• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    烷基鏈工程對(duì)兩親有機(jī)半導(dǎo)體熱力學(xué)性能影響的研究

    2020-12-25 01:35:48李明亮李碩王國(guó)治郭雪峰
    物理化學(xué)學(xué)報(bào) 2020年11期
    關(guān)鍵詞:總院納米技術(shù)北京大學(xué)

    李明亮,李碩,王國(guó)治,郭雪峰

    1有研工程技術(shù)研究院有限公司,北京 101407

    2北京有色金屬研究總院智能傳感功能材料國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100088

    3北京大學(xué)化學(xué)與分子工程學(xué)院,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,分子動(dòng)態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100871

    4北京大學(xué)工學(xué)院先進(jìn)材料與納米技術(shù)系,北京 100871

    1 Introduction

    With the development of the information industry, demands and requirements of organic semiconductors (OSC) in artificial intelligence and wearable devices are rapidly increasing1-5.Among them, the functional amphiphilic semiconductor (FAS)molecule has great potential in fabrication of biomimetic thin film morphology6-8and functional electronic devices9-11, for the reason that FAS has a special structure, is simple to process,low in cost and easy to form a thin film with good structure and morphology. The amphiphilic semiconductor molecule generally consists of a hydrophilic polar group and a hydrophobic semiconductor group12, but so far, the interaction between the two groups and the correspondence between the molecular property and structure are still blurred. This makes it more difficult to design and optimize semiconductor materials to realize the good performance and target properties.

    Thermodynamics is an important material research methodology13. It can get information on the phase, structure and stability of materials through methods based on thermodynamics14-17. This method is fast and efficient,and has gradually attracted more attention by initially applying to amphiphilic semiconductor materials18. Therefore,in this work we designed and synthesized a FAS molecule(benzo[b]benzo[4,5] thieno[2,3-d]thiophene, named CnPABTBT,n= 3-11, the structures shown in Scheme 1). We connected the hydrophilic group and the hydrophobic group through alkyl chains with different lengths to study the effects of the chain length on the thermodynamic property of FAS19,20.The laws summarized from the thermodynamic performance provide an experimental basis for synthesizing and screening functional materials for different purposes.

    2 Experimental and computational section

    2.1 General methods and information

    All reagents and chemicals were analytical reagents obtained from Innochem and Sinopharm, China. They are used without further purification unless otherwise noted. The synthetic route is outlined in Scheme 2. All reactions were performed under an inert atmosphere of argon in dry solvents by using standard Schlenk techniques.1H and13C NMR spectra were recorded on Bruker-400 MHz NMR ARX400, Germany. Chemical shifts of1H and13C NMR signals were quoted to tetramethylsilane (δ=0.00) and CDCl3(δ= 77.00) as internal standards, respectively.Mass spectra (MS) were recorded on a Bruker APEX IV mass spectrometer, Germany. Ultraviolet-visible (UV-Vis) absorption measurement of organic semiconductors in solution and in thin films (on quartz substrates) were determined with a Perkin-Elmer Lambda 950 UV/Vis spectrometer, USA.Thermogravimetric Analysis (TGA) measurements were performed on TA Instruments Q600 SDT thermal analysis system, USA under N2at a heating rate of 10 °C·min-1.Differential Scanning Calorimeter analysis (DSC)measurements were performed by using a TA Instruments Q2000 differential scanning calorimeter, USA under N2. Both heating and cooling speed were 10 °C·min-1. Polarized optical microscopy (POM) with heat stage were obtained on silicon substrates by using Nikon Eclipse LV100 POL, Japan in reflection mode on a home-made heat stage.

    Scheme 1 Molecular Structures of CnPA-BTBT (n = 3-11).The semiconductor backbone and the polar group are red and blue,respectively. Color online.

    Scheme 2 Synthetic routine of CnPA-BTBT (n = 3-11).

    2.2 Synthetics procedures and characterization

    Synthetic Routine of CnPA-BTBT (n= 3-11) were synthesized according to the literature21,22. To a solution of CnPBTBT (0.168 mmol) in dry dichloromethane (1 mL) was added bromotrimethylsilane (0.3 mL). The mixture was stirred at the room temperature under argon atmosphere overnight. 2 mL methanol was added to the mixture and the mixture was further stirred for 2 h. All solvent and reagent were removed under reduced pressure to give a white solid.

    C3PA-BTBT:1H NMR (d-THF, 500 MHz, 40 °C):δ7.95 (d,1H,J= 8.0 Hz), 7.87 (d, 1H,J= 7.8 Hz), 7.82 (s, 1H), 7.79 (d,1H,J= 8.1 Hz), 7.39 (m, 2H), 7.32 (d, 1H,J= 8.3 Hz), 2.88 (t,2H,J= 7.2 Hz), 2.00 (m, 2H), 1.30 (m, 2H);31P NMR (d-THF,200 MHz):δ31.44. EI-MS: Calcd. for [M - H]-: 361.012747.Found: 361.012749.

