董則含,吳琰婷,劉 含,王尹瑜,黃荷鳳
上海交通大學(xué)醫(yī)學(xué)院附屬國際和平婦幼保健院輔助生殖科,上海胚胎源性疾病重點實驗室,上海 200030
冰凍胚胎移植(frozen embryo transfer,F(xiàn)ET)是一項在體外冷凍和保存胚胎,待解凍后再移植回子宮的技術(shù)。自1983 年第一例FET 妊娠出現(xiàn)以來[1],由于其能顯著提高累計妊娠率,減少多胎妊娠和卵巢過度刺激綜合征的發(fā)生[2],且伴隨著選擇性單胚胎移植技術(shù)的迅速發(fā)展,其已成為了一種重要的輔助生殖技術(shù)(assisted reproductive technology,ART)。目前,全世界已有800 多萬名新生兒通過ART 誕生[3]。歐洲人類生殖與胚胎協(xié)會報道,2015年FET 周期數(shù)目占ART 周期總數(shù)的25.7%,并且持續(xù)上升[4-5]。多項meta 分析[6-7]顯示,F(xiàn)ET 與大于胎齡兒(large for gestational age,LGA)、妊娠期高血壓的風(fēng)險增加顯著相關(guān)。一項基于丹麥人群的大型隊列研究[8]提示,與自然受孕(natural conception,NC)誕生的子代相比,經(jīng)FET 技術(shù)誕生的子代在兒童期的癌癥風(fēng)險有顯著增加(HR=2.43,95%CI 1.44 ~4.11)。目前關(guān)于FET 子代的遠期健康和發(fā)育的報道相對較少[9],F(xiàn)ET 對幼兒的潛在生長發(fā)育影響亦尚待評估。
幼兒的神經(jīng)認(rèn)知發(fā)育受到許多出生前事件和環(huán)境因素的影響[10]。出生后到學(xué)齡前期是人類神經(jīng)系統(tǒng)發(fā)育的高峰期,發(fā)育遲緩或落后在幼兒時期即可出現(xiàn),會顯著影響子代的生活質(zhì)量,并對后續(xù)發(fā)育和智力產(chǎn)生損害。已有調(diào)查[11]顯示,全球約有2.5 億小于5 歲的幼兒存在智力和行為等發(fā)育異?;虬l(fā)育不良的風(fēng)險。目前,就FET 子代的心理、神經(jīng)發(fā)育方面的研究較少,且存在方法學(xué)、研究對象異質(zhì)性等多方面的局限[3,12]。值得注意的是,在FET 子代中LGA 發(fā)生率增加,且子代LGA 在學(xué)齡期發(fā)生超重和肥胖的比例顯著增高[13],這可能與接受FET 的婦女在孕期更易發(fā)生胎盤功能障礙有關(guān)[14]。多項研究[15-17]提示從兒童到成年期,肥胖和胰島素抵抗代謝紊亂對認(rèn)知行為功能存在不良影響。一項西班牙的小樣本隊列研究[3]提示,F(xiàn)ET 與其子代3 歲以下的語言發(fā)育遲緩有關(guān)。綜上,F(xiàn)ET 對子代體格、代謝和認(rèn)知可能存在潛在的不良影響且不容易忽視?;诖?,本研究測量FET 子代的體格發(fā)育,并使用格塞爾嬰幼兒發(fā)展量表(Gesell Developmental Schedule,GDS)中文版對FET 子代的適應(yīng)性、語言、社交等多方面神經(jīng)認(rèn)知及行為發(fā)育進行評估。鑒于早期干預(yù)可以使發(fā)育邊緣和輕度落后的幼兒恢復(fù)良好[18],本研究納入對象均為幼兒(4 歲以下),以探索可能的早期篩查和干預(yù)時機。
本研究為雙向隊列研究。根據(jù)接受ART 治療父母的回顧性信息,于2018 年9 月—2019 年11 月在上海交通大學(xué)醫(yī)學(xué)院附屬國際和平婦幼保健院招募已接受FET以及NC 出生的幼兒248 名進行研究并隨訪。納入標(biāo)準(zhǔn):① 單胎,妊娠≥28 周。②1.5 ~4 歲。③定期到醫(yī)院兒??茀⒓映R?guī)體檢。排除標(biāo)準(zhǔn):①母親有嚴(yán)重的肝腎功能障礙、糖尿病、癌癥或自身免疫系統(tǒng)疾病史。② 妊娠前父母至少有一方的體質(zhì)量指數(shù)(body mass index,BMI) >40[19]。③ 出生時診斷為嚴(yán)重的先天性畸形[20],染色體異?;蛳忍齑x性疾病。④心臟或神經(jīng)系統(tǒng)感染疾病。
