• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    陽極氧化鋁模板法可控制備金屬納米線和納米管陣列的生長機(jī)制

    2010-12-12 02:46:14郭元元毛曉波蔣月秀楊延蓮
    物理化學(xué)學(xué)報(bào) 2010年7期
    關(guān)鍵詞:化學(xué)系廣西大學(xué)納米管

    郭元元 汪 明 毛曉波 蔣月秀 王 琛,* 楊延蓮,*

    (1廣西大學(xué)化學(xué)系,南寧 530004; 2國家納米科學(xué)中心,北京 100190)

    In recent years,one dimensional(1D)nanostructured materials, including nanowires,nanotubes,and nanorods,have attracted considerable attention because of their novel physical properties and potential applications in nanodevices,such as carbon[1-2], metals[3-5],metal sulfides[6-7],metal hydroxide[8],metal oxides[9-10], polymers[11],and some organic molecules[12-13].A variety of strategies,such as direct catalyzed growth,templated growth,and self-assembly and so on,have been utilized for successful fabri-cation of 1D nanomaterials[14-16].Among these methods,the templated synthesis of 1D nanomaterials using the anodic aluminum oxide(AAO)is an effective venue for fabricating nanotubes and nanowires of metals,metal oxides,fullerenes,organic molecules[17-19],as well as metallic 1D nanomaterials[20-22].The well-defined length and diameter of the AAO channels facilitate controlled fabrication of 1D nanostructures.Chemical replacement[23],chemical infiltration[24],chemical vapor deposition(CVD)[25],and electrochemical deposition[26-27]have been utilized for preparation of 1D nanomaterials within the porous alumina template.Among these techniques,electrodeposition method was widely used for preparing metallic and semiconducting nanowires,such as Ni, Cu,Au,Ag,bimetallic nanowire junctions for magnetic,catalytic applications[28-29].It could be noted that metal nanotubes are considered very promising for high performance catalysts[30-31],highly sensitive gas sensors[31-33],and up-conversion non-linear optics[34], etc.Thus,many efforts have been put into the controlled synthesis of metal nanotubes.As a general approach to fabricate well-defined metal nanotubes,the inner surfaces of the AAO channels are usually chemically modified with suitable functional groups-molecular anchors[35-36],so that the electrodeposited metal atoms can bind to the nanopore walls to form nanotubes. A number of metallic nanotubes have been successfully synthesized by this method,while the unavoidable organic impurities introduced from the chemical modification process limited its applications[37-38].Metal nanotubes can also be obtained by controlling the thickness of the electrode film for preventing the pores from being blocked[39-40]and followed by electrodeposition of the metals[41].The fabrication via multi-step template replication and electrodeposition approach was also reported to get metal nanotube array[42].

    Fundamentally the growth of metal nanotubes and nanowires is governed by the electrochemical deposition process and the concentration diffusion of the metal ions.The understanding of the growth mechanism would benefit the controlled fabrication of desired metal nanostructures for specific applications.Some reports have attributed the nanotube growth to the well-known tip effect[43-44].Recently,Yoo et al.[20]proposed the bottom-up and the wall-up growth modes to describe the metal nanotube formation,and also reported the preparation of Pt and Pd nanotubes by a wall-up growth mechanism at high current density.Cao et al.[45]also reported the controlled preparation of metal(Fe,Co, Ni)nanotube arrays and proposed a mechanism of competitive growth rates along two directions:parallel to and perpendicular to the current direction.The mechanisms proposed by Yoo[20]and Cao[45]et al.can be considered principally the same.In addition,Chowdhury et al.[46]put forward the mechanism related to overpotential increase by gas evolution for the central portion shielding and thus the promotion of the reaction at the sides of the porous templates.Common to these studies is that the nanotube formation is dependent on the different growth rates of the metal along the wall surface(Vw)and from the central bottom of the nanochannels(Vb),while systematic studies are still needed to fully understand the growth mechanisms which are critical for controlled growth of nanowires and nanotubes.In this work,we examined the controllable synthesis of Ni nanowires and nanotubes by electrodeposition method using AAO as template. Based on the systematic studies,mechanisms for the nanowire and nanotube growth were proposed.

    1 Experimental

    1.1 Templated electrodeposition

    The AAO templates used in our experiments were purchased from Whatman Company(Anodisc 47,200 nm in nominal pore diameter and 60 μm in thickness).The electrodeposition was carried out with the constant potential mode in a conventional three-electrode electrochemical cell.Before the electrodeposition,Au film was first deposited as an electrode on one side of the AAO membrane using a vacuum evaporation apparatus and a small portion of the inside channels were filled to shape a bowl-like structure[4,43].AAO template coated by Au layer,a piece of platinum plate(ca 1.0 cm2),and a calomel electrode were used as the working,counter,and reference electrodes,respectively. All the electrodeposition experiments were performed at room temperature and the deposition time was kept constant at 1000 s.

    The electrochemical deposition was conducted in aqueous solutions containing NiSO4·6H2O(AR),ethylenediaminetetraacetic acid(EDTA,AR),NaOH(AR),and K2HPO4(AR).The concentration of EDTA was two times higher than that of the Ni2+ions.The concentration of K2HPO4was kept constant at 20 g·L-1and the pH values were adjusted by NaOH to 11 for the solutions with EDTA.All the solutions were prepared with ultrapure Milli Q water(resistivity≥18 MΩ·cm).The electrodeposition was performed at room temperature and the detailed electrodeposition conditions are shown in Table 1.

    1.2 Characterization of Ni nanowires or nanotubes

    After electrodeposition,the AAO templates were removed by immersion in 2 mol·L-1NaOH solutions at 25℃for 2 h.Then,the as-prepared samples were thoroughly rinsed with distilled water and subsequently dried in air.Scanning electron microscopic(SEM)characterizations of the products were performed on a Hitachi S-3400N SEM apparatus.For transmission electron microscopic(TEM)characterizations,the samples were subjected to ultrasonic treatment in ultrapure water for 1 min,then a drop of suspension was dipped on the carbon-coated copper grid.All TEM characterizations were performed on an FEI TEM(Tecnai G2 20)at an accelerating voltage of 120 kV.X-ray photoelectron spectroscopic(XPS)measurements were conducted on an XPS spectrometer(VG Scientific ESCALab 220i-XL)operated at 300 W in vacuum(3×10-7Pa)with a monochromatic Al Kαradiation.The binding energies were corrected for charging by adventitious carbon(C 1s)at 284.8 eV.Curve fitting of the XPS spectra was performed by using XPS PEAK software.

