• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    LIE-TROTTER FORMULA FOR THE HADAMARD PRODUCT *

    2020-08-02 05:11:48JingWANG王靜
    關(guān)鍵詞:王靜

    Jing WANG (王靜) ?

    School of Information, Beijing Wuzi University, Beijing 101149, China E-mail: wangjingzzumath@163.com

    Yonggang LI (李永剛)

    College of Science, Zhengzhou University of Aeronautics, Zhengzhou 450015, China E-mail: liyonggang914@126.com

    Huafei SUN (孫華飛)

    School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China Beijing Key Laboratory on MCAACI, Beijing 100081, China E-mail: huafeisun@bit.edu.cn

    Abstract Suppose that A and B are two positive-definite matrices, then, the limit of (Ap/2BpAp/2)1/p as p tends to 0 can be obtained by the well known Lie-Trotter formula. In this article, we generalize the usual product of matrices to the Hadamard product denoted as ? which is commutative, and obtain the explicit formula of the limit (Ap? Bp)1/p as p tends to 0. Furthermore, the existence of the limit of (Ap? Bp)1/p as p tends to +∞ is proved.

    Key words Lie-Trotter formula; reciprocal Lie-Trotter formula; Hadamard product; positive-definite matrix

    1 Introduction

    Let M(n,C) denote the space of all n×n matrices with complex entries, H(n) denote the vector space of Hermitian n×n matrices, and H+(n) denote the set of n×n positive-definite matrices. For X, Y ∈ M(n,C), the well-known Lie-Trotter formula, as originally established in [1, 2], is

    The Lie-Trotter formula can easily be modified to symmetric form ([3]), especially, when restricted to matrices A, B ∈H+(n), the formula (1.1) can be rephrased as

    A similar formula holds for the limit of(Ap?Bp)2/pas p tends to 0,where A?B is the geometric mean of A and B ([4]). In [5, 6], the authors considered the explicit formula of the limit of(Ap/2BpAp/2)1/pas p tends to+∞, which is called the reciprocal Lie-Trotter formula,and this formula can be obtained by the log-majorization relation ([7]).

    It is known that for any two positive-definite matrices A, B, the Hadamard product of A and B denoted by A ?B is also a positive-definite matrix ([8]). For A, B ∈H+(n), T. Ando settled affirmatively the conjecture of Johnson and Bapat on the Hadamard product ([9])

    where λi(A) are the eigenvalues of A, and λ1(A) ≥λ2(A) ≥···≥λn(A). In [10], by studying the eigenvalues of(Ap?Bp)1/pfor p ∈(0,1],G.Visick presented a number of intervening terms for inequality (1.3). Besides, to progress further on the Lie-Trotter formula (1.2), we find that the limit of (Ap?Bp)1/pas p tends to 0 is related to formula (1.2). That is, according to the latter case for the Hadamard product, the Lie-Trotter formula can be derived. Within this motivation, we investigate the Lie-Trotter problem that the limit of (Ap?Bp)1/pas p →0 for positive-definite matrices A and B, as well as the reciprocal Lie-Trotter problem. It is interesting that the explicit Lie-Trotter formula for the Hadamard product is obtained,and the existence of the reciprocal Lie-Trotter formula for the Hadamard product is proved.

    The remainder of the article is organized as follows. In Section 2,we review the fundamental notions and definitions, and show some important conclusions of operator-monotone function.The Lie-Trotter formula for the Hadamard product is obtained in Section 3. In Section 4, we prove the existence of the reciprocal Lie-Trotter formula for the Hadamard product.

    2 Preliminaries

    In this section, we recall some notions and definitions from matrix analysis, and introduce some important results of the operator-monotone function, which are used through the article(refer to [11–15]).

    Let Cnbe the n-dimensional complex vector space with the inner product

    where x,y ∈Cn, and superscript xHdenotes the conjugated transpose of x.