本研究獲得上海交通大學(xué)醫(yī)學(xué)院附屬國際和平婦幼保健院倫理委員會審批(倫理批號為GKLW2016-21)。所有監(jiān)護人均簽署知情同意書。
1.2.1 體外受精胚胎移植 基于母親的年齡、不孕癥的診斷和外周血中竇卵泡個數(shù)和抗苗勒激素的濃度水平選擇促排卵方案??刂菩源倥怕眩╟ontrolled ovarian stimulation,COS)方案包括標(biāo)準(zhǔn)長方案、短方案、拮抗劑等傳統(tǒng)方案,以及微刺激方案、個體化聯(lián)合方案等個體化治療的新方案[21-24]。人絨毛膜促性腺激素(human chorionic gonadotropin,HCG)注射后34 ~36 h 取卵。使用體外受精或卵細胞質(zhì)內(nèi)單精子注射(intra cytoplasmic sperm injection,ICSI)的常規(guī)方法使卵母細胞受精[2]。正常受精卵在培養(yǎng)基中培養(yǎng)至卵裂期(第2 日或第3 日)或囊胚期(第5 日或第6 日)后進行冷凍[25],胚胎在雌二醇水平和子宮內(nèi)膜厚度適宜的當(dāng)天解凍,并進行移植。
1.2.2 神經(jīng)認(rèn)知及行為發(fā)育評估 幼兒的神經(jīng)行為發(fā)育為主要結(jié)局。FET 組和NC 對照組的神經(jīng)認(rèn)知及行為發(fā)育水平通過國際統(tǒng)一的GDS 中文版[26]進行評估。GDS 為經(jīng)典的學(xué)齡前兒童神經(jīng)行為發(fā)育評估量表,常用于評估幼兒的神經(jīng)認(rèn)知及行為發(fā)育[27-28]。結(jié)果以神經(jīng)運動/認(rèn)知能區(qū)5 個方面的發(fā)育商(development quotient,DQ)得分來表示,包括粗大運動、精細運動、適應(yīng)性行為、語言、社交能力。以正常行為模式為標(biāo)準(zhǔn),鑒定觀察到的行為模式,DQ 計算公式:[檢測到的年齡(月) /實際年齡(月)]×100。DQ 得分≥85 分為正常發(fā)育,75 ~84 分表示可疑神經(jīng)認(rèn)知發(fā)育遲緩或發(fā)育邊緣,<75 表示發(fā)育遲緩[27]。
1.2.3 體格測評 幼兒體格發(fā)育為次要結(jié)局。由經(jīng)過培訓(xùn)的專業(yè)醫(yī)師按照WHO 的操作規(guī)范,對隨訪幼兒進行體檢,測量幼兒的身高及體質(zhì)量。依據(jù)WHO 發(fā)布的幼兒生長發(fā)育曲線參考值及評價標(biāo)準(zhǔn)[27],采用Anthro3.2.2 軟件計算相應(yīng)體格Z 評分。幼兒的體格Z 評分= (實測值-參考值中位數(shù))/標(biāo)準(zhǔn)差,包括年齡別身高/身長(H/LAZ)、年齡別體質(zhì)量(WAZ)、身高/身長別體質(zhì)量(WH/LZ)、年齡別體質(zhì)量指數(shù)(BMIZ)。進一步將各變量的Z 評分轉(zhuǎn)化為有臨床意義的分類變量,來反映幼兒體格生長發(fā)育的不同水平。H/LAZ<-2 定義為矮小,WAZ<-2 定義為消瘦(包括嚴(yán)重消瘦)。WHZ/BMIZ<-2 為營養(yǎng)不良,-2 ~2 為正常,>2 為超重和肥胖[29]。
1.2.4 信息采集 與幼兒的神經(jīng)行為發(fā)育結(jié)局相關(guān)的協(xié)變量較多,持續(xù)存在于母親孕前到子代的幼兒階段,如父母年齡[30]、子代早產(chǎn)和低出生體質(zhì)量[31]、母親妊娠亞甲狀腺功能紊亂[32]、父母吸煙[33]、幼兒營養(yǎng)和微量元素補充[34]、乙肝[27,35-36]、母親孕期環(huán)境污染及有害粉塵暴露[37]、母乳喂養(yǎng)[38-39]。通過電子問卷采集母親孕育史、孕期信息、出生結(jié)局和父母家庭環(huán)境等社會人口學(xué)信息。通過病例資料收集父母既往史,孕前到出生以及體外受精治療的相關(guān)信息。