    Table 1 Electrodeposition conditions for preparing Ni nanotubes and nanowires

    2 Results and discussion

    2.1 Impact of chelating agent EDTA

    Electrodeposition of Ni was conducted with the aid of the AAO template for the preparation of nanowire or nanotube arrays.All the samples were etched using NaOH solution for 2 h to remove the AAO membrane,thus the nanowires or nanotubes can be exposed from the template.The Ni nanowires can be obtained in the solution(the concentration of Ni ions,CNi2+=0.01 mol·L-1)without addition of EDTA at electrodeposition potential Ued=-1.5 V.SEM image in Fig.1(a)shows highly ordered Ni nanowire arrays with uniform structures in large area.The average diameter of the Ni nanowires is about 200 nm which resembles the pore diameter of the AAO template(200 nm).Upon the introduction of EDTA,nanotube arrays could be obtained with the same CNi2+(0.01 mol·L-1)and the same Ued(-1.5 V).SEM image in Fig.1(b)reveals the typical morphology of the highly ordered Ni nanotube arrays with clear open ends.The outer diameters of the nanotubes were around 200 nm(nearly the same as the pore diameter of the AAO template)and the inner diameters were around 140-160 nm.In other words,the thickness of nanotube walls was about 20-30 nm.The length of the nanotubes and nanowires could reach about 20 μm in 1000 s.

    Fig.1 SEM images of Ni nanowire and nanotube arrays without and with EDTA(a)top view of the Ni nanowires deposited from the solution with CNiSO4=0.01 mol·L-1at Ued=-1.5 V;(b)top view of the Ni nanotubes deposited from the solution with CNiSO4=0.01 mol·L-1,CEDTA=0.02 mol·L-1,CK2HPO4=20 g·L-1at Ued=-1.5 V(sample 2)

    The conversion of the nanowire to nanotube morphology with the introduction of the EDTA into the solution demonstrated the impact of the coordination ion on the eletrodeposition mechanisms.The growth of nanowires and nanotubes can be viewed as a balance between two dominated growth rates,Vwand Vb. The bottom-up and the wall-up growth modes proposed by Yoo et al.[20],and the current-directed tubular growth(CDTG)mechanisms proposed by Cao et al.[45],have revealed the relationship between the morphologies of the 1D nanomaterials and the current densities at different locations.However,the underlying mechanism for the relationship of the current densities and the growth rates is still need to be clarified.In the reduction process of nickel ions,nanotubes can be obtained if Vw>Vb.It should be noted that both Vwand Vbcould be affected by the introduction of the chelating agent EDTA,and the well-known tip growth effect should be also taken into account.The electrochemical deposition process of Ni with EDTA can be divided into three steps as following.

    a)The coordination of Ni2+with EDTA.There are seven forms for EDTA in solution(H6Y2+,H5Y+,H4Y,H3Y-,H2Y2-,HY3-, Y4-)and their populations are dependent on the solution acidity. The complex NiY2-is the compound with the highest population when pH>10.The chelation and the dissociation balance of the complex can be described as below.

    Ni2++Y4-?NiY2-

    b)The diffusion of NiY2-and Ni2+ions to the surface of the electrode.When the Ni2+was depleted near the working electrode,it will be supplied by the dissociation of NiY2-.The concentration of Ni2+was limited in the range of 10-16mol·L-1,because the stability constant of the complex was 1018and the concentration of Y4-ions was kept in the range of 10-2mol·L-1.

    c)At last,Ni2+receives electrons on the surface of the cathode and forms nanotubes or nanowires.As mentioned above,Au film deposited as a working electrode at the bottom of the AAO membrane with bowl-shaped structures[4,43].Because of the tip effect,the edge tips of the initial bowl-shaped Au electrode give rise to higher electric field,which is electrochemically more active than the smooth surface.Meanwhile,the surface energy of the inner walls of the nanochannels[48]also facilitates the bottom edge of the nanochannels to be a preferential site for the deposition of metal ions.Considering that the effective growth rate is correlated to the effective Ni2+concentration,the addition of EDTA would result in decreased reduction rate of NiY2-compared with that of the Ni2+hydrate.Both Vwand Vbwere greatly reduced by the chelating agent.At this slower reduction rate,the tip effect of the electric field would render the predominance of the higher deposition rate of Vw(Vw>Vb)and finally give rise to the formation of metal nanotubes.On the contrary,both of the growth rates(Vwand Vb)are very fast in the solution without EDTA,so the tip effect could be ignored(Vw≈Vb),thus the nanowires can be obtained.

    2.2 Impact of electrodeposition potential and electrolyte concentration

    The electrodeposition potential is a key factor for the formation of metal nanotubes and nanowires.When other conditions are constant,more negative Ued(higher than the potential for gas evolution)would lead to the higher current density which is keenly related to the growth rates,Vband Vw,thus the final morphology of the 1D metallic nanostructures.Meantime,Uedalso influences the electromigration rate of the NiY2-,which has the opposite direction to the concentration diffusion in the solution.

    In order to further understand the growth mechanism for the formation of metal nanotubes and nanowires,systematic studies were performed under different conditions listed in Table 1.At a higher NiY2-ion concentration(sample 1),Ni nanotubes with thin wall could be gained at more negative Ued=-1.5 V.When the concentration of NiY2-decreases gradually(samples 1-4),at Ued= -1.5 V,the SEM images in Fig.2(a,d,e)clearly illustrate the evolution of the 1D nanomaterials from well-aligned nanotubes in sample 1,to coexistence of nanotubes and nanowires(mainly nanotubes)in sample 3 and finally to coexistence of nanowires and nanotubes(mainly nanowires)in sample 4.In addition,the gradual increase of the nanowire proportions is also accompanied by the gradual increase of the nanotube wall thickness.The TEM image in Fig.2(b)clearly shows the typical hollow structure of the nanotubes(sample 2).The selected-area electron diffraction pattern in Fig.2(c)was acquired from a 200 nm diameter Ni nanotubes in sample 2.The continuous bright rings indicate the polycrystalline structure with face-centered cubic Ni metals,in which the lattice parameters 0.202,0.175,and 0.124 nm correspond to the facets(111),(200),and(220),repectively.Fig.3(a) presents the XPS spectrum of Ni nanotubes,which are fabricated under the condition of sample 2.The binding energy of Ni (metal)is 853.1 eV which is consistent with the reported value inthe reference[49].Three Ni 2p3/2peaks(Ni,Ni(satellite),and NiO) reveal that the Ni nanotubes were mainly composed of metallic Ni.The existence of NiO is unavoidable due to the oxidation of the surface of Ni nanotubes exposed to the air.