    C4PA-BTBT:1H NMR (d-THF, 500 MHz, 40 °C):δ7.96 (d,1H,J= 7.8 Hz), 7.87 (d, 1H,J= 7.1 Hz), 7.80 (m, 2H), 7.41 (m,2H), 7.32 (d, 1H,J= 8.4 Hz), 2.80 (t, 2H,J= 7.7 Hz), 1.83 (m,4H), 1.31 (m, 2H);31P NMR (d-THF, 200 MHz):δ31.50. EIMS: Calcd. for [M - H]-: 375.028397. Found: 375.027394.

    C5PA-BTBT:1H NMR (d-THF, 500 MHz, 40 °C):δ7.95 (d,1H,J= 7.9 Hz), 7.87 (d, 1H,J= 7.6 Hz), 7.80 (m, 2H), 7.40 (m,2H), 7.30 (d, 1H,J= 9.2 Hz), 2.78 (t, 2H,J= 7.7 Hz), 1.67 (m,6H), 1.50 (m, 2H);31P NMR (d-THF, 200 MHz):δ32.03. EIMS: Calcd. for [M - H]-: 389.044047. Found: 389.044994.

    C6PA-BTBT:1H NMR (d-THF, 500 MHz, 40 °C):δ7.95 (d,1H,J= 8.0 Hz), 7.87 (d, 1H,J= 7.2 Hz), 7.80 (m, 2H), 7.41 (m,2H), 7.30 (d, 1H,J= 8.1 Hz), 2.78 (m, 2H), 1.62 (m, 2H), 1.31(m, 8H);31P NMR (d-THF, 200 MHz):δ32.06. EI-MS: Calcd.for [M - H]-: 403.059697. Found: 403.059647.

    C7PA-BTBT:1H NMR (d-THF, 500 MHz, 40 °C):δ7.95 (d,1H,J= 8.0 Hz), 7.87 (d, 1H,J= 7.5 Hz), 7.80 (m, 2H), 7.41 (m,2H), 7.31 (d, 1H,J= 8.2 Hz), 2.78 (t, 2H,J= 7.6 Hz), 1.62 (m,4H), 1.31 (m, 8H);31P NMR (d-THF, 200 MHz):δ32.03. EIMS: Calcd. for [M - H]-: 417.075347. Found: 417.076116.

    C8PA-BTBT:1H NMR (d-THF, 500 MHz, 40 °C):δ7.95 (d,1H,J= 8.0 Hz), 7.88 (d, 1H,J= 7.6 Hz), 7.80 (m, 2H), 7.41 (m,2H), 7.30 (d, 1H,J= 7.9 Hz), 2.78 (t, 2H,J= 7.6 Hz), 1.61 (m,4H), 1.31 (m, 10H);31P NMR (d-THF, 200 MHz):δ32.05. EIMS: Calcd. for [M - H]-: 431.090989. Found: 431.091066.

    C9PA-BTBT:1H NMR (d-THF, 500 MHz, 40 °C):δ7.95 (d,1H,J= 8.0 Hz), 7.88 (d, 1H,J= 7.6 Hz), 7.80 (m, 2H), 7.41 (m,2H), 7.31 (d, 1H,J= 7.9 Hz), 2.78 (t, 2H,J= 7.6 Hz), 1.60 (m,4H), 1.31 (m, 12H);31P NMR (d-THF, 200 MHz):δ32.02. EIMS: Calcd. for [M - H]-: 445.106648. Found: 445.106766.

    C10PA-BTBT:1H NMR (d-THF, 500 MHz, 40 °C):δ7.95 (d,1H,J= 8.0 Hz), 7.88 (d, 1H,J= 7.6 Hz), 7.80 (m, 2H), 7.41 (m,2H), 7.30 (d, 1H,J= 8.1 Hz), 2.78 (t, 2H,J= 7.6 Hz), 1.61 (m,4H), 1.31 (m, 14H);31P NMR (d-THF, 200 MHz):δ32.03. EIMS: Calcd. for [M - H]-: 459.122298. Found: 459.122675.

    C11PA-BTBT:1H NMR (d-THF, 500 MHz, 40 °C):δ7.95 (d,1H,J= 7.9 Hz), 7.88 (d, 1H,J= 7.5 Hz), 7.80 (m, 2H), 7.41 (m,2H), 7.30 (d, 1H,J= 7.8 Hz), 2.78 (t, 2H,J= 7.7 Hz), 1.60 (m,4H), 1.31 (m, 16H);31P NMR (d-THF, 200 MHz):δ32.04. ESIMS: Calcd. for [M + H]+: 475.15250. Found: 475.15220.

    3 Results and discussion

    3.1 Molecular design

    We designed and synthesized CnPA-BTBT (n= 3-11, Scheme 1) functional molecules with benzo[b]benzo[4,5]thieno[2,3-d]thiophene (BTBT) as the rigidπ-backbone, phosphate groups as polar functional groups, and the two parts were linked through alkyl chains with different lengths (the synthetic procedure in Scheme 2). The molecular design is mainly based on the following three considerations: (i) BTBT is a high-performance semiconductor backbone23,24. The strongπ-πinteraction between BTBT groups is beneficial to ensure the performance of electronic devices; (ii) Phosphate groups with strong polar interaction are low in synthesis cost and simple to process25. (iii)Alkyl chains with different lengths are introduced into the system as substituent, and thus adjust the properties13,14. The conjugate interaction of BTBT groups, the polar interaction of phosphate groups and van der Waals interaction of alkyl chains enrich the diversity of the thermodynamic performance and enhance the ability of self-assembly.

