林玉萍
摘 要:數(shù)學(xué)建模是高中數(shù)學(xué)核心素養(yǎng)重要構(gòu)成部分,重要性不言而喻.教學(xué)中,不僅要做好數(shù)學(xué)基礎(chǔ)知識(shí)深入講解,使學(xué)生牢固掌握,而且還應(yīng)積極開(kāi)展建模教學(xué)活動(dòng),傳授數(shù)學(xué)建模知識(shí)及注意事項(xiàng),不斷提高學(xué)生的建模能力.本文就如何開(kāi)展數(shù)學(xué)建模教學(xué)進(jìn)行探討,以供參考.
關(guān)鍵詞:高中數(shù)學(xué);建模;教學(xué);實(shí)踐
高中數(shù)學(xué)涉及很多模型,如函數(shù)模型、不等式模型、數(shù)列模型等.而建模是一種重要的數(shù)學(xué)能力,對(duì)學(xué)生的分析、解決問(wèn)題的能力要求較高,因此,教學(xué)中,應(yīng)注重圍繞具體教學(xué)內(nèi)容,積極開(kāi)展數(shù)學(xué)建模教學(xué)活動(dòng),提高學(xué)生的建模能力,為學(xué)生數(shù)學(xué)成績(jī)的提高奠定基礎(chǔ).
一、函數(shù)模型的構(gòu)建教學(xué)
函數(shù)是高中數(shù)學(xué)的重點(diǎn)知識(shí),貫穿整個(gè)高中階段.為提高學(xué)生函數(shù)模型構(gòu)建能力,教學(xué)中,一方面,為學(xué)生深入講解高中數(shù)學(xué)中各種函數(shù)模型,使學(xué)生掌握不同函數(shù)的性質(zhì)以及相關(guān)結(jié)論,為函數(shù)模型的構(gòu)建做好鋪墊.另一方面,依托具體例題講解,使學(xué)生掌握不同函數(shù)模型特點(diǎn),以及構(gòu)建模型的技巧,如注意找到正確的定義域.
例如:某電腦生產(chǎn)商,生產(chǎn)一品牌電腦的成本為4500元/臺(tái).研究發(fā)現(xiàn),當(dāng)銷(xiāo)售價(jià)為6000元/臺(tái)時(shí),月銷(xiāo)售a臺(tái).如價(jià)格提高的百分率為x(0 為構(gòu)建正確的函數(shù)模型,教學(xué)中應(yīng)引導(dǎo)學(xué)生找到月利潤(rùn)與銷(xiāo)售之間的關(guān)系,顯然月利潤(rùn)=月銷(xiāo)售量×(售價(jià)-成本).顯然提價(jià)后每臺(tái)電腦的價(jià)格為6000(1+x)元/臺(tái).對(duì)應(yīng)的月銷(xiāo)售量為a(1-x2)臺(tái).于是不難構(gòu)建如下模型: 求解時(shí)需要求導(dǎo),探討其單調(diào)性,找到其最大值.求得當(dāng)0 二、不等式模型的構(gòu)建教學(xué) 不等式是高中數(shù)學(xué)的重要知識(shí)點(diǎn),是高考的必考點(diǎn).不等式模型構(gòu)建教學(xué)中,一方面,引導(dǎo)學(xué)生認(rèn)真讀題,搞清楚參數(shù)間的關(guān)系,設(shè)出合理的參數(shù),構(gòu)建正確的模型.另一方面,求解不等式模型式模型時(shí),需要注意定義域,看等號(hào)成立的條件是否在定義域內(nèi),如不在應(yīng)運(yùn)用函數(shù)單調(diào)性知識(shí)進(jìn)行求解. 例如:為減少夏季房屋能耗,房屋外墻和屋頂需建造隔熱層.如某建筑物隔熱層使用壽命為20年.隔熱層的造價(jià)為6萬(wàn)元/厘米厚.房屋每年能耗C(單位:萬(wàn)元)和隔熱層厚度x(單位:cm)的關(guān)系為C(x)=k3x+5(0≤x≤10).