    Interestingly,Ni nanowires could be obtained at less negative potential(Ued=-0.5 V,Table 1)in the solutions with higher NiY2-concentrations(samples 5 and 6).Ni nanotubes would gradually appearandcoexistwithNinanowiresinthesolutionwithmedium NiY2-concentration(sample 7).When the concentration of NiY2-was decreased to 0.001 mol·L-1(sample 8),Ni nanotubes became the dominant 1D nanostructures.The SEM images in Fig.4(a,c, d)(samples 5,6,8 correspondingly)present the evolution from Ni nanowires to nanotubes in view of the end features of the 1D nanostructures from flat ends(sample 5),bowl-shaped ends(sample6),toopenends(sample8).Thesolidstructureofthenanowire (sample 5)has also been proved by TEM characterizations(Fig. 4(b)).The XPS spectrum for Ni nanowires in sample 5(Fig.3 (b))shows that the metallic Ni is the main component with the appearanceofNiOascribedtotheoxidationofNiintheair,which is similar to the nanotubes in sample 2(Fig.3(a)).The evolution from nanotubes to nanowires at more negative Uedand from nanowires to nanotubes at less negative Uedindicated the coeffect of the electrolyte concentrations and the electrodeposition potentials.

    2.3 Proposed mechanism for electrodeposition of nanotubes or nanowires

    Fig.2 SEM and TEM images of Ni nanowire and nanotube arrays deposited at Ued=-1.5 V(a)top view of the Ni nanotubes deposited from the solution with CNiSO4=0.05 mol·L-1,CEDTA=0.1 mol·L-1,CK2HPO4=20 g·L-1(sample 1),(b)typical TEM image of a piece of Ni nanotubes deposited from the solution with CNiSO4=0.01 mol·L-1,CEDTA=0.02 mol·L-1,CK2HPO4=20 g·L-1(sample 2),(c)selected area electron diffraction pattern acquired from a Ni nanotube with 200 nm diameter(sample 2),(d)top view of the Ni nanotubes(nanowires)deposited from the solution with CNiSO4=0.005 mol·L-1, CEDTA=0.01 mol·L-1,CK2HPO4=20 g·L-1(sample 3),(e)top view of the Ni nanowires(nanotubes)deposited from the solution with CNiSO4=0.001 mol·L-1, CEDTA=0.002 mol·L-1,CK2HPO4=20 g·L-1(sample 4)

    From the systematic studies above,Fig.5(a,b)can be proposed to schematically illustrate the electrodeposition processes in the electrolytes with higher NiY2-ion concentration at Ued=-1.5 V and Ued=-0.5 V.The electromigration of NiY2-ions can be neglected when the NiY2-ion concentration near the working electrode is high enough.The faster reduction rate at more negative Uedwould enhance the tip effect leading to the nanotube formation due to Vw>Vb.The underlying mechanism may be proposed that the bottom and the wall will grow together at beginning, while the faster growth rate will deplete the NiY2-ions in the nanochannels.The shorter distance from the bulk solution to the nanochannels would lead to the faster diffusion of NiY2-ions to the far front ends of the deposited Ni,which renders the dominant tip effect for nanotube growth.When it comes to the solution with the same higher concentration of the NiY2-,while at less negative Ued(-0.5 V,Fig.5(b)),the reduction rate is much slower than that at-1.5 V.The diffusion rate of NiY2-ions from the bulk solution to the nanochannels is high enough to overcome the edge-predominance,which leads to the similar lower growth rates of the wall surface and the bottom (Vw≈Vb).Then the bottom and the wall would grow together and finally result in the formation of nanowire arrays(Fig.5(b)).

    Fig.3 XPS spectra of Ni nanotubes(sample 2)and nanowires(sample 5)(a)Ni 2p3/2peak in the XPS spectrum of Ni nanotubes deposited from the solution with CNiSO4=0.01 mol·L-1,CEDTA=0.02 mol·L-1,CK2HPO4=20 g·L-1at Ued=-1.5 V(sample 2), (b)Ni 2p3/2peak in the XPS spectrum of Ni nanowires deposited from the solution with CNiSO4=0.05 mol·L-1,CEDTA=0.1 mol·L-1,CK2HPO4=20 g·L-1at Ued=-0.5 V(sample 5). Curve fitting of the XPS spectra was performed by using XPS PEAK software.The corresponding peaks obtained from the curve fitting are asigned as Ni,Ni(satellite), and NiO,respectively.Full survey XPS spectra for the Ni nanotubes(sample 2)and Ni nanowires(sample 5)can be found in Supporting Information(Fig.S1), which are available free of charge via the internet at http://www.whxb.pku.edu.cn.

    Fig.4 SEM and TEM images of Ni nanowire and nanotube arrays deposited at Ued=-0.5 V(a)top view of the Ni nanowires deposited from the solution with CNiSO4=0.05 mol·L-1,CEDTA=0.1 mol·L-1,CK2HPO4=20 g·L-1(sample 5),(b)typical TEM image of a piece of Ni nanowire in sample 5,(c)top view of the Ni nanowires deposited from the solution with CNiSO4=0.01 mol·L-1,CEDTA=0.02 mol·L-1,CK2HPO4=20 g·L-1(sample 6), (d)top view of the Ni nanotubes(nanowires)deposited from the solution with CNiSO4=0.001 mol·L-1,CEDTA=0.002 mol·L-1,CK2HPO4=20 g·L-1(sample 8)

    When the concentration of the NiY2-ions is decreased to very low level in Fig.5(c,d)(such as 0.001 mol·L-1),the fabricated nanostructures indicated the opposite trends for nanotube and nanowire compared with those at higher NiY2-ion concentrations,thatisnanowiresat-1.5Vandnanotubesat-0.5V.Besides the Uedmentioned above,the effect of electromigration on the growth rates,Vwand Vb,should also be taken into account at lower diffusion rate.The electromigration of NiY2-ions to the counter electrode and concentration diffusion to the work electrodes can both increase the overpotential for the electrochemical deposition.The increased overpotential could lead to the decrease of the Vwand the Vb.The reduction rate of the Ni2+is relatively faster at more negative Ued(Fig.5(c),such as-1.5 V),while the lower diffusion rate of the NiY2-ions would largely reduce the deposition rate.So the similar growth rate of the wall and the bottom Vw≈Vbwould be obtained for the nanowire formation. We believe that the similar growth rates at middle level in cases of Fig.5(b,c)give rise to the similar results,which is originated from the balance between the potential effect and the concentration effect.At less negative Ued(-0.5 V),the reduction rate of Ni2+should be very low at lower concentration of the NiY2-ions.The less influence of the NiY2-electromigration and the very low reduction rate make the diffusion of the NiY2-ions sufficient enough.The Ni2+ions on the edge can be supplemented in time and adsorbed on the edge preferentially.As the result,the Vwis relatively higher than the Vb,which leads to the final nanotube formation.