    3.2 Fundamental properties.

    The fundamental properties of the functional materials CnPABTBT (n= 3-11) were first studied. The UV-Vis spectroscopy is a molecular spectrum formed by valence electron transitions.The band gap of FAS can be calculated from the initial absorption value of UV-Vis. Fig. 1a, b are the UV-Vis curves of the functional molecule solution in chloroform (10-5mol·L-1)and in the solid film, respectively. We found that in the solution,the UV-Vis curves of all functional molecules are substantially coincident, while in the solid phase film, the curves vary greatly.Statistical calculation of the energy gap is shown in Fig. 1c.Compared with the band gaps of solution system atca.4.4 eV,the ones of solid film fluctuate and areca.1 eV lower on average.This is due to the better arrangement of FAS molecules in the solid film, which makes the transition of valence electrons easier.The curves show a trough and a peak whenn= 3 andn= 7,respectively, which may be due to the comprehensive effect of the alkyl chain on the intermolecular arrangement and the conjugation of intramolecular groups. On the other hand, in the case of short alkyl chains (n= 3, 4), the polar group and the semiconductor group are significantly coupled. As shown in Fig.1d,31P NMR of phosphate group was conducted. Whenn= 3 and 4, the phosphorus atom in the phosphate group is chemically shielded from the conjugated BTBT group, which makes a chemical shift up to 0.4 to the low field in comparison with those whennis more than 5. It indicates that whenn= 3 and 4, the coupling of the phosphate group and BTBT is much stronger than when alkyl chains are longer (n> 5).

    Fig. 1 Fundamental properties of CnPA-BTBT (n = 3-11).(a) and (b) are initial absorption range of UV-Vis in solution (10-5 mol·L-1) and film, respectively. (c) band gaps calculated from (a) and (b); (d) 31P NMR spectrum.

    3.3 Thermodynamic studies

    Fig. 2 (a) TGA plot and (b) DTG plot of CnPA-BTBT (n = 3-11); (c) fitting curve of the temperatures of the first peak in DTG in (b).The heating rate is 10 °C·min-1.

    Fig. 3 DSC spectra of CnPA-BTBT (n = 3-11).The heating rate are 10 °C·min-1.

    Table 1 Summaries of DSC thermodynamic parameters of CnPA-BTBT (n = 3-11).

    Thermodynamic studies of functional materials are based on TGA and DSC. The TGA curves are shown in Fig. 2a, and the functional molecules rapidly decompose atca.450 °C. The derivatives of the TGA curve are then processed to obtain a differential thermal gravity (DTG) curve, as shown in Fig. 2b. It is found that the FAS molecules show a weak decomposition peak at 180-250 °C, at which time the materials lose the crystal water bound with phosphate groups. The temperature value of the first weight loss peak was extracted and shown in Fig. 2c. It was found that the temperature of the water loss peak fluctuated and fell with the increase of the alkyl chain, indicating that the binding ability of the FAS molecule to water molecules was regulated by the odd-even alternating effect of the alkyl chain and the intramolecular coupling with BTBT. Based on the TGA test, we performed a detailed DSC characterization of the FAS molecules CnPA-BTBT (n= 3-11), as shown in Fig. 3. The temperature is heating and cooling at a rate of 10 °C·min-1. The first cycle (black solid line) aims to eliminate the effects of thermal history left during processing and remove crystal water to study the intrinsic properties of the FAS molecule. Therefore,the analysis subject is the second cycle (red solid line), in which the thermodynamic temperatures and enthalpy values are listed in Table 1. According to the thermodynamic performance of the FAS molecules, it is found that when the alkyl chain length is 3 or 4, the molecules do not show any thermodynamic peak below the thermal decomposition temperature, so there is no thermodynamic transition and molecular rearrangement during the heating process. It indicates that the molecules have good stability and rigidity for BTBT is strongly coupled with the phosphate group, and the influence of alkyl chain can be neglected, which further confirms the conclusions in UV-Vis and31P NMR tests. However, at this time, due to excessive rigidity,the material may not be suitable for a simple solution processing method such as spin-coating, and it may increase the difficulty of post-processing of device fabrication. As the length of the alkyl chain increases (n= 5, 7), the distance between BTBT and phosphoric acid increases and the coupling degree decreases, the alkyl chain acts in equilibrium with the conjugation of BTBT and phosphate groups, and a pair of classical fusion and solidification peaks appear in the DSC plots. Furthermore, when the alkyl chain lengthnis more than 8, the DSC plots show two pairs of thermodynamic peaks and a liquid crystal region between the thermodynamic peaks in the heating or cooling processes. At this time, the length of the alkyl chain in the FAS molecule is sufficient to block the coupling of BTBT and phosphate groups, and dominate the performance of the alkyl chain. In order to demonstrate this, FAS molecules with alkyl chain length of 10 and 11 were selected and incubated at 203.2 °C and 185.3 °C, respectively, according to the liquid crystal temperature region in DSC. As shown in Fig. 4a, b, by the POM, Maltese cross of spherulites, which is the mark of a liquid crystal, was observed in both FAS molecules, which confirmed the liquid crystal properties of the designed FAS materials. It is worth noting that unlike other molecules, the molecular chain length of molecule 6 is moderate, but it has a standard liquid crystal curve of two thermodynamic transitions,which may be caused by fluctuations of the odd-even alternating effect. Moreover, the molecular peak of C11PA-BTBT appeared at the position of 208.3 °C after the main melting peak of 201.4 °C, indicating that the alkyl chain was incompletely free during the melting process due to the excessive length of the alkyl chain, and further structure adjustments need to be carried out. The thermodynamic peak temperatures and enthalpy values were extracted and summarized in Fig. 4d, e. It was found that both the clearing point and the freezing point temperatures and the enthalpy values showed strong odd-even alternating effects.the phase transition temperature was negatively correlated with the chain length, which means the increase in alkyl chain gives the material a degree of freedom, allowing longer alkyl chain molecules to act the same phase transition at lower temperatures.For enthalpy, whennis less than 7, the temperatures of the freezing point and the clearing point go synchronously. But when the alkyl chain length is greater than 7, the peak value of the two peaks in the same process alternates, indicating that the main thermodynamic phase transition is switching. The performance exhibited by the material is a combination of odd-even alternating effects, intramolecular coupling, intermolecular interactions and other related effects. According to the law of material properties, it is the ultimate goal to select and synthesize the most suitable functional semiconductor molecules to meet actual needs.