采用SPSS 25.0 軟件對研究數(shù)據(jù)進行統(tǒng)計分析。研究對象的基線信息及幼兒發(fā)育結(jié)局資料中,符合正態(tài)分布的定量資料以±s 表示,采用t 檢驗進行分析;不符合正態(tài)分布的定量資料以M(Q1,Q3)表示,采用Mann-Whitney U 檢驗進行分析。定性資料以頻數(shù)和百分率表示,采用χ2檢驗或Fisher 精確檢驗進行分析。采用向前似然比檢驗(forward-likelihood ratio,forward-LRT)篩選變量,得到優(yōu)化后的多元Logistic 回歸模型,評估FET 對子代幼兒神經(jīng)認(rèn)知發(fā)育的影響。P<0.05 表示差異有統(tǒng)計學(xué) 意義。
研究隊列的基線特征見表1,在248 例幼兒中,F(xiàn)ET組182 例,NC 對照組66 例。2 組男女比例近似1:1,其出生體質(zhì)量和孕周間差異均無統(tǒng)計學(xué)意義,但FET 組LGA 和巨大兒的比例更高(P=0.028,P=0.009)。
表1 FET 組和NC 對照組幼兒及父母的基線特征Tab 1 Baseline characteristics of infants and their parents in the FET group and the NC control group
結(jié)果(表2、表3)顯示,2 組幼兒的各項Z 評分構(gòu)成比間差異均無統(tǒng)計學(xué)意義,提示體格發(fā)育水平相似;而 2 組在認(rèn)知結(jié)局方面特別是FET 組中女性子代在精細運動和社交能力的發(fā)育水平與NC 組相比,差異均具有統(tǒng)計學(xué)意義(P=0.003,P=0.026)。此外,女性子代群體中,僅FET 組出現(xiàn)粗大運動、適應(yīng)性行為、語言、社交能力的發(fā)育遲緩,分別占比為4.7%、1.2%、3.4%和9.3%。
表2 2 組幼兒體格發(fā)育的比較Tab 2 Comparison of physical development between the two groups
表3 2 組幼兒神經(jīng)認(rèn)知和行為發(fā)育比較Tab 3 Comparison of neurocognitive and behavioral development between the two groups
通過多元Logistic 逐步回歸分析調(diào)整協(xié)變量并優(yōu)化,結(jié)果見表4。FET 組幼兒的精細運動和社交能力均存在顯著增加其發(fā)育異常和遲緩的風(fēng)險(均P=0.002);當(dāng)對性別進行單獨評估時,結(jié)果顯示FET 女性子代的精細運動以及男女的社交能力發(fā)育均存在顯著增加其發(fā)育不良或發(fā)育遲緩的風(fēng)險(均P<0.05),且女性比男性的相對風(fēng)險 更高。
表4 亞組中FET 對子代幼兒神經(jīng)認(rèn)知發(fā)育異常和遲緩的影響的多元Logistic 回歸分析Tab 4 Effects of FET on neurocognitive development abnormality and retardation of offspring in the subgroups by multiple Logistic regression analysis
本研究對2 組幼兒的神經(jīng)認(rèn)知發(fā)育進行比較,結(jié)果顯示其主要發(fā)育水平間差異具有統(tǒng)計學(xué)意義,特別是子代女性的精細運動和社交能力方面(P=0.003,P=0.026)。多元Logistic 回歸分析驗證了FET 對子代女性的不良影響;此外,F(xiàn)ET 對子代男性的社交發(fā)育的不良影響也有統(tǒng)計學(xué)意義,但比女孩相對低。英國的一項研究[40]招募了91 名經(jīng)FET 誕生的幼兒和83 名NC 誕生的幼兒,2 組在幼兒期的神經(jīng)行為和認(rèn)知發(fā)育水平間差異無統(tǒng)計學(xué)意義,但玻璃化冷凍胚胎合并先天畸形的神經(jīng)運動評分較低。另一項瑞典的研究[41]隨訪了FET、NC 和新鮮胚胎移植誕生的子代,神經(jīng)發(fā)育紊亂性疾病僅出現(xiàn)在FET 組中,患病人數(shù)為3(1.2%)。