    We say A ∈H(n) is positive-semidefinite, that is, A ≥0, if A satisfies

    and positive-definite, that is, A>0, if

    We denote that A ≥B, B ∈H(n), if

    2.1 The Hadamard product and the tensor product

    For any two matrices A=(aij), B =(bij) in M(n,C), the Hadamard product (also known as the Schur product or the entrywise product) A ?B is defined as ([16, 17])

    It is noticed that the Hadamard product is different from the usual matrix product, and the most important is the commutativity of Hadamard multiplication, that is, A ?B =B ?A.

    An important way of putting matrices together is to construct their tensor product (sometimes called the Kronecker product). If A, B ∈M(n,C), then, their tensor product is defined as

    The matrix A ?B is an n2-square matrix. The following formulas for tensor product are well known ([18])

    In [19, 20], the authors showed that the Hadamard product is a principal submatrix of the tensor product, and the main result can be summarized as follows.

    Lemma 2.1For any A, B ∈M(n,C), then,

    where Q?= [E11,··· ,Enn], and the n×n matrices Eiifor i = 1,··· ,n have a 1 in position(i,i) and zeros elsewhere.

    Remark 2.2The n2×n matrix Q satisfies the property Q?Q=I,where I is an n-square identity matrix.

    2.2 The operator-monotone function

    The operator-monotone function is a generalization of the real-valued function, and the special case is the matrix monotone function. For A ∈H+(n), using the spectral theorem, we have ([21])

    where U is a unitary matrix.

    For the function f(x) (x ∈(0,+∞)), we define the matrix function as

    where the operator-monotone function satisfies that

    In 1933,K.L?wner successfully characterized the operator monotonicity in term of positive semi-definiteness of the so-called L?wner matrices. A part of the deep theory of L?wner is summarized in the following lemma. A complete account of L?wner’s theory can be found in the book [22].

    Lemma 2.3The following statements are equivalent for a real-valued continuous function f on (0,+∞):

    (i) f is operator-monotone;

    (ii) fadmits an analytic continuation to the whole domain Im z≠0 in such a way that Im f(z)·Im z ≥0;

    (iii) f admits an integral representation

    where α is a real number,β is a non-negative real number,and dμ(t)is a finite positive measure on (?∞,0].

    According to L?wner’s theory, T. Ando gave a characterization for the operator-monotone function associated with the normalized positive linear map in [23].

    Lemma 2.4If a function f is operator-monotone on (0,+∞), then, the map A →f(A)is concave on H+(n). And if Φ is a normalized positive linear map on H(n), then, for any A ∈H+(n)

    3 Lie-Trotter Formula for the Hadamard Product

    This section aims at investigating the Lie-Trotter problem for the Hadamard product, and finding the explicit expression. At the same time, the proving method is applied to derived the well-known Lie-Trotter formula.

    3.1 Limit of (Ap ?Bp)1/p as p →0

    At first, we prove the following lemma.

    Lemma 3.1If A, B ∈H+(n) and p ∈(0,+∞), then, the following result holds

    ProofAccording to (2.1) and (2.2), we have

    From now on, we will prove

    that is, for the Frobenius norm,

    As (A ?B)H=AH?BH=A ?B, we have

    From the fact that Q?Q=I, we have

    and

    Noticing that the functions tr ln(Q?(A ?B)pQ), and tr ln2(Q?(A ?B)pQ) are continuously differentiable with respect to p, using the L′H?ospital’s rule, we obtain

    and

    Let g(p) = tr ln(Q?(A ?B)pQ)· (Q?(A ?B)pQ)?1· Q?(A ?B)pln(A ?B)Q. As g(p) is continuously differentiable and

    equality (3.7) can be recast as

    where

    Furthermore, we have

    where

    Thus, according to (3.5), (3.6), and (3.9), we have

    which verifies conclusion (3.4). Therefore, (3.1) can be obtained from (3.2) and (3.3).

    The main result of this article is the next theorem showing the Lie-Trotter formula for the Hadamard product.