    Fig.5 Schematic diagrams of the growth processes of Ni nanotubes and nanowires at different electrodeposition conditions(a)and(b)are schematic diagrams of the growth processes of nanotubes at Ued=-1.5 V and nanowires at Ued=-0.5 V in the electrolytes with higher NiY2-concentrations, respectively,(c)and(d)are schematic diagrams of the growth processes of nanowires at Ued=-1.5 V and nanotubes at Ued=-0.5 V in the electrolytes with lower NiY2-concentrations,respectively.The dashed arrows represent the electromigration direction of NiY2-and their lengths show the different electromigration rates.The solid arrows represent the concentration diffusion direction of NiY2-.

    Based on the above mentioned mechanism,Cu nanotube and nanowire arrays have also been fabricated at higher electrolyte concentration with more negative Ued(Fig.S2,which is available free of charge via the internet at http://www.whxb.pku.edu.cn). The nanowires can be obtained without the introduction of the chelating agent EDTA,while the nanotube arrays can be obtained with EDTA.The common mechanism for 1D nanostructure growth of Ni and Cu indicates that it could be a general strategy for growth of metal nanotubes and nanowires.The controlled preparation of Au(Fig.S3)and Co(Fig.S4)(which are available free of charge via the internet at http://www.whxb.pku.edu.cn) nanotube arrays at the similar electrodeposition conditions with the chelating agent(EDTA)confirms the possible application of this mechanism in fabrication of other 1D metal nanomaterials.

    3 Conclusions

    In summary,controlled synthesis of Ni nanotube and nanowire arrays can be obtained by electrodeposition using AAO template. Both nanotubes and nanowires can be readily achieved by varying the electrodeposition potential and the concentration of NiY2-.The detailed growth mechanism for metal nanotubes and nanowires was proposed based on systematic studies.The crucial contributing factors of the chelating agent,the electrodeposition potential,the concentration of the NiY2-,and the electromigration were all taken into account for clarification of the growth process.This method could be applicable to fabrication of other metal nanotubes and nanowires,which has high potetials for applications in nanocatalyses,chemical sensors,and nanoscale electronic and magnetic devices.

    Acknowledgment: The authors would like to thank Dr.ZHONG Liang-Shu and Dr.LIANG Han-Pu at the Institute of Chemistry,Chinese Academy of Sciences for helpful discussion in electrodeposition experiments.

    1 Iijima,S.Nature,1991,354:56

    2 Li,Y.L.;Kinloch,A.;Windle,A.H.Science,2004,304:276

    3 Wirtz,M.;Martin,C.R.Adv.Mater.,2003,15:455

    4 Zhang,X.Y.;Zhang,L.D.;Lei,Y.;Zhao,L.X.;Mao,Y.Q. J.Mater.Chem.,2001,11:1732

    5 Hong,B.H.;Bae,S.C.;Lee,C.W.;Jeong,S.;Kim,K.S.Science, 2001,294:348

    6 Chen,J.;Tao,Z.;Li,S.Angew.Chem.Int.Edit.,2003,42:2147

    7 Xu,D.S.;Xu,Y.J.;Chen,D.P.;Guo,G.L.;Gui,L.L.;Tang,Y. Q.Chem.Phys.Lett.,2000,325:340

    8 Zhang,W.;Wen,X.;Yang,S.;Berta,Y.;Wang,Z.L.Adv.Mater., 2003,15:822

    9 Yan,C.;Xue,D.Adv.Mater.,2008,20:1055

    10 Huang,B.H.;Shen,P.Y.;Chen,S.Y.Nanoscale Res.Lett.,2009, 4:503

    11 Xiao,R.;Cho II,S.;Liu,R.;Lee,S.B.J.Am.Chem.Soc.,2007, 129:4483

    12 Lu,Q.;Gao,F.;Komarneni,S.;Mallouk,T.E.J.Am.Chem.Soc., 2004,126:8650

    13 Matsumoto,F.;Nishio,K.;Masuda,H.Adv.Mater.,2004,16: 2105

    14 Korgel,B.A.;Fitzmaurice,D.Adv.Mater.,1998,10:661

    15 Wang,M.H.;Li,Y.J.;Xie,Z.X.;Liu,C.;Yeung,E.S.Mater. Chem.Phys.,2010,119:153

    16 Gao,P.;Cai,Y.G.ACS Nano,2009,3:3475

    17 Xiao,Z.L.;Han,C.Y.;Welp,U.;Wang,H.H.;Kwok,W.K.; Hiller,J.M.;Cook,R.E.;Miller,D.J.;Crabtree,G.W.Nano Lett., 2002,2:1293