另有研究[3]提示,F(xiàn)ET 與子代3 歲以下嬰幼兒的語言發(fā)育遲緩相關(guān),語言與社交能力相互影響,可能根據(jù)幼兒特征先后出現(xiàn)。這與我們的研究結(jié)果類似,提示FET 本身或過程中或存在與社交能力發(fā)育獨立相關(guān)的風(fēng)險因素,可能的中間機制之一即是FET 增加了巨大兒、LGA、妊娠高血壓、子癇、胎盤血管病變異常的風(fēng)險[6-7,42]。已有研究[43]提示先兆子癇與子代智力異常高度相關(guān),且從本研究結(jié)果可見FET 組孕期妊娠高血壓/子癇前期的比例均高于NC 對照組。此外,一項隊列研究[44]提示,與傳統(tǒng)體外受精新鮮胚胎移植組相比,冰凍胚胎移植卵胞漿內(nèi)單精子顯微注射(intracytoplasmic sperm injection,ICSI)組與新鮮胚胎移植ICSI 組子代的神經(jīng)認(rèn)知發(fā)育遲緩風(fēng)險均顯著增高,冰凍胚胎移植ICSI 組的風(fēng)險明顯更高,因此FET 特有的凍融程序或可對子代精神和認(rèn)知發(fā)育存在不良影響,特別是ICSI 因素存在的情況下,可能與其產(chǎn)生了交互作用。
在分子機制和遺傳水平上,認(rèn)知發(fā)育風(fēng)險增加可能的原因之一是與ART 相關(guān)體外操作通過改變基因印記或表觀遺傳對后期胚胎及子代發(fā)育產(chǎn)生影響[42,45-46]。研究[47]表明,體外受精可以改變新生兒血液中特定基因組的甲基化,而新生兒的基因組甲基化處于亞穩(wěn)態(tài)狀態(tài),因此對某些表觀基因組將存在持久的影響。大量的動物實驗表明,胚胎植入前的體外培養(yǎng)和操作[48-50]、FET 凍融程序[51]與子代的遠期生長發(fā)育、神經(jīng)行為受損、體質(zhì)量、代謝紊亂風(fēng)險相關(guān),而這些不利因素都可能影響FET 子代的神經(jīng)認(rèn)知和生長發(fā)育。此外,Sun 等[52]的研究表明,人類卵裂球胚胎解凍后再培養(yǎng)一段時間,可發(fā)現(xiàn)明顯增高的多核發(fā)生率,且遠高于新鮮胚胎移植。Seikkula 等[53]的病例對照研究則納入多核或雙核冰凍胚胎移植周期的婦女和子代作為病例組,病例組的臨床妊娠率和活產(chǎn)率與正常組相比都顯著降低,提示FET 組的多核胚胎發(fā)生對后續(xù)胚胎發(fā)育和子代發(fā)育具有潛在的不良影響。
子代早期的認(rèn)知發(fā)育對后期成長有很大影響[54],大腦在嬰幼兒時期具有很強的可塑性,對神經(jīng)認(rèn)知發(fā)育輕度遲緩或邊緣狀態(tài)的幼兒進行積極的早期干預(yù),可能將獲得較理想的效果[18]。因此,建議在發(fā)育早期即嬰幼兒時期,密切關(guān)注FET 子代的社交行為以及子代女性的精細運動等神經(jīng)認(rèn)知發(fā)育情況,必要時進行早期篩查和干預(yù)。有研究[38]表明延長母乳喂養(yǎng)對幼兒的認(rèn)知行為發(fā)育是一個獨立保護因素,而接受ART 的母親的母乳喂養(yǎng)水平普遍低下[55],因此促進母乳喂養(yǎng)或可幫助子代幼兒改善、恢復(fù)和實現(xiàn)追趕生長。
本研究結(jié)果顯示,F(xiàn)ET 組與NC 組的子代在小于4歲的幼兒時期,其體格發(fā)育水平相似,但FET 子代在精細運動和社交能力發(fā)育遲緩的風(fēng)險增加;雖然在多元Logistic 回歸分析時校正了幼兒早教這一潛在混雜因素,但并不能排除父母過度保護、育兒意識欠缺的混雜以及家庭的潛在選擇偏倚。由于本研究樣本量較小,可能存在一定的局限性和偏倚,鑒于幼兒時期認(rèn)知發(fā)育對生活質(zhì)量和后續(xù)認(rèn)知發(fā)育的持續(xù)影響,將來可增加樣本量并延長隨訪時間,對上述研究結(jié)果做進一步的驗證。
參·考·文·獻
[1] Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo[J]. Nature, 1983, 305(5936): 707-709.