    Theorem 3.2If A, B ∈H+(n) and p ∈(0,+∞), then, the following result holds

    ProofAccording to Lemma 3.1,and noticing that the exponential function is continuous,we have

    This completes the proof of Theorem 3.2.

    According to Theorem 3.2, we can obtain the following corollary.

    Corollary 3.3If A1,A2,··· ,Am∈H+(n)(m ≥2)and p ∈(0,+∞),the following result holds,

    3.2 Application

    Note that A, B >0,

    The Lie-Trotter formula for the Hadamard product can be rewritten as

    The result (3.10) has been studied to present some intervening terms for the log-majorization relation (1.3) as follows (see [10])

    In the following part, we provide a link between Theorem 3.2 and the Lie-Trotter formula(1.2).

    Let A, B ∈H+(n). By using the spectral decomposition, we have

    Thus,

    In fact, by calculations, we have

    Furthermore,

    According to (3.12), (3.11) is recast as

    4 Reciprocal Lie-Trotter Formula for the Hadamard Product

    In this section, we will prove the existence of the reciprocal Lie-Trotter formula for the Hadamard product. For A,B ∈H+(n), using the spectral theorem, we have

    where U = (uij) and V = (vij) are unitary matrices. Firstly, we show that the limit of(Ap?Bp)1/pas p →+∞exists for the special case that A and B are diagonal matrices of H+(n), that is

    In fact, noticing that

    we have

    If A and B are any positive-definite matrices,we have not obtained the accurate expression of the limit (Ap?Bp)1/pas p tends to +∞. However, the following result gives the existence of the reciprocal Lie-Trotter formula for the Hadamard product.

    Theorem 4.1If A,B ∈H+(n) and p ∈(0,+∞), then, the following limit exists

    ProofLetBecause the mapis a normalized positive linear map, we have

    which shows that Q?is operator-monotone. By Lemma 2.4, for the operator-monotone map f :, p ∈(1,+∞), we have

    We can verify that (Q?Q)1/pis monotonically increasing with respect to p ∈(1,+∞). In fact, let(s ∈(1,+∞)), then, (4.3) can be rewritten as

    Furthermore, we have

    As

    and Ap≤(A)I, Bp≤(B)I for any p ∈(0,+∞), according to (4.2) and (4.5), we can obtain

    and

    where λ1(A) and λ1(B) are the maximum eigenvalues of A and B, respectively.

    Consequently, for p ∈(1,+∞), from (4.6), we have

    From now on, we will prove the existence of the following limit

    In fact, we denote the following Schatten 1-norm as

    where si(A) (i = 1,··· ,n) are the singular values of A, and s1(A) ≥s2(A) ≥··· ≥sn(A),especially, for A ∈H+(n),

    where λi(A) are the eigenvalues of A, and λ1(A)≥λ2(A)≥···≥λn(A).

    Because (Q?(A ?B)pQ)1/pfor p ∈(1,+∞) is monotonically increasing, that is, for 1

    Notice that if A ≤B, then, tr A ≤tr B. Thus, according to (4.9), we have

    that is, ?ε>0, ?N >0, when P1,P2>N, then,

    Therefore, we have

    where the first equality in (4.11)holds because (Q?(A ?B)pQ)1/pis an operator-monotone for p ∈(1,+∞). This verifies conclusion (4.8). From formula (3.2), we finishe the proof of the existence of (4.1).

    From the proof of Theorem 4.1, we can obtain the following corollaries.

    Corollary 4.2If A1,A2,··· ,Am∈H+(n) (m ≥2) and p ∈(0,+∞), then, the following limit exists

    Corollary 4.3If A1,A2,··· ,Am∈H+(n) (m ≥2), then, the following inequality of the H?lder type holds

    In this article,we can not give the explicit expression of the reciprocal Lie-Trotter formula,but we can obtain the first eigenvalue of the reciprocal Lie-Trotter formula for the Hadamard product (refer to [6]).