    3.4 Molecular models

    Accordingly, it can be divided into three models as the alkyl chain grows as shown in Fig. 5. When the alkyl chain is short (n=3, 4, Fig. 5a), the BTBT is strongly coupled with the phosphate group, molecular rigidity predominates and alkyl chain interaction is negligible. Molecules do not exhibit the thermodynamic phase transition, which can be described by brick-like model. As the length of the alkyl chain increases (n=5, 7, Fig. 5b), BTBT and the phosphate group go separately,which leads to a comparatively weaken coupling. The functional molecule is equivalent in rigidity and flexibility, showing a certain degree of freedom by a simple thermodynamic phase transition. However, as the alkyl chain is further lengthened (n=6, 8-11, Fig. 5c), BTBT and the phosphate group are completely independent by volume effect. The role of the alkyl chain is dominant at this time, and the material can show prominent liquid crystal properties.

    Fig. 4 (a) and (b) are POM images showing Maltese cross of C10PA-BTBT preserved at 203.2 °C and C11PA-BTBT preserved at 185.3 °C,respectively. (c) and (d) are temperatures and enthalpy curves of phase transitions from the cooling process. The molecule has only one thermodynamic transition, when the freezing point meets the clearing point.

    Fig. 5 Molecular models for CnPA-BTBT (n = 3-11).Left (n = 3, 4): brick-like model, the coupling between functional groups and semiconductors is so strong that the molecule shows no flexibility; Middle (n = 5, 7):Functional molecule model with medium chain length; Right (n = 6, 8-11): the liquid crystal model, long alkyl chains predominate with phosphate group and BTBT ignored.The purple dashed line indicates liquid crystal region. Red rectangle, blue circle and black line are the BTBT backbone, phosphate group and alkyl chain, respectively. Color online.

    4 Conclusions

    In summary, this project designed and synthesized a class of FAS molecules CnPA-BTBT (n= 3-11). Based on alkyl-chain engineering, the molecule links the semiconductor backbone and the polar group through alkyl chains of different lengths, thereby utilizing the volume effect, the odd-even alternating effect and the flexibility of the alkyl chain to adjust the intermolecular and intramolecular coupling. The project analyzes and summarizes the material properties through TGA and DSC-based thermodynamics studies, and proposes a molecular model,which provides experimental basis for material screening and organic synthesis methodology with target properties.