[2] Belva F, Henriet S, van den Abbeel E, et al. Neonatal outcome of 937 children born after transfer of cryopreserved embryos obtained by ICSI and IVF and comparison with outcome data of fresh ICSI and IVF cycles[J]. Hum Reprod, 2008, 23(10): 2227-2238.
[3] Sánchez-Soler MJ, López-González V, Ballesta-Martínez MJ, et al. Assessment of psychomotor development of Spanish children up to 3 years of age conceived by assisted reproductive techniques: prospective matched cohort study[J]. An Pediatr (Barc), 2020, 92(4): 200-207.
[4] De Geyter C, Calhaz-Jorge C, Kupka MS, et al. ART in Europe, 2014: results generated from European registries by ESHRE: the European IVF-monitoring consortium (EIM) for the European society of human reproduction and embryology (ESHRE)[J]. Hum Reprod, 2018, 33(9): 1586-1601.
[5] De Geyter C, Calhaz-Jorge C, Kupka MS, et al. ART in Europe, 2015: results generated from European registries by ESHRE[J]. Hum Reprod Open, 2020, 2020(1): hoz038.
[6] Maheshwari A, Pandey S, Amalraj Raja E, et al. Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer?[J]. Hum Reprod Update, 2018, 24(1): 35-58.
[7] Sha TT, Yin XQ, Cheng WW, et al. Pregnancy-related complications and perinatal outcomes resulting from transfer of cryopreserved versus fresh embryos in vitro fertilization: a meta-analysis[J]. Fertil Steril, 2018, 109(2): 330-342. E9.
[8] Hargreave M, Jensen A, Hansen MK, et al. Association between fertility treatment and cancer risk in children[J]. JAMA, 2019, 322(22): 2203-2210.
[9] Wennerholm UB, S?derstr?m-Anttila V, Bergh C, et al. Children born after cryopreservation of embryos or oocytes: a systematic review of outcome data[J]. Hum Reprod, 2009, 24(9): 2158-2172.
[10] Bloomfield FH. Epigenetic modifications may play a role in the developmental consequences of early life events[J]. J Neurodev Disord, 2011, 3(4): 348-355.
[11] Black MM, Walker SP, Fernald LCH, et al. Early childhood development coming of age: science through the life course[J]. Lancet, 2017, 389(10064): 77-90.
[12] Hart R, Norman RJ. The longer-term health outcomes for children born as a result of IVF treatment. Part Ⅱ : mental health and development outcomes[J]. Hum Reprod Update, 2013, 19(3): 244-250.
[13] Zhou J, Zeng LX, Wang DL, et al. Effects of birth weight on body composition and overweight/obesity at early school age[J]. Clin Nutr, 2020, 39(6): 1778-1784.
[14] Peng SN, Deyssenroth MA, Di Narzo AF, et al. Genetic regulation of the placental transcriptome underlies birth weight and risk of childhood obesity[J]. PLoS Genet, 2018, 14(12): E1007799.
[15] Singh-Manoux A, Czernichow S, Elbaz A, et al. Obesity phenotypes in midlife and cognition in early old age: the Whitehall Ⅱ cohort study[J]. Neurology, 2012, 79(8): 755-762.
[16] Martin A, Booth JN, Laird Y, et al. Physical activity, diet and other behavioural interventions for improving cognition and school achievement in children and adolescents with obesity or overweight[J]. Cochrane Database Syst Rev, 2018. 3: CD009728.