    Proposition 4.4If A, B ∈H+(n), then, the first eigenvalue of the following limit

    ProofLetBy the definition of matrix function, we have

    On the one hand, we have

    thus,

    On the other hand, noting that

    we have

    According to (4.12) and (4.13), we have

    猜你喜歡
    王靜
    Reciprocal transformations of the space–time shifted nonlocal short pulse equations
    Fusionable and fissionable waves of(2+1)-dimensional shallow water wave equation
    The Management Methods And Thinking Of Personnel Files
    客聯(lián)(2021年9期)2021-11-07 19:21:33
    The Development of Contemporary Oil Painting Art
    青年生活(2019年16期)2019-10-21 01:46:49
    王靜博士簡(jiǎn)介
    Income Inequality in Developing Countries
    商情(2017年17期)2017-06-10 12:27:58
    Let it Go隨它吧
    Rumor Spreading Model with Immunization Strategy and Delay Time on Homogeneous Networks?
    鳳崗鬼事
    RIGIDITY OF COMPACT SURFACES IN HOMOGENEOUS 3-MANIFOLDS WITH CONSTANT MEAN CURVATURE?
    五月开心婷婷网| 日韩亚洲欧美综合| 国产精品秋霞免费鲁丝片| 26uuu在线亚洲综合色| 国产 一区精品| 中文欧美无线码| 午夜av观看不卡| 观看av在线不卡| 99九九线精品视频在线观看视频| 亚洲人与动物交配视频| 日日啪夜夜爽| 国产熟女欧美一区二区| 中文欧美无线码| 亚洲av电影在线观看一区二区三区| 久久久久精品性色| 赤兔流量卡办理| 日韩欧美 国产精品| 十分钟在线观看高清视频www | 97精品久久久久久久久久精品| 乱人伦中国视频| h视频一区二区三区| 国产av精品麻豆| 视频区图区小说| 亚洲情色 制服丝袜| 亚洲国产色片| 少妇的逼水好多| 插逼视频在线观看| 国产精品人妻久久久影院| 一区二区三区免费毛片| 中文在线观看免费www的网站| 亚洲中文av在线| 观看av在线不卡| 黄色怎么调成土黄色| 一区二区三区乱码不卡18| 黄色视频在线播放观看不卡| 免费看不卡的av| 日韩人妻高清精品专区| 精品久久国产蜜桃| 国产精品久久久久久精品电影小说| 免费少妇av软件| 欧美三级亚洲精品| 色哟哟·www| 久久久久精品性色| 日韩成人伦理影院| 精品国产乱码久久久久久小说| 精品少妇久久久久久888优播| 国产69精品久久久久777片| 午夜免费男女啪啪视频观看| 亚洲欧美精品专区久久| 