    猜你喜歡
    總院納米技術(shù)北京大學(xué)
    大自然
    懂納米技術(shù)的變色龍
    北京大學(xué)首都發(fā)展新年論壇(2021)舉行
    就任北京大學(xué)校長(zhǎng)之演說(shuō)
    納米技術(shù)在食品科學(xué)工程中的體系構(gòu)建
    納米技術(shù)浮選技術(shù)研究進(jìn)展
    中核戰(zhàn)略規(guī)劃研究總院有限公司
    Le r?le de la lecture dans la formation desétudiants de langues vivantes
    La solitude
    設(shè)計(jì)的春天——訪天津大學(xué)建筑設(shè)計(jì)規(guī)劃研究總院院長(zhǎng)洪再生
    十八禁人妻一区二区| 国产色爽女视频免费观看| 成人鲁丝片一二三区免费| 99久久无色码亚洲精品果冻| 欧美成人性av电影在线观看| 午夜亚洲福利在线播放| 国产精品三级大全| 久久精品影院6| 国产av不卡久久| 国产成人福利小说| 久久精品综合一区二区三区| 久久久久久大精品| 偷拍熟女少妇极品色| 亚洲欧美日韩卡通动漫| 欧美xxxx黑人xx丫x性爽| 欧美色视频一区免费| 国产av一区在线观看免费| 欧美日韩瑟瑟在线播放| 亚洲乱码一区二区免费版| 19禁男女啪啪无遮挡网站| 给我免费播放毛片高清在线观看| 天堂网av新在线| 小说图片视频综合网站| 岛国视频午夜一区免费看| 久久精品91无色码中文字幕| 久久国产精品人妻蜜桃| 久久久久久九九精品二区国产| 日本精品一区二区三区蜜桃| 成人av在线播放网站| 久久久久久久亚洲中文字幕 | 一级a爱片免费观看的视频| 淫秽高清视频在线观看| 国产亚洲欧美98| 18+在线观看网站| 大型黄色视频在线免费观看| 黄色视频,在线免费观看| 18禁黄网站禁片午夜丰满| 免费人成在线观看视频色| 精品国产亚洲在线| 久久香蕉国产精品| 日本撒尿小便嘘嘘汇集6| 久久久久久久久中文| 午夜两性在线视频| 亚洲真实伦在线观看| 国产精品三级大全| 国产精品 国内视频| 日本黄色片子视频| 色老头精品视频在线观看| 国产高清视频在线播放一区| 亚洲成人精品中文字幕电影| 老汉色av国产亚洲站长工具| 一区二区三区免费毛片| 成年女人毛片免费观看观看9| 中文字幕人妻熟人妻熟丝袜美 | 人人妻人人澡欧美一区二区| 日韩欧美一区二区三区在线观看| 亚洲熟妇中文字幕五十中出| 免费高清视频大片| 乱人视频在线观看| 老鸭窝网址在线观看| 一级作爱视频免费观看| 欧美黄色淫秽网站| 午夜久久久久精精品| 国产欧美日韩精品一区二区| 欧美日韩国产亚洲二区| av天堂在线播放| 舔av片在线| 无人区码免费观看不卡| 亚洲va日本ⅴa欧美va伊人久久| 91av网一区二区| 国产高清有码在线观看视频| 校园春色视频在线观看| 国产精品1区2区在线观看.| 国产蜜桃级精品一区二区三区| 亚洲精华国产精华精| av黄色大香蕉| 国产精品久久久久久久电影 | 18+在线观看网站| 国产男靠女视频免费网站| 99国产综合亚洲精品| e午夜精品久久久久久久| 久久久久免费精品人妻一区二区| 97人妻精品一区二区三区麻豆| 观看美女的网站| 精品日产1卡2卡| 少妇高潮的动态图| 久久中文看片网| 好男人在线观看高清免费视频| 啦啦啦韩国在线观看视频| 一进一出抽搐gif免费好疼| 床上黄色一级片| bbb黄色大片| 欧美高清成人免费视频www| 亚洲真实伦在线观看| 日本免费a在线| 亚洲欧美精品综合久久99| 白带黄色成豆腐渣| www.色视频.com| 高清毛片免费观看视频网站| 美女被艹到高潮喷水动态| 97碰自拍视频| 日日干狠狠操夜夜爽| 日本三级黄在线观看| 国产精品亚洲一级av第二区| 久久久久久久午夜电影| 老司机福利观看| 欧美最新免费一区二区三区 | 最近视频中文字幕2019在线8| xxxwww97欧美| 麻豆成人av在线观看| 美女黄网站色视频| av女优亚洲男人天堂| 9191精品国产免费久久| 国产蜜桃级精品一区二区三区| 美女cb高潮喷水在线观看| 亚洲欧美日韩高清在线视频| 黄色丝袜av网址大全| 91在线观看av| 国内揄拍国产精品人妻在线| 久久天躁狠狠躁夜夜2o2o| 午夜久久久久精精品| 国产免费一级a男人的天堂| 丰满乱子伦码专区| 国产美女午夜福利| 黑人欧美特级aaaaaa片| 18+在线观看网站| 在线天堂最新版资源| 91字幕亚洲| 日韩欧美一区二区三区在线观看| 亚洲熟妇熟女久久| 嫩草影院入口| 