[17] Wodschow HZ, Jensen NJ, Desirée Nilsson MS, et al. The effect of hyper- and hypoglycaemia on cognition and development of dementia for patients with diabetes mellitus Type 2[J]. Ugeskr Laeg, 2018, 180(51): V08180566.
[18] Ros R, Hernandez J, Graziano PA, et al. Parent training for children with or at risk for developmental delay: the role of parental homework completion[J]. Behav Ther, 2016, 47(1): 1-13.
[19] Cedergren MI. Maternal morbid obesity and the risk of adverse pregnancy outcome[J]. Obstet Gynecol, 2004, 103(2): 219-224.
[20] Reis M, K?llén B. Combined use of selective serotonin reuptake inhibitors and sedatives/hypnotics during pregnancy: risk of relatively severe congenital malformations or cardiac defects. A register study[J]. BMJ Open, 2013, 3(2): E002166.
[21] Chatillon-Boissier K, Genod A, Denis-Belicard E, et al. Prospective randomised study of long versus short agonist protocol with poor responder patients during in vitro fertilization[J]. Gynecol Obstet Fertil, 2012, 40(11): 652-657.
[22] Pacchiarotti A, Selman H, Valeri C, et al. Ovarian stimulation protocol in IVF: an up-to-date review of the literature[J]. Curr Pharm Biotechnol, 2016, 17(4): 303-315.
[23] La Marca A, Sunkara SK. Individualization of controlled ovarian stimulation in IVF using ovarian reserve markers: from theory to practice[J]. Hum Reprod Update, 2014, 20(1): 124-140.
[24] Nargund G, Datta AK, Fauser BCJM. Mild stimulation for in vitro fertilization[J]. Fertil Steril, 2017, 108(4): 558-567.
[25] Larman MG, Minasi MG, Rienzi L, et al. Maintenance of the meiotic spindle during vitrification in human and mouse oocytes[J]. Reprod Biomed Online, 2007, 15(6): 692-700.
[26] You J, Shamsi BH, Hao MC, et al. A study on the neurodevelopment outcomes of late preterm infants[J]. BMC Neurol, 2019, 19(1): 108.
[27] Zeng HH, Cai HD, Wang Y, et al. Growth and development of children prenatally exposed to telbivudine administered for the treatment of chronic hepatitis B in their mothers[J]. Int J Infect Dis, 2015, 33: 97-103.
[28] Marques RC, Garrofe Dórea J, Rodrigues Bastos W, et al. Maternal mercury exposure and neuro-motor development in breastfed infants from Porto Velho (Amazon), Brazil[J]. Int J Hyg Environ Health, 2007, 210(1): 51-60.
[29] World Health Organization. Growth problems[EB/OL]. (2020-04-12)[2020-04-26]. https: //www.who.int/childgrowth/training/module_c_interpreting_indicators.
[30] Merikangas AK, Calkins ME, Bilker WB, et al. Parental age and offspring psychopathology in the Philadelphia neurodevelopmental cohort[J]. J Am Acad Child Adolesc Psychiatry, 2017, 56(5): 391-400.
[31] Zavadenko NN, Davydova LA. Neurological and neurodevelopmental disorders in preterm-born children (with extremely low, very low or low body weight)[J]. Zh Nevrol Psikhiatr Im S S Korsakova, 2019, 119(12): 12-19.
[32] Nattero-Chávez L, Luque-Ramírez M, Escobar-Morreale HF. Systemic endocrinopathies (thyroid conditions and diabetes): impact on postnatal life of the offspring[J]. Fertil Steril, 2019, 111(6): 1076-1091.
[33] Banderali G, Martelli A, Landi M, et al. Short and long term health effects of parental tobacco smoking during pregnancy and lactation: a descriptive review[J]. J Transl Med, 2015, 13: 327.
[34] Chen K, Zhang X, Wei XP, et al. Antioxidant vitamin status during pregnancy in relation to cognitive development in the first two years of life[J]. Early Hum Dev, 2009, 85(7): 421-427.
[35] Karlsson H, Dalman C. Epidemiological studies of prenatal and childhood infection and schizophrenia[J]. Curr Top Behav Neurosci, 2020, 44: 35-47.