    18 Martin,C.R.Science,1994,266:1961

    19 Gao,H.;Mu,C.;Wang,F.;Xu,D.S.;Wu,K.;Xie,Y.C.;Liu,S.; Wang,E.G.;Xu,J.;Yu,D.P.J.Appl.Phys.,2003,93:5602

    20 Yoo,W.C.;Lee,J.K.Adv.Mater.,2004,16:1097

    21 Wang,Y.;Wu,K.J.Am.Chem.Soc.,2005,127:9686

    22 Qu,L.T.;Shi,G.Q.;Wu,X.F.;Fan,B.Adv.Mater.,2004,16: 1200

    23 Yan,C.;Xue,D.Electrochem.Commun.,2007,9:1247

    24 Wang,Y.;Lee,J.Y.;Zeng,H.C.Chem.Mater.,2005,17:3899

    25 Franklin,N.;Dai,H.Adv.Mater.,2000,12:890

    26 Routkevitch,D.;Bigioni,T.;Moskovits,M.;Xu,J.M.J.Phys. Chem.,1996,100:14037

    27 Kamalakar,M.V.;Raychaudhuri,A.K.Adv.Mater.,2008,20:149

    28 Wang,H.;Xu,C.W.;Cheng,F.L.;Jiang.S.P.Electrochem. Commun.,2007,9:1212

    29 Liang,H.P.;Guo,Y.G.;Hu,J.S.;Zhu,C.F.;Wan,L.J.;Bai,C. L.Inorg.Chem.,2005,44:3013

    30 Yang,L.X.;He,D.M.;Cai,Q.Y.J.Phys.Chem.C,2007,111: 8214

    31 Han,C.H.;Hong,D.W.;Kima,I.J.;Gwak,J.;Han,S.D.;Singh, K.C.Sens.Actuators B,2007,128:320

    32 Andzelm,J.;Govind,N.;Maiti,A.Chem.Phys.Lett.,2006,421:58

    33 Sadrzadeh,A.;Farajian,A.A.;Yakobson,B.I.Appl.Phys.Lett., 2008,92:022103

    34 Schider,G.;Krenn,J.R.;Gotschy,W.;Lamprecht,B.;Ditlbacher, H.;Leitner,A.;Aussenegg,F.R.J.Appl.Phys.,2001,90:3825

    35 Lee,W.;Scholz,R.;Lee,N.K.W.;Scholz,R.;Nielsch,K.;Gosele, U.Angew.Chem.Int.Edit.,2005,44:6050

    36 Bao,J.;Tie,C.;Xu,Z.;Zhou,Q.;Shen,D.;Ma,Q.Adv.Mater., 2001,13:1631

    37 Levina,L.;Sukhovatkin,V.;Musikhin,S.;Cauchi,S.;Nisman,R.; Bazett-Jones,D.P.;Sargent,E.H.Adv.Mater.,2005,17:1854

    38 Nanda,K.K.;Kruis,F.E.;Fissan,H.Nano Lett.,2001,1:605

    39 Li,L.;Pan,S.S.;Dou,X.C.;Zhu,Y.G.;Huang,X.H.;Yang,Y. W.;Li,G.H.;Zhang,L.D.J.Phys.Chem.C,2007,111:7288

    40 Zhang,X.Y.;Wang,H.T.;Bourgeois,L.;Pan,R.J.;Zhao,D.Y.; Webley,P.A.J.Mater.Chem.,2008,18:463

    41 Fu,J.;Cherevko,S.;Chung,C.H.Electrochem.Commun.,2008, 10:514

    42 Mu,C.;Yu,Y.X.;Wang,R.M.;Wu,K.;Xu,D.S.;Guo,G.L. Adv.Mater.,2004,16:1550

    43 Huang,C.W.;Hao,Y.W.Nanotechnology,2009,20:445607

    44 Liu,L.F.;Zhou,W.Y.;Xie,S.S.;Song,L.;Luo,S.D.;Liu,D.F.; Shen,J.;Zhang,Z.X.;Xiang,Y.J.;Ma,W.J.;Ren,Y.;Wang,C. Y.;Wang,G.J.Phys.Chem.C,2008,112:2256