日日爽夜夜爽网站| av在线app专区| 久久女婷五月综合色啪小说| 中国三级夫妇交换| 人妻少妇偷人精品九色| 午夜福利,免费看| 精品熟女少妇av免费看| av播播在线观看一区| 日本wwww免费看| 大片电影免费在线观看免费| 亚洲精品国产成人久久av| 亚洲av电影在线观看一区二区三区| 久久6这里有精品| 国语对白做爰xxxⅹ性视频网站| 男人爽女人下面视频在线观看| 免费看av在线观看网站| 丁香六月天网| 久久狼人影院| 麻豆成人av视频| 黑丝袜美女国产一区| 美女大奶头黄色视频| av免费观看日本| 亚洲精品乱久久久久久| 一级二级三级毛片免费看| 能在线免费看毛片的网站| 天堂俺去俺来也www色官网| 丁香六月天网| 亚洲欧美一区二区三区黑人 | 亚洲国产av新网站| 国产伦精品一区二区三区视频9| 丰满人妻一区二区三区视频av| √禁漫天堂资源中文www| 日韩成人av中文字幕在线观看| 亚洲精品国产av成人精品| 少妇人妻精品综合一区二区| 亚洲图色成人| 少妇的逼水好多| 国产高清不卡午夜福利| 黄片无遮挡物在线观看| 成人国产av品久久久| 一区二区三区免费毛片| 日韩精品免费视频一区二区三区 | 少妇被粗大的猛进出69影院 | 中文资源天堂在线| 精华霜和精华液先用哪个| 久久97久久精品| 亚洲美女搞黄在线观看| 亚洲精品乱码久久久久久按摩| 精品久久久久久电影网| 亚洲欧美一区二区三区国产| 国产一区二区三区综合在线观看 | 如何舔出高潮| 伊人久久精品亚洲午夜| 一区二区av电影网| 曰老女人黄片| 亚洲国产日韩一区二区| 日本av免费视频播放| 一区二区三区四区激情视频| 日本91视频免费播放| 欧美三级亚洲精品| 有码 亚洲区| 麻豆精品久久久久久蜜桃| 亚洲久久久国产精品| 美女主播在线视频| 日本欧美国产在线视频| 一级爰片在线观看| 国产在线免费精品| 久久精品久久久久久久性| 少妇 在线观看| 中文字幕免费在线视频6| 精品人妻熟女毛片av久久网站| 久久免费观看电影| 亚洲av.av天堂| 色哟哟·www| 国语对白做爰xxxⅹ性视频网站| 如何舔出高潮| 日日摸夜夜添夜夜添av毛片| 大话2 男鬼变身卡| 精品一区二区免费观看| 在线观看美女被高潮喷水网站| 亚洲国产精品成人久久小说| 丁香六月天网| 久久久国产精品麻豆| 亚洲欧美精品专区久久| 激情五月婷婷亚洲| av不卡在线播放| 亚洲美女搞黄在线观看| 免费看光身美女| 国产极品天堂在线| 免费久久久久久久精品成人欧美视频 | 黑人猛操日本美女一级片| 五月天丁香电影| 韩国av在线不卡| 精品人妻一区二区三区麻豆| 日日摸夜夜添夜夜添av毛片| 色94色欧美一区二区| 日韩一本色道免费dvd| 精品一区二区免费观看| 免费大片18禁| 国产成人aa在线观看| videos熟女内射| 亚洲av二区三区四区| 一区在线观看完整版| 天堂8中文在线网| 日韩 亚洲 欧美在线| 亚洲国产毛片av蜜桃av| 亚洲国产日韩一区二区| 久久99蜜桃精品久久| 在线观看三级黄色| 国产免费视频播放在线视频| 国产无遮挡羞羞视频在线观看| 午夜免费男女啪啪视频观看| 久久久久久久久久久久大奶| 日本色播在线视频| av天堂久久9| 丝袜脚勾引网站| 黄色欧美视频在线观看| 日韩欧美一区视频在线观看 | 九色成人免费人妻av| av天堂久久9| 欧美xxxx性猛交bbbb| 99久久精品一区二区三区| 国产午夜精品久久久久久一区二区三区| 亚洲高清免费不卡视频| 97超碰精品成人国产| 久久精品久久久久久噜噜老黄| 久久国内精品自在自线图片| 在线播放无遮挡| 