区二区综合| 一个人看视频在线观看www免费 | 中文字幕人妻丝袜一区二区| 国产精品永久免费网站| www日本黄色视频网| 久久精品国产99精品国产亚洲性色| 91字幕亚洲| 99在线视频只有这里精品首页| 欧美日韩综合久久久久久 | 国产免费av片在线观看野外av| 成熟少妇高潮喷水视频| 亚洲欧美日韩无卡精品| 国内精品久久久久久久电影| 免费在线观看影片大全网站| 高清毛片免费观看视频网站| 一个人看的www免费观看视频| 性色av乱码一区二区三区2| 亚洲av片天天在线观看| 色综合站精品国产| 欧美最黄视频在线播放免费| 男女床上黄色一级片免费看| 丰满人妻熟妇乱又伦精品不卡| 色噜噜av男人的天堂激情| 亚洲精品456在线播放app | 久久精品人妻少妇| 国产淫片久久久久久久久 | 天堂√8在线中文| 怎么达到女性高潮| 国产精品,欧美在线| 成人18禁在线播放| 久久精品国产亚洲av香蕉五月| 亚洲国产中文字幕在线视频| 97人妻精品一区二区三区麻豆| 亚洲一区高清亚洲精品| av天堂在线播放| 亚洲欧美激情综合另类| 国产av在哪里看| av片东京热男人的天堂| 神马国产精品三级电影在线观看| 18禁黄网站禁片午夜丰满| 日韩免费av在线播放| 99精品久久久久人妻精品| 国内少妇人妻偷人精品xxx网站 | 动漫黄色视频在线观看| 桃红色精品国产亚洲av| 亚洲熟女毛片儿| 美女cb高潮喷水在线观看 | 国产精品 国内视频| 老司机在亚洲福利影院| 啪啪无遮挡十八禁网站| 国产黄片美女视频| 久久天躁狠狠躁夜夜2o2o| 亚洲专区国产一区二区| 麻豆av在线久日| 小说图片视频综合网站| 性色avwww在线观看| 亚洲中文字幕日韩| 日本一二三区视频观看| 亚洲国产高清在线一区二区三| 亚洲成av人片免费观看| 久久久久久人人人人人| bbb黄色大片| 免费看a级黄色片| 久久久国产成人精品二区| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久蜜臀av无| 一a级毛片在线观看| 国产久久久一区二区三区| 久久99热这里只有精品18| 中文字幕最新亚洲高清| 在线免费观看的www视频| 高潮久久久久久久久久久不卡| 亚洲精品美女久久av网站| 国产1区2区3区精品|