    45 Cao,H.Q.;Wang,L.D.;Qiu,Y.;Wu,Q.Z.;Wang,G.Z.;Zhang, L.;Liu,X.W.ChemPhysChem,2006,7:1500

    46 Chowdhury,T.;Casey,D.P.;Rohan.J.F.Electrochem.Commun., 2009,11:1203

    47 Lahav,M.;Sehayek,T.;Vaskevich,A.;Rubinstein,I.Angew. Chem.Int.Edit.,2003,42:5576

    48 Liu,F.;Zhao,Z,J.;Qiu,L,M.;Zhao,L,Z.Anal.Test.Technol. Instrum.,2009,15:1

    猜你喜歡
    化學(xué)系廣西大學(xué)納米管
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    最近鄰弱交換相互作用對spin-1納米管磁化強(qiáng)度的影響
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    一個(gè)二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    廣西大學(xué)為畢業(yè)生制作今昔對比照
    廣西大學(xué)廣西創(chuàng)新發(fā)展研究院簡介
    金色年華(2017年11期)2017-07-18 11:08:44
    廣西大學(xué)學(xué)報(bào)(自然科學(xué)版)2016年第41卷總目次
    權(quán)力控制:權(quán)力清單制度背后的公法思維
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    TiO2納米管負(fù)載Pd-Ag催化1,2-二氯乙烷的選擇性加氫脫氯
    在线精品无人区一区二区三 | 亚洲天堂av无毛| 人妻 亚洲 视频| 亚洲人成网站高清观看| 久久久久久久亚洲中文字幕| 精品亚洲成a人片在线观看 | 菩萨蛮人人尽说江南好唐韦庄| 国产精品福利在线免费观看| 深夜a级毛片| 久久99蜜桃精品久久| 久久99精品国语久久久| freevideosex欧美| 肉色欧美久久久久久久蜜桃| 亚洲经典国产精华液单| 伊人久久精品亚洲午夜| 成人高潮视频无遮挡免费网站| 国产探花极品一区二区| 亚洲最大成人中文| 欧美激情极品国产一区二区三区 | 全区人妻精品视频| 久久人妻熟女aⅴ| 在线精品无人区一区二区三 | 狂野欧美激情性xxxx在线观看| 97在线视频观看| 久久人人爽av亚洲精品天堂 | 国产精品人妻久久久久久| 人妻一区二区av| 亚洲欧美日韩东京热| 日韩国内少妇激情av| 不卡视频在线观看欧美| h日本视频在线播放| 黄色一级大片看看| 黑丝袜美女国产一区| 99精国产麻豆久久婷婷| 全区人妻精品视频| 永久网站在线| 免费观看在线日韩| 色网站视频免费| 国产精品99久久久久久久久| 亚洲,欧美,日韩| 国产精品不卡视频一区二区| 亚洲国产精品999| 国产成人一区二区在线| 免费看不卡的av| 久久亚洲国产成人精品v| 黄色一级大片看看| 亚洲成人av在线免费| 国产有黄有色有爽视频| 日本av免费视频播放| 精品人妻偷拍中文字幕| 男女免费视频国产| 夜夜看夜夜爽夜夜摸| 日本免费在线观看一区| 亚洲电影在线观看av| 你懂的网址亚洲精品在线观看| 肉色欧美久久久久久久蜜桃| 人妻夜夜爽99麻豆av| 精品人妻偷拍中文字幕| 国产极品天堂在线| 国产一区二区三区av在线| av播播在线观看一区| 国产精品福利在线免费观看| 精华霜和精华液先用哪个| 少妇丰满av| 色婷婷av一区二区三区视频| 一级毛片 在线播放| 国产精品欧美亚洲77777| 丰满迷人的少妇在线观看| 亚洲精品乱久久久久久| 国产精品人妻久久久影院| 国产精品人妻久久久影院| 色哟哟·www| 国产精品一区二区在线不卡| 一区二区三区四区激情视频| 亚洲精品国产av成人精品| 国产精品嫩草影院av在线观看| 国产精品久久久久成人av| 亚洲欧美一区二区三区国产| 麻豆精品久久久久久蜜桃| 国产在线一区二区三区精| 精品亚洲成a人片在线观看 | 亚洲一区二区三区欧美精品| 国产真实伦视频高清在线观看| 国产精品成人在线| 亚洲欧洲国产日韩| 99久久精品热视频| 国产亚洲91精品色在线| 久久久精品94久久精品| 欧美日韩视频高清一区二区三区二| 国精品久久久久久国模美| 日韩免费高清中文字幕av| 少妇熟女欧美另类| 中文字幕亚洲精品专区| 亚洲图色成人| 亚洲av成人精品一区久久| 亚洲av中文字字幕乱码综合| 久久亚洲国产成人精品v| 内射极品少妇av片p| 欧美区成人在线视频| 男的添女的下面高潮视频| 哪个播放器可以免费观看大片| 国产精品国产三级国产av玫瑰| 又粗又硬又长又爽又黄的视频| 99九九线精品视频在线观看视频| 99久久综合免费| 下体分泌物呈黄色| 欧美丝袜亚洲另类| 久热久热在线精品观看| 日日啪夜夜爽| 男人添女人高潮全过程视频| 赤兔流量卡办理| 少妇高潮的动态图| 大话2 男鬼变身卡| 日本与韩国留学比较| 精品久久久久久电影网| 亚洲精品国产成人久久av| 一本久久精品| a级毛色黄片| 中文字幕人妻熟人妻熟丝袜美| 人妻 亚洲 视频| 国产高清不卡午夜福利| 成人毛片a级毛片在线播放| 日本色播在线视频| 国产欧美另类精品又又久久亚洲欧美| 国产精品三级大全| 一二三四中文在线观看免费高清| 在线 av 中文字幕| 一级av片app| 最近最新中文字幕大全电影3| 国产精品人妻久久久久久| 99国产精品免费福利视频| 亚洲欧美一区二区三区黑人 | 国产一级毛片在线| 国产一区有黄有色的免费视频| 男人添女人高潮全过程视频| 精品少妇黑人巨大在线播放| av福利片在线观看| 黄片无遮挡物在线观看| 亚洲怡红院男人天堂| av一本久久久久| 美女福利国产在线 | av黄色大香蕉| 国产伦精品一区二区三区四那| 老司机影院毛片| 国产午夜精品久久久久久一区二区三区| 成人国产av品久久久| 另类亚洲欧美激情| 国产精品久久久久久av不卡| 日日摸夜夜添夜夜爱| 亚洲精品国产av成人精品| 韩国av在线不卡| 精品亚洲乱码少妇综合久久| 午夜免费观看性视频| 人妻制服诱惑在线中文字幕| 天堂中文最新版在线下载| 国产精品国产三级专区第一集| 亚洲欧美成人综合另类久久久| 精品久久国产蜜桃| 日本爱情动作片www.