[36] Lee YH, Papandonatos GD, Savitz DA, et al. Effects of prenatal bacterial infection on cognitive performance in early childhood[J]. Paediatr Perinat Epidemiol, 2020, 34(1): 70-79.
[37] Lee J, Kalia V, Perera F, et al. Prenatal airborne polycyclic aromatic hydrocarbon exposure, LINE1 methylation and child development in a Chinese cohort[J]. Environ Int, 2017, 99: 315-320.
[38] Heikkil? K, Sacker A, Kelly Y, et al. Breast feeding and child behaviour in the Millennium Cohort Study[J]. Arch Dis Child, 2011, 96(7): 635-642.
[39] Pang WW, Tan PT, Cai SR, et al. Nutrients or nursing? Understanding how breast milk feeding affects child cognition[J]. Eur J Nutr, 2020, 59(2): 609-619.
[40] Sutcliffe AG, D'Souza SW, Cadman J, et al. Minor congenital anomalies, major congenital malformations and development in children conceived from cryopreserved embryos[J]. Hum Reprod, 1995, 10(12): 3332-3337.
[41] Wennerholm UB, Albertsson-Wikland K, Bergh C, et al. Postnatal growth and health in children born after cryopreservation as embryos[J]. Lancet, 1998, 351(9109): 1085-1090.
[42] Bowdin S, Allen C, Kirby G, et al. A survey of assisted reproductive technology births and imprinting disorders[J]. Hum Reprod, 2007, 22(12): 3237-3240.
[43] Figueiró-Filho EA, Mak LE, Reynolds JN, et al. Neurological function in children born to preeclamptic and hypertensive mothers: a systematic review[J]. Pregnancy Hypertens, 2017, 10: 1-6.
[44] Sandin S, Nygren KG, Iliadou A, et al. Autism and mental retardation among offspring born after in vitro fertilization[J]. JAMA, 2013, 310(1): 75-84.
[45] Rivera RM, Stein P, Weaver JR, et al. Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development[J]. Hum Mol Genet, 2008, 17(1): 1-14.
[46] Nelissen EC, Dumoulin JC, Daunay A, et al. Placentas from pregnancies conceived by IVF/ICSI have a reduced DNA methylation level at the H19 and MEST differentially methylated regions[J]. Hum Reprod, 2013, 28(4): 1117-1126.
[47] Estill MS, Bolnick JM, Waterland RA, et al. Assisted reproductive technology alters deoxyribonucleic acid methylation profiles in bloodspots of newborn infants[J]. Fertil Steril, 2016, 106(3): 629-639. E10.
[48] Ecker DJ, Stein P, Xu Z, et al. Long-term effects of culture of preimplantation mouse embryos on behavior[J]. Proc Natl Acad Sci U S A, 2004, 101(6): 1595-1600.
[49] Khosla S, Dean W, Reik W, et al. Culture of preimplantation embryos and its long-term effects on gene expression and phenotype[J]. Hum Reprod Update, 2001, 7(4): 419-427.
[50] Calle A, Fernandez-Gonzalez R, Ramos-Ibeas P, et al. Long-term and transgenerational effects of in vitro culture on mouse embryos[J]. Theriogenology, 2012, 77(4): 785-793.
[51] Dulioust E, Toyama K, Busnel MC, et al. Long-term effects of embryo freezing in mice[J]. Proc Natl Acad Sci U S A, 1995, 92(2): 589-593.
[52] Sun L, Chen ZH, Yang L, et al. Chromosomal polymorphisms are independently associated with multinucleated embryo formation[J]. J Assist Reprod Genet, 2018, 35(1): 149-156.
[53] Seikkula J, Oksjoki S, Hurme S, et al. Pregnancy and perinatal outcomes after transfer of binucleated or multinucleated frozen-thawed embryos: a case-control study[J]. Reptod Biomed Online, 2018, 36(6): 607-613.
[54] Paavola LE, Remes AM, Harila MJ, et al. A 13-year follow-up of Finnish patients with Salla disease[J]. J Neurodev Disord, 2015, 7(1): 20.
[55] Cromi A, Serati M, Candeloro I, et al. Assisted reproductive technology and breastfeeding outcomes: a case-control study[J]. Fertil Steril, 2015, 103(1): 89-94.