午夜激情福利司机影院| 久久伊人香网站| 国产精品野战在线观看| h日本视频在线播放| 婷婷精品国产亚洲av在线| 在线免费观看的www视频| 亚洲欧美一区二区三区黑人| 久久久色成人| 久久人妻av系列| ponron亚洲| 免费大片18禁| 国产色婷婷99| 精华霜和精华液先用哪个| 午夜福利在线观看吧| 亚洲在线自拍视频| www日本黄色视频网| 在线观看午夜福利视频| 色综合婷婷激情| 欧美在线黄色| 午夜精品在线福利| 免费看光身美女| 国产精品一及| www国产在线视频色| 国产精品99久久99久久久不卡| 亚洲av免费在线观看| 可以在线观看的亚洲视频| 亚洲一区二区三区不卡视频| 18禁国产床啪视频网站| 夜夜夜夜夜久久久久| 日韩精品中文字幕看吧| 国产国拍精品亚洲av在线观看 | 精品国产亚洲在线| 狠狠狠狠99中文字幕| 天堂影院成人在线观看| 无遮挡黄片免费观看| 欧美xxxx黑人xx丫x性爽| 国产av麻豆久久久久久久| 国产高潮美女av| 久久久久久九九精品二区国产| 日韩精品中文字幕看吧| 亚洲av成人不卡在线观看播放网| 久久精品国产自在天天线| 天堂动漫精品| 色精品久久人妻99蜜桃| 国产高清三级在线| 无遮挡黄片免费观看| 久久久久国内视频| 亚洲国产日韩欧美精品在线观看 | 国产单亲对白刺激| 老汉色∧v一级毛片| 欧美性感艳星| 一级毛片女人18水好多| 久久精品夜夜夜夜夜久久蜜豆| 桃红色精品国产亚洲av| 中文字幕久久专区| 夜夜看夜夜爽夜夜摸| 国产av在哪里看| 波多野结衣高清作品| 在线观看午夜福利视频| 国产精品永久免费网站| 国产爱豆传媒在线观看| www.www免费av| av专区在线播放| 欧美bdsm另类| 国产中年淑女户外野战色| 脱女人内裤的视频| h日本视频在线播放| 日本与韩国留学比较| 国产欧美日韩精品亚洲av| 日韩欧美精品免费久久 | 亚洲人成电影免费在线| 久久久精品大字幕| 精品一区二区三区视频在线观看免费| 黄片小视频在线播放| 久久久久久久精品吃奶| 丰满人妻熟妇乱又伦精品不卡| 国产精品1区2区在线观看.| av中文乱码字幕在线| 午夜免费观看网址| 1024手机看黄色片| 波野结衣二区三区在线 | 中文字幕人妻熟人妻熟丝袜美 | 欧美国产日韩亚洲一区| av天堂在线播放| 高清毛片免费观看视频网站| 国产成+人综合+亚洲专区| 国产精品,欧美在线| 两人在一起打扑克的视频| 亚洲国产高清在线一区二区三| 久久久精品欧美日韩精品| 在线播放国产精品三级| www日本黄色视频网| 在线观看日韩欧美| 变态另类成人亚洲欧美熟女| 亚洲av第一区精品v没综合| 亚洲在线自拍视频| www.色视频.com| av片东京热男人的天堂| 日韩人妻高清精品专区| 男人的好看免费观看在线视频| 亚洲中文日韩欧美视频| 老汉色av国产亚洲站长工具| 尤物成人国产欧美一区二区三区| 亚洲美女黄片视频| 一级作爱视频免费观看| 熟女电影av网| 欧美zozozo另类| 成人一区二区视频在线观看| 丰满的人妻完整版| 色综合欧美亚洲国产小说| 身体一侧抽搐| 久久天躁狠狠躁夜夜2o2o| 欧美高清成人免费视频www| 免费av毛片视频| 99久久精品国产亚洲精品| 熟女电影av网| 男女视频在线观看网站免费| 午夜日韩欧美国产| 老汉色av国产亚洲站长工具| 天堂影院成人在线观看| avwww免费| 三级毛片av免费| h日本视频在线播放| 精品久久久久久久毛片微露脸| 国产真实乱freesex| 内射极品少妇av片p| 亚洲内射少妇av| 日本在线视频免费播放| 久久精品国产自在天天线| 国产中年淑女户外野战色| 久久精品91蜜桃| 欧美zozozo另类| 在线播放无遮挡| 中文字幕人妻丝袜一区二区| 欧美大码av| 欧美在线黄色| 亚洲欧美激情综合另类| 激情在线观看视频在线高清| 国产高潮美女av| 黄色成人免费大全| 欧美bdsm另类| 欧美激情在线99| 蜜桃久久精品国产亚洲av| 国产精品亚洲美女久久久| 午夜影院日韩av| 欧美成人性av电影在线观看| 久久久国产成人精品二区| 国产探花在线观看一区二区| 波多野结衣高清无吗| 乱人视频在线观看| 老司机福利观看| 国产精品亚洲一级av第二区| 亚洲,欧美精品.