在线观看| 一本久久精品| 啦啦啦啦在线视频资源| 秋霞伦理黄片| 天堂中文最新版在线下载| 中国三级夫妇交换| 中文字幕精品免费在线观看视频 | 国产欧美日韩精品一区二区| 你懂的网址亚洲精品在线观看| 亚洲伊人久久精品综合| 午夜福利视频精品| 中文乱码字字幕精品一区二区三区| av女优亚洲男人天堂| 欧美日韩亚洲高清精品| 夜夜爽夜夜爽视频| 少妇高潮的动态图| 边亲边吃奶的免费视频| 亚洲伊人久久精品综合| 亚洲精品国产色婷婷电影| 久久国产亚洲av麻豆专区| 久久精品夜色国产| 国产深夜福利视频在线观看| 熟女av电影| 国产av码专区亚洲av| 久久久亚洲精品成人影院| 99久久精品热视频| 欧美一区二区亚洲| 97热精品久久久久久| 久久久久国产精品人妻一区二区| 老熟女久久久| 亚洲欧美成人精品一区二区| 欧美日韩一区二区视频在线观看视频在线| 国产一区二区三区av在线| 亚洲精品乱久久久久久| 日本爱情动作片www.在线观看| 亚洲四区av| 国产91av在线免费观看| 久久久精品免费免费高清| 亚洲成色77777| 亚洲欧美日韩无卡精品| 中文精品一卡2卡3卡4更新| 亚洲va在线va天堂va国产| 亚洲欧美日韩另类电影网站 | 内射极品少妇av片p| 国产精品一区二区性色av| 亚洲成人中文字幕在线播放| 国产精品一区二区在线不卡| 国产亚洲精品久久久com| av在线app专区| 日本黄色日本黄色录像| 精品人妻偷拍中文字幕| 亚州av有码| 成人无遮挡网站| 妹子高潮喷水视频| 日韩欧美一区视频在线观看 | 网址你懂的国产日韩在线| 久久99精品国语久久久| 舔av片在线| 午夜激情福利司机影院| 在线观看人妻少妇| 熟女av电影| 天堂中文最新版在线下载| 草草在线视频免费看| 免费观看性生交大片5| 男人和女人高潮做爰伦理| 国产91av在线免费观看| 伦精品一区二区三区| 在线观看av片永久免费下载| 我的女老师完整版在线观看| 一级毛片久久久久久久久女| 日韩 亚洲 欧美在线| 在线观看一区二区三区激情| 网址你懂的国产日韩在线| 日本色播在线视频| 亚洲精品国产成人久久av| 亚洲成人手机| 中文字幕亚洲精品专区| 人妻一区二区av| 亚洲精品,欧美精品| 亚洲精品国产色婷婷电影| 男人爽女人下面视频在线观看| 国产在线一区二区三区精| 色综合色国产| 欧美精品一区二区免费开放| 成人特级av手机在线观看| 狂野欧美激情性bbbbbb| 国产午夜精品一二区理论片| 亚洲第一区二区三区不卡| 色吧在线观看| 国模一区二区三区四区视频| 免费黄网站久久成人精品| 国产大屁股一区二区在线视频| 国产毛片在线视频| 成人毛片a级毛片在线播放| 国产国拍精品亚洲av在线观看| 黄色怎么调成土黄色| 国产深夜福利视频在线观看| 欧美激情极品国产一区二区三区 | 久久精品人妻少妇| 夫妻午夜视频| 亚洲精品第二区| 国产又色又爽无遮挡免| 男女边摸边吃奶| 国产国拍精品亚洲av在线观看| 国产精品熟女久久久久浪| 久久久a久久爽久久v久久| 永久网站在线| 国产亚洲欧美精品永久| 久久99热这里只频精品6学生| 热re99久久精品国产66热6| 国产伦理片在线播放av一区| 国语对白做爰xxxⅹ性视频网站| 少妇人妻精品综合一区二区| 亚洲人成网站高清观看| 国产有黄有色有爽视频| 国产精品国产三级国产av玫瑰| av卡一久久| 伊人久久国产一区二区| 欧美日韩综合久久久久久| 亚洲欧洲国产日韩| 卡戴珊不雅视频在线播放| 欧美极品一区二区三区四区| 国产精品.久久久| 久久久久久伊人网av| 国模一区二区三区四区视频| 久久精品国产a三级三级三级| 波野结衣二区三区在线| 一本色道久久久久久精品综合| 亚洲婷婷狠狠爱综合网| 久久精品国产a三级三级三级| 精品国产露脸久久av麻豆| 夫妻午夜视频| 99热6这里只有精品| 不卡视频在线观看欧美| 少妇被粗大猛烈的视频| 国产成人a∨麻豆精品| 99久久人妻综合| 色网站视频免费| 一本—道久久a久久精品蜜桃钙片| 99久国产av精品国产电影| 国产在线一区二区三区精| 亚洲av二区三区四区| 亚洲av.av天堂| 水蜜桃什么品种好| 免费看不卡的av| 男女啪啪激烈高潮av片| av一本久久久久| 免费看日本二区| 国产白丝娇喘喷水9色精品| 少妇人妻久久综合中文| 久久久色成人| 老师上课跳d突然被开到最大视频| 一级毛片黄色毛片免费观看视频| 九色成人免费人妻av| 欧美xxxx性猛交bbbb| 国产精品99久久久久久久久| 亚洲综合色惰| 国产精品久久久久成人av| 80岁老熟妇乱子伦牲交| 免费人妻精品一区二区三区视频| 91在线精品国自产拍蜜月| 精品99又大又爽又粗少妇毛片| 久久国产精品大桥未久av | 国产精品免费大片| 日韩 亚洲 欧美在线| 国产一区二区三区综合在线观看 | 亚洲欧美日韩卡通动漫| 久久久久久久久久久丰满| 男女免费视频国产| 在线观看三级黄色| 天堂俺去俺来也www色官网| 不卡视频在线观看欧美| 99热国产这里只有精品6| 大香蕉97超碰在线| 国产又色又爽无遮挡免| 3wmmmm亚洲av在线观看| 精品久久久精品久久久| 午夜精品国产一区二区电影| h日本视频在线播放| 一本—道久久a久久精品蜜桃钙片| 免费黄色在线免费观看| 久久久久久久久久人人人人人人| 一级片'在线观看视频| 99热全是精品| 久久精品国产亚洲av涩爱| 国产精品秋霞免费鲁丝片| 亚洲欧美清纯卡通| 秋霞伦理黄片| 国产 一区精品| 春色校园在线视频观看| 免费看不卡的av| 3wmmmm亚洲av在线观看| 夜夜骑夜夜射夜夜干| 亚洲久久久国产精品| 久久久久久伊人网av| 99热6这里只有精品| 网址你懂的国产日韩在线| 色哟哟·www| 欧美成人精品欧美一级黄| 国产免费一级a男人的天堂| 嫩草影院新地址| 久久久久久久亚洲中文字幕| 久久精品人妻少妇| 好男人视频免费观看在线| 人妻 亚洲 视频| 少妇人妻 视频| 欧美xxxx性猛交bbbb| 欧美激情极品国产一区二区三区 | 王馨瑶露胸无遮挡在线观看| 80岁老熟妇乱子伦牲交| 日韩中字成人| 下体分泌物呈黄色| 日韩国内少妇激情av| 一级片'在线观看视频| 亚洲国产成人一精品久久久| 交换朋友夫妻互换小说| 国产精品女同一区二区软件| 久久久a久久爽久久v久久| 国产真实伦视频高清在线观看| 亚洲综合精品二区| 欧美老熟妇乱子伦牲交| 成人国产麻豆网| 亚洲精品久久午夜乱码| 99热这里只有精品一区| 久久久久久九九精品二区国产| 嫩草影院新地址| 国产一区有黄有色的免费视频| 我的老师免费观看完整版| 