亚洲美女视频黄频| 久久久久国产精品人妻一区二区| 五月开心婷婷网| 美女主播在线视频| 日韩强制内射视频| 天天躁夜夜躁狠狠久久av| 亚洲天堂av无毛| 深夜a级毛片| 极品人妻少妇av视频| 偷拍熟女少妇极品色| 亚洲四区av| 久久精品国产a三级三级三级| 在线精品无人区一区二区三| a级毛片在线看网站| 国产亚洲91精品色在线| 一本久久精品| 新久久久久国产一级毛片| 免费大片黄手机在线观看| 麻豆乱淫一区二区| 久久精品国产亚洲av天美| 国产成人freesex在线| 只有这里有精品99| 人人澡人人妻人| 热re99久久精品国产66热6| 国产又色又爽无遮挡免| 国产亚洲5aaaaa淫片| 免费大片18禁| 久久久国产欧美日韩av| 久久精品久久久久久噜噜老黄| 国产淫片久久久久久久久| 十八禁网站网址无遮挡 | 丝袜在线中文字幕| 亚洲国产精品一区二区三区在线| 国产精品久久久久久av不卡| av在线老鸭窝| 一区二区av电影网| 啦啦啦啦在线视频资源| 成人毛片60女人毛片免费| 黄色怎么调成土黄色| 国产日韩欧美在线精品| 久久99蜜桃精品久久| 久久99热这里只频精品6学生| 狂野欧美激情性bbbbbb| 女人精品久久久久毛片| 国产一区二区三区av在线| 国产真实伦视频高清在线观看| 国产欧美日韩精品一区二区| 久久女婷五月综合色啪小说| 欧美日韩在线观看h| 激情五月婷婷亚洲| a 毛片基地| 午夜免费观看性视频| 22中文网久久字幕| 日韩av免费高清视频| 在线 av 中文字幕| 久久精品熟女亚洲av麻豆精品| 亚洲欧美精品自产自拍| 日韩av免费高清视频| 女性被躁到高潮视频| 大又大粗又爽又黄少妇毛片口| 天天操日日干夜夜撸| 亚洲一级一片aⅴ在线观看| 日本欧美国产在线视频| 又黄又爽又刺激的免费视频.| 亚洲美女黄色视频免费看| videossex国产| 99热这里只有是精品50| 亚洲av日韩在线播放| 午夜久久久在线观看| 99热6这里只有精品| 欧美97在线视频| 欧美三级亚洲精品| 黑人高潮一二区| 久久久久精品性色| 久久毛片免费看一区二区三区| 亚洲欧美一区二区三区黑人 | 天堂8中文在线网| 欧美成人精品欧美一级黄| 十八禁网站网址无遮挡 | 亚洲国产成人一精品久久久| 国产在线免费精品| 一本色道久久久久久精品综合| 国产精品嫩草影院av在线观看| 日韩电影二区| 一本—道久久a久久精品蜜桃钙片| 嘟嘟电影网在线观看| 两个人的视频大全免费| 丰满少妇做爰视频| 国产黄片美女视频| 高清不卡的av网站| 国产精品99久久久久久久久| av一本久久久久| 丝袜喷水一区| 亚洲综合色惰| 中文字幕亚洲精品专区| 国产真实伦视频高清在线观看| 精品人妻熟女av久视频| 午夜福利网站1000一区二区三区| 插阴视频在线观看视频| 人人妻人人澡人人爽人人夜夜| 亚洲国产精品一区三区| 18+在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91 | 一级片'在线观看视频| 久久精品国产亚洲av天美| 国产真实伦视频高清在线观看| 国产成人aa在线观看| 你懂的网址亚洲精品在线观看| 国产av国产精品国产| 欧美变态另类bdsm刘玥| 免费久久久久久久精品成人欧美视频 | 免费不卡的大黄色大毛片视频在线观看| 国产精品久久久久久久久免| 自拍偷自拍亚洲精品老妇| 下体分泌物呈黄色| 寂寞人妻少妇视频99o| videossex国产| 人妻制服诱惑在线中文字幕| 久久99热这里只频精品6学生| 久久毛片免费看一区二区三区| 精品午夜福利在线看| 