| 禁无遮挡网站| 午夜视频国产福利| 天堂动漫精品| 男女那种视频在线观看| 国产欧美日韩一区二区三| 99久久综合精品五月天人人| 美女大奶头视频| 老司机午夜十八禁免费视频| 中文字幕av成人在线电影| 久久九九热精品免费| 亚洲av五月六月丁香网| 免费搜索国产男女视频| 色老头精品视频在线观看| 欧美一区二区亚洲| 国产亚洲精品综合一区在线观看| 国产一区二区亚洲精品在线观看| 国产在线精品亚洲第一网站| 久久精品国产清高在天天线| 成熟少妇高潮喷水视频| 国产真人三级小视频在线观看| xxxwww97欧美| 最好的美女福利视频网| 97超级碰碰碰精品色视频在线观看| 国产免费一级a男人的天堂| 在线观看午夜福利视频| 久久国产精品影院| 性色avwww在线观看| 欧美日韩精品网址| 亚洲黑人精品在线| 757午夜福利合集在线观看| 18禁在线播放成人免费| 欧美日韩国产亚洲二区| 国内毛片毛片毛片毛片毛片| 欧美乱色亚洲激情| 一夜夜www| 在线国产一区二区在线| 噜噜噜噜噜久久久久久91| 日日夜夜操网爽| 99热只有精品国产| 国产高清三级在线| 亚洲国产欧洲综合997久久,| 一级毛片女人18水好多| 久久香蕉国产精品| 中文字幕av在线有码专区| 一二三四社区在线视频社区8| 九色国产91popny在线| 国产精品久久久人人做人人爽| 亚洲人成网站在线播| 91av网一区二区| 性欧美人与动物交配| 最好的美女福利视频网| 又爽又黄无遮挡网站| 2021天堂中文幕一二区在线观| 在线免费观看不下载黄p国产 | 亚洲午夜理论影院| 一进一出好大好爽视频| 99riav亚洲国产免费| 偷拍熟女少妇极品色| 两人在一起打扑克的视频| 又黄又粗又硬又大视频| 美女大奶头视频| 国产精品久久视频播放| 91九色精品人成在线观看| 亚洲无线在线观看| 国产熟女xx| 欧美性猛交黑人性爽| 一级毛片女人18水好多| 久久久久久国产a免费观看| 国产激情欧美一区二区| 欧美性猛交黑人性爽| a级一级毛片免费在线观看| www.999成人在线观看| 国产成人av激情在线播放| 国产精品免费一区二区三区在线| xxx96com| 久久精品影院6| 99热精品在线国产| 成人特级av手机在线观看| 精品国内亚洲2022精品成人| 19禁男女啪啪无遮挡网站| 成人一区二区视频在线观看| 丰满乱子伦码专区| 香蕉久久夜色| 在线免费观看的www视频| 蜜桃亚洲精品一区二区三区| 999久久久精品免费观看国产| 美女高潮喷水抽搐中文字幕| 很黄的视频免费| 婷婷精品国产亚洲av| 国产真人三级小视频在线观看| 国产精品久久视频播放| 国产欧美日韩精品一区二区| 亚洲欧美日韩无卡精品| 亚洲黑人精品在线| 看片在线看免费视频| 午夜福利18| 亚洲国产色片| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美三级三区| 中文字幕精品亚洲无线码一区| 亚洲国产精品合色在线| 国产av不卡久久| 精品午夜福利视频在线观看一区| 国产高清视频在线播放一区| av在线天堂中文字幕| 九色国产91popny在线| 日韩成人在线观看一区二区三区| 国产淫片久久久久久久久 | 99视频精品全部免费 在线| 国产成人影院久久av| 久久精品91蜜桃| 真人一进一出gif抽搐免费| 成人av一区二区三区在线看| 美女 人体艺术 gogo| 日韩欧美国产一区二区入口| 少妇的丰满在线观看| 中文字幕人成人乱码亚洲影| 国产久久久一区二区三区| 黄色女人牲交| 男女那种视频在线观看| 国产精品三级大全| 香蕉久久夜色| 一个人观看的视频www高清免费观看| 国语自产精品视频在线第100页| 午夜福利在线观看吧| 亚洲 欧美 日韩 在线 免费| 久9热在线精品视频| 中文字幕av成人在线电影| x7x7x7水蜜桃| 国产一区在线观看成人免费| 欧美国产日韩亚洲一区| 天堂动漫精品| 亚洲成av人片在线播放无| 免费观看人在逋| 欧美激情久久久久久爽电影| 成人无遮挡网站| 动漫黄色视频在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲精品一区av在线观看| 亚洲第一欧美日韩一区二区三区| 丰满的人妻完整版| 精品国内亚洲2022精品成人| 99国产综合亚洲精品| 成人高潮视频无遮挡免费网站| 天天躁日日操中文字幕| 亚洲 欧美 日韩 在线 免费| 51国产日韩欧美| 国产野战对白在线观看| 亚洲18禁久久av| 免费在线观看日本一区| av在线天堂中文字幕| 欧美日韩瑟瑟在线播放| 一本久久中文字幕| 欧美+亚洲+日韩+国产| 欧美中文日本在线观看视频| 日韩欧美一区二区三区在线观看| 一级毛片女人18水好多| 偷拍熟女少妇极品色| 激情在线观看视频在线高清| 毛片女人毛片| 国产精品影院久久| 欧美日韩亚洲国产一区二区在线观看| 精品乱码久久久久久99久播| 国产伦精品一区二区三区四那| 国产精品三级大全| 免费一级毛片在线播放高清视频| 亚洲18禁久久av| 免费在线观看亚洲国产| 中出人妻视频一区二区| 三级男女做爰猛烈吃奶摸视频| 