高清日韩中文字幕在线| 综合色丁香网| a 毛片基地| 国产精品一二三区在线看| 国产乱人偷精品视频| 一级黄片播放器| 中文字幕亚洲精品专区| 又爽又黄a免费视频| 国产高清不卡午夜福利| 亚洲一级一片aⅴ在线观看| 免费在线观看成人毛片| 色网站视频免费| 国产精品一区二区在线不卡| av黄色大香蕉| 亚洲精品乱码久久久久久按摩| av在线播放精品| 男女无遮挡免费网站观看| 最黄视频免费看| 国产片特级美女逼逼视频| 人人妻人人爽人人添夜夜欢视频 | 国产毛片在线视频| 有码 亚洲区| 国产在线一区二区三区精| 日本与韩国留学比较| 高清欧美精品videossex| 日本黄色日本黄色录像| 精品久久久久久久久av| 午夜精品国产一区二区电影| 成人毛片60女人毛片免费| 少妇猛男粗大的猛烈进出视频| 另类亚洲欧美激情| 亚洲精品色激情综合| 国产深夜福利视频在线观看| 国产黄色免费在线视频| 中文字幕精品免费在线观看视频 | 亚洲精品,欧美精品| 国产精品久久久久成人av| 伊人久久精品亚洲午夜| 777米奇影视久久| 亚洲不卡免费看| 国内少妇人妻偷人精品xxx网站| 午夜福利视频精品| 久久久欧美国产精品| 精品一区二区免费观看| 亚洲精品成人av观看孕妇| 精品国产一区二区三区久久久樱花 | 99久久综合免费| 色婷婷久久久亚洲欧美| 国产成人freesex在线| 亚洲欧洲日产国产| 国产91av在线免费观看| 只有这里有精品99| 精品一区二区三区视频在线| 国产黄片美女视频| 我要看日韩黄色一级片| 精品久久久噜噜| 日韩精品有码人妻一区| 99热6这里只有精品| 欧美三级亚洲精品| 国产免费视频播放在线视频| 在线播放无遮挡| 男女边吃奶边做爰视频| 国产日韩欧美亚洲二区| 看非洲黑人一级黄片| 性色av一级| 日日啪夜夜撸| 亚洲国产精品成人久久小说| 色网站视频免费| 免费观看无遮挡的男女| 欧美高清成人免费视频www| 国产男女内射视频| 亚洲av在线观看美女高潮| 一本—道久久a久久精品蜜桃钙片| av在线观看视频网站免费| 2021少妇久久久久久久久久久| 大香蕉久久网| 色视频在线一区二区三区| 少妇的逼水好多| 18禁裸乳无遮挡动漫免费视频| 久久久久久久国产电影| 免费人妻精品一区二区三区视频| 国内精品宾馆在线| 欧美日韩综合久久久久久| 综合色丁香网| 国产又色又爽无遮挡免| 各种免费的搞黄视频| 内地一区二区视频在线| 成人黄色视频免费在线看| 97精品久久久久久久久久精品| 国产免费福利视频在线观看| 六月丁香七月| 一个人看视频在线观看www免费| 亚洲内射少妇av| 精品亚洲乱码少妇综合久久| 精品久久久久久久久亚洲| 最近2019中文字幕mv第一页| 大话2 男鬼变身卡| 一级毛片我不卡| 国产白丝娇喘喷水9色精品| 嫩草影院新地址| 欧美老熟妇乱子伦牲交| 男女边吃奶边做爰视频| 青春草视频在线免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 九九爱精品视频在线观看| 亚洲欧美日韩无卡精品| 人妻少妇偷人精品九色| 男女免费视频国产| 亚洲欧美清纯卡通| 美女脱内裤让男人舔精品视频| 日日摸夜夜添夜夜爱| 日韩,欧美,国产一区二区三区| 一级毛片电影观看| 成人一区二区视频在线观看| 爱豆传媒免费全集在线观看| av黄色大香蕉| 亚洲欧美成人综合另类久久久| 中文天堂在线官网| 丰满少妇做爰视频| 五月开心婷婷网| 久久6这里有精品| 九草在线视频观看| 国产精品精品国产色婷婷| a级一级毛片免费在线观看| 国产男人的电影天堂91| 97在线人人人人妻| 久久久久精品久久久久真实原创| 亚洲av综合色区一区| 国产精品福利在线免费观看| 少妇人妻精品综合一区二区| 久久热精品热| 久久久久久久久久成人| 日韩一本色道免费dvd| 欧美成人一区二区免费高清观看| 看免费成人av毛片| 天堂8中文在线网| 成人一区二区视频在线观看| 精品午夜福利在线看| 国产日韩欧美在线精品| 久久久久久伊人网av| 亚洲图色成人| 黄片wwwwww| 国产精品国产三级国产专区5o| 日韩欧美 国产精品| 国产精品熟女久久久久浪| 国产熟女欧美一区二区| 日韩免费高清中文字幕av| 亚洲成人av在线免费| 亚洲成人手机| av天堂中文字幕网| 99久久综合免费| 看十八女毛片水多多多| 色视频在线一区二区三区| 中文资源天堂在线| 偷拍熟女少妇极品色| 色5月婷婷丁香| 国产精品一区二区在线不卡| 国产午夜精品一二区理论片| 一边亲一边摸免费视频| 一级爰片在线观看| 18禁裸乳无遮挡动漫免费视频| 在线观看人妻少妇| 国产一区亚洲一区在线观看| 国产亚洲av片在线观看秒播厂| www.色视频.com| 亚洲国产毛片av蜜桃av| 日本午夜av视频| 如何舔出高潮| 美女主播在线视频| 国产精品久久久久久久久免| 欧美bdsm另类| 高清毛片免费看| 精品一区二区免费观看| 中文在线观看免费www的网站| 成人国产av品久久久| 十分钟在线观看高清视频www | 少妇熟女欧美另类| 男女啪啪激烈高潮av片| 少妇熟女欧美另类| 国产精品福利在线免费观看| 欧美3d第一页| 哪个播放器可以免费观看大片| 国产精品蜜桃在线观看| 黄片无遮挡物在线观看| 国产精品久久久久久久久免| 精品国产乱码久久久久久小说| 极品少妇高潮喷水抽搐| 国产亚洲91精品色在线| av视频免费观看在线观看| 人人妻人人添人人爽欧美一区卜 | 观看av在线不卡| 蜜桃久久精品国产亚洲av| 亚洲国产精品专区欧美| 新久久久久国产一级毛片| 18禁裸乳无遮挡动漫免费视频| 99热这里只有是精品50| 精品久久久久久久久av| av专区在线播放| 五月玫瑰六月丁香| 日韩欧美一区视频在线观看 | 亚洲欧美日韩卡通动漫| 人人妻人人澡人人爽人人夜夜| 精品久久久精品久久久| 午夜福利在线观看免费完整高清在| 国产精品熟女久久久久浪| 国内少妇人妻偷人精品xxx网站| 51国产日韩欧美| 日本与韩国留学比较| 亚洲av不卡在线观看| 亚洲av男天堂| 国产成人精品一,二区| 国产亚洲午夜精品一区二区久久| kizo精华| 久久99热这里只频精品6学生| 网址你懂的国产日韩在线| 亚洲精品国产av成人精品| 边亲边吃奶的免费视频| 人妻少妇偷人精品九色| 中文字幕av成人在线电影| 热re99久久精品国产66热6| 少妇丰满av| 国产大屁股一区二区在线视频| 一边亲一边摸免费视频| 免费人成在线观看视频色| 亚洲精品国产色婷婷电影| 伊人久久精品亚洲午夜| 成人无遮挡网站| 在线看a的网站| 少妇人妻精品综合一区二区|