亚洲不卡免费看| 黄色日韩在线| 久久久久久久久大av| 亚洲,一卡二卡三卡| 色视频www国产| 欧美老熟妇乱子伦牲交| 日本色播在线视频| 国模一区二区三区四区视频| 久久婷婷青草| 少妇人妻一区二区三区视频| 一区二区三区乱码不卡18| 80岁老熟妇乱子伦牲交| 免费观看a级毛片全部| 性色avwww在线观看| 在线观看一区二区三区激情| 亚洲精品,欧美精品| 久久韩国三级中文字幕| 国产色爽女视频免费观看| 午夜av观看不卡| 人妻系列 视频| 日韩欧美 国产精品| 99久久精品国产国产毛片| 欧美最新免费一区二区三区| 日本爱情动作片www.在线观看| 尾随美女入室| 综合色丁香网| 亚洲在久久综合| 国产高清国产精品国产三级| 少妇的逼水好多| 免费久久久久久久精品成人欧美视频 | 大片电影免费在线观看免费| 日韩电影二区| 国产精品三级大全| 午夜视频国产福利| 91久久精品国产一区二区三区| 美女中出高潮动态图| 国产欧美另类精品又又久久亚洲欧美| 成人美女网站在线观看视频| 各种免费的搞黄视频| 高清在线视频一区二区三区| 久久久久久久久大av| 乱人伦中国视频| 一区二区av电影网| 国产乱人偷精品视频| 免费播放大片免费观看视频在线观看| 内地一区二区视频在线| 日本wwww免费看| 蜜桃久久精品国产亚洲av| 婷婷色综合大香蕉| 熟妇人妻不卡中文字幕| 亚洲伊人久久精品综合| 精品亚洲成国产av| 18禁裸乳无遮挡动漫免费视频| 中文字幕人妻熟人妻熟丝袜美| 99久久精品热视频| 十八禁高潮呻吟视频 | 亚洲丝袜综合中文字幕| 97在线视频观看| 两个人免费观看高清视频 | 久久鲁丝午夜福利片| 久久99热这里只频精品6学生| 亚洲久久久国产精品| 人人澡人人妻人| 人人妻人人爽人人添夜夜欢视频 | 成年女人在线观看亚洲视频| 免费av中文字幕在线| 日韩一区二区视频免费看| 国产亚洲91精品色在线| 国产伦精品一区二区三区四那| 国产男女内射视频| 人人妻人人看人人澡| 日韩强制内射视频| 99re6热这里在线精品视频| 国产综合精华液| 亚洲,欧美,日韩| 午夜免费鲁丝| 精品酒店卫生间| 少妇猛男粗大的猛烈进出视频| 伦理电影大哥的女人| 国产乱人偷精品视频| 日本wwww免费看| 伊人久久国产一区二区| 久久久久久伊人网av| 涩涩av久久男人的天堂| 大码成人一级视频| 亚洲丝袜综合中文字幕| 男女国产视频网站| 欧美+日韩+精品| 久久青草综合色| 岛国毛片在线播放| 丰满少妇做爰视频| 国产成人精品无人区| 99久国产av精品国产电影| 制服丝袜香蕉在线| 欧美日韩av久久| 日韩av不卡免费在线播放| 亚洲欧美日韩另类电影网站| 亚洲精品,欧美精品| 欧美3d第一页| 国内揄拍国产精品人妻在线| 日日啪夜夜爽| 啦啦啦在线观看免费高清www| 久久久a久久爽久久v久久| 日韩三级伦理在线观看| 久久这里有精品视频免费| 又粗又硬又长又爽又黄的视频| 精品视频人人做人人爽| 亚洲欧洲精品一区二区精品久久久 | 国产高清三级在线| 色哟哟·www| 日韩在线高清观看一区二区三区| 久久精品久久精品一区二区三区| av天堂中文字幕网| 中文字幕精品免费在线观看视频 | 成人亚洲精品一区在线观看| 亚洲精品国产av成人精品| 寂寞人妻少妇视频99o| 丝袜脚勾引网站| 亚洲av国产av综合av卡| 如何舔出高潮| 一级毛片 在线播放| 免费少妇av软件| 欧美国产精品一级二级三级 | 欧美日韩国产mv在线观看视频| 插逼视频在线观看| 人妻少妇偷人精品九色| 街头女战士在线观看网站| 成人二区视频| 亚洲国产精品专区欧美| 国产淫语在线视频| 久久综合国产亚洲精品| 亚洲经典国产精华液单| 热99国产精品久久久久久7| 中文天堂在线官网| 最近手机中文字幕大全| 伦理电影大哥的女人| 国产综合精华液| 日韩欧美一区视频在线观看 | 国产无遮挡羞羞视频在线观看| 两个人的视频大全免费| 男男h啪啪无遮挡| 蜜桃在线观看..