欧美性猛交╳xxx乱大交人| 啦啦啦观看免费观看视频高清| 日本 av在线| 中出人妻视频一区二区| 亚洲精品一区av在线观看| 操出白浆在线播放| 亚洲中文字幕一区二区三区有码在线看| 色精品久久人妻99蜜桃| 亚洲国产精品合色在线| 国产精品自产拍在线观看55亚洲| 国产在线精品亚洲第一网站| 午夜免费观看网址| 欧美丝袜亚洲另类 | 免费观看的影片在线观看| 一个人看的www免费观看视频| 在线观看美女被高潮喷水网站 | 丰满人妻熟妇乱又伦精品不卡| 久久精品夜夜夜夜夜久久蜜豆| xxx96com| 国产精品精品国产色婷婷| xxx96com| 成人特级av手机在线观看| 特级一级黄色大片| 性色avwww在线观看| 中文字幕av成人在线电影| 成年女人毛片免费观看观看9| 一进一出好大好爽视频| 真人做人爱边吃奶动态| 日日干狠狠操夜夜爽| 亚洲中文字幕日韩| 在线看三级毛片| 搡女人真爽免费视频火全软件 | 香蕉av资源在线| 国产精品野战在线观看| 99国产精品一区二区蜜桃av| 身体一侧抽搐| 成年女人毛片免费观看观看9| 高清日韩中文字幕在线| 国产亚洲精品综合一区在线观看| 欧美成人a在线观看| 日韩欧美 国产精品| 国产精品亚洲av一区麻豆| 亚洲激情在线av| 看黄色毛片网站| 啪啪无遮挡十八禁网站| 老熟妇仑乱视频hdxx| 婷婷丁香在线五月| 天堂√8在线中文| 欧美乱色亚洲激情| 毛片女人毛片| 无遮挡黄片免费观看| 中文在线观看免费www的网站| 90打野战视频偷拍视频| 国产精品1区2区在线观看.| 欧美成人一区二区免费高清观看| 在线观看免费视频日本深夜| 国产欧美日韩一区二区精品| 成人三级黄色视频| 丰满人妻熟妇乱又伦精品不卡| 丰满的人妻完整版| 国产精品一区二区免费欧美| 免费大片18禁| 精品国产超薄肉色丝袜足j| 国产亚洲欧美98| 色吧在线观看| 亚洲无线观看免费| 国产精华一区二区三区| 午夜福利18| 国产色爽女视频免费观看| 俄罗斯特黄特色一大片| 欧美三级亚洲精品| 亚洲一区高清亚洲精品| 88av欧美| 特级一级黄色大片| 久久久色成人| 中文字幕人成人乱码亚洲影| 窝窝影院91人妻| 欧美激情在线99| 国产精品综合久久久久久久免费| 非洲黑人性xxxx精品又粗又长| 嫩草影视91久久| 久久久国产精品麻豆| 蜜桃亚洲精品一区二区三区| 成人三级黄色视频| 特大巨黑吊av在线直播| 一a级毛片在线观看| 法律面前人人平等表现在哪些方面| 亚洲美女视频黄频| 亚洲天堂国产精品一区在线| 亚洲,欧美精品.| 午夜精品一区二区三区免费看| 亚洲av成人av| a级一级毛片免费在线观看| 久久久国产精品麻豆| 国产精品亚洲美女久久久| 香蕉丝袜av| 国产毛片a区久久久久| 亚洲国产精品成人综合色| 757午夜福利合集在线观看| 男女之事视频高清在线观看| 久久精品国产亚洲av涩爱 | 日韩欧美 国产精品| 国产淫片久久久久久久久 | 国产精品一区二区三区四区免费观看 | 九九久久精品国产亚洲av麻豆| 国产久久久一区二区三区| 宅男免费午夜| 亚洲欧美日韩高清在线视频| 变态另类丝袜制服| 韩国av一区二区三区四区| 岛国在线免费视频观看| 波野结衣二区三区在线 | 欧美国产日韩亚洲一区| 久久精品国产亚洲av香蕉五月| 欧美国产日韩亚洲一区| www.色视频.com| 99热这里只有是精品50| 国产av不卡久久| 亚洲成av人片在线播放无| 51午夜福利影视在线观看| 国产乱人伦免费视频| 嫁个100分男人电影在线观看| 悠悠久久av| 夜夜夜夜夜久久久久| 国产不卡一卡二| 黄色丝袜av网址大全| 天堂√8在线中文| 国产亚洲精品av在线| 99国产精品一区二区蜜桃av| 国产亚洲精品久久久久久毛片| 国产精品嫩草影院av在线观看 | 国产精华一区二区三区| 人妻夜夜爽99麻豆av| xxxwww97欧美| 国产精品香港三级国产av潘金莲| 级片在线观看| 国产一区二区激情短视频| 特级一级黄色大片| 午夜老司机福利剧场| 1000部很黄的大片| 国产视频内射| 国产高清激情床上av| 午夜精品一区二区三区免费看| 露出奶头的视频| 伊人久久精品亚洲午夜| 久久亚洲真实| 午夜两性在线视频| 国产精品美女特级片免费视频播放器| 欧美日本亚洲视频在线播放| 狂野欧美激情性xxxx| 搡女人真爽免费视频火全软件 | 最新美女视频免费是黄的| www.999成人在线观看| 9191精品国产免费久久| 91久久精品国产一区二区成人 | 老汉色av国产亚洲站长工具| 一本综合久久免费| 亚洲精品影视一区二区三区av| 人妻夜夜爽99麻豆av| 欧美丝袜亚洲另类 | 12—13女人毛片做爰片一|