若不建隔熱層,房屋每年能耗為8萬(wàn)元.隔熱層建多厚時(shí),建造費(fèi)用和20年總能耗的費(fèi)用之和最??? 教學(xué)中要求學(xué)生認(rèn)真閱讀題干,搞清題意,找到參數(shù)間的關(guān)系.設(shè)總能耗為f(x),根據(jù)題干描述,可構(gòu)建的不等式模型為: 顯然要想求解該模型的最值,需要確定k的值.于是引導(dǎo)學(xué)生充分理解“若不建隔熱層,房屋每年能耗為8萬(wàn)元”這句話(huà),其等價(jià)于C(0)=8,代入k3x+5,得k=40,則構(gòu)建的模型為: 三、數(shù)列模型的構(gòu)建教學(xué) 高中數(shù)學(xué)涉及的數(shù)列模型為等差與等比數(shù)列模型,因數(shù)列知識(shí)較為抽象,學(xué)生構(gòu)建數(shù)列模型出錯(cuò)率較高,因此,教學(xué)中,一方面,引導(dǎo)學(xué)生分析等差與等比數(shù)列模型的區(qū)別,認(rèn)真審題,找到能體現(xiàn)出“等差”或“等比”模型的描述,確定數(shù)列的首項(xiàng)以及公差或公比.另一方面,數(shù)列是特殊的函數(shù),因此,在求解數(shù)列模型時(shí),雖然可以應(yīng)用函數(shù)知識(shí)進(jìn)行探討,但需要注意數(shù)列的取值為正整數(shù). 例如,在講解數(shù)列知識(shí)后,為學(xué)生講解如下例題:某學(xué)校向銀行貸款500萬(wàn)元準(zhǔn)備建設(shè)一座可容納1000人的學(xué)生公寓.工程于2018年初動(dòng)工,年底準(zhǔn)備交付使用.為償還貸款(年利率5%,按復(fù)利計(jì)算),準(zhǔn)備將公寓所收費(fèi)用去除水電費(fèi)、物業(yè)管理費(fèi)共計(jì)18萬(wàn)元后,剩余部分全部用于償還貸款.若公寓按照每生每年800元的標(biāo)準(zhǔn)收費(fèi),則哪一年可以將貸款還完? 因題目中明確給出按照復(fù)利計(jì)算,因此,該題目需要?jiǎng)?chuàng)建等比數(shù)列模型.設(shè)n年還完貸款.公寓每年收取的總費(fèi)用是固定的,即為1000×800=80萬(wàn)元,去除物業(yè)費(fèi)、水電費(fèi)費(fèi)用為18萬(wàn)元,因此,每年償還的數(shù)額為80-18=62萬(wàn)元.則要想滿(mǎn)足題意,構(gòu)建如下模型: 綜上所述,高中數(shù)學(xué)教學(xué)中,為提高學(xué)生的建模能力,除要深入數(shù)學(xué)基礎(chǔ)知識(shí)外,還應(yīng)圍繞具體例題講解,使學(xué)生感受不同數(shù)學(xué)模型的構(gòu)建過(guò)程以及注意事項(xiàng),并鼓勵(lì)學(xué)生積極總結(jié)建模技巧與方法,做到靈活應(yīng)用. 參考文獻(xiàn): [1]柏鵬飛.高中數(shù)學(xué)建模的教學(xué)方法探微[J].數(shù)學(xué)學(xué)習(xí)與研究,2019(08):139. [2]林玉花.“數(shù)學(xué)建?!痹诟咧袛?shù)學(xué)解題中的應(yīng)用[J].中學(xué)數(shù)學(xué),2019(05):49-50. [3]劉翠英.如何將數(shù)學(xué)建模有效引入高中數(shù)學(xué)教學(xué)[J].數(shù)學(xué)學(xué)習(xí)與研究,2019(05):36. [責(zé)任編輯:李 璟]