| 又粗又硬又长又爽又黄的视频| 十八禁高潮呻吟视频 | 熟妇人妻不卡中文字幕| 日本av免费视频播放| 乱系列少妇在线播放| 寂寞人妻少妇视频99o| 精品久久久精品久久久| 国产成人精品福利久久| 天堂8中文在线网| 亚洲精华国产精华液的使用体验| 国产亚洲欧美精品永久| 成人美女网站在线观看视频| 18禁裸乳无遮挡动漫免费视频| 久久精品国产亚洲av天美| av免费观看日本| 日日啪夜夜爽| √禁漫天堂资源中文www| 亚洲性久久影院| 91精品伊人久久大香线蕉| 一级毛片黄色毛片免费观看视频| 久久久久国产精品人妻一区二区| 最黄视频免费看| 乱码一卡2卡4卡精品| 色哟哟·www| 精品少妇黑人巨大在线播放| 性色avwww在线观看| 国内少妇人妻偷人精品xxx网站| 午夜激情福利司机影院| 日韩中字成人| 一级爰片在线观看| 18禁在线播放成人免费| 黑丝袜美女国产一区| 男人爽女人下面视频在线观看| 亚洲精品一二三| 成人影院久久| 精品一品国产午夜福利视频| 成人国产av品久久久| 99视频精品全部免费 在线| 国产免费视频播放在线视频| 日本黄色日本黄色录像| 在线观看国产h片| 赤兔流量卡办理| 精品久久久久久久久av| 国产成人精品一,二区| 亚洲美女视频黄频| 久久久久久久国产电影| 国产 一区精品| 亚洲成人一二三区av| 亚洲欧美精品专区久久| 国产69精品久久久久777片| 欧美日韩精品成人综合77777| 中文在线观看免费www的网站| 丰满乱子伦码专区| 国产精品.久久久| 老司机影院成人| 国产精品福利在线免费观看| 中文在线观看免费www的网站| a级毛片免费高清观看在线播放| 成年人免费黄色播放视频 | 日韩熟女老妇一区二区性免费视频| 2021少妇久久久久久久久久久| 蜜臀久久99精品久久宅男| 黑人巨大精品欧美一区二区蜜桃 | av免费在线看不卡| 人人妻人人看人人澡| 91精品伊人久久大香线蕉| 永久免费av网站大全| 国产视频内射| 亚洲综合色惰| 国产精品不卡视频一区二区| 亚洲国产最新在线播放| 日日啪夜夜撸| 又爽又黄a免费视频| 精品久久国产蜜桃| 女人久久www免费人成看片| 国产精品嫩草影院av在线观看| 国产午夜精品久久久久久一区二区三区| 97在线人人人人妻| 国产精品一区二区在线不卡| 色网站视频免费| 秋霞在线观看毛片| 国产成人91sexporn| 少妇的逼水好多| 午夜福利视频精品| av网站免费在线观看视频| 欧美 日韩 精品 国产| 亚洲av福利一区| 国产成人一区二区在线| 一本大道久久a久久精品| 国产精品成人在线| 91成人精品电影| 成人漫画全彩无遮挡| 国产高清不卡午夜福利| 日韩一区二区三区影片| 色吧在线观看| 国产精品99久久久久久久久| 热99国产精品久久久久久7| 深夜a级毛片| 成人美女网站在线观看视频| 日本av手机在线免费观看| 久久人妻熟女aⅴ| 男人狂女人下面高潮的视频| 中文精品一卡2卡3卡4更新| 99re6热这里在线精品视频| 99久国产av精品国产电影| 亚洲天堂av无毛| 男人添女人高潮全过程视频| 黄色毛片三级朝国网站 | 亚洲国产成人一精品久久久| 日本猛色少妇xxxxx猛交久久| 伦理电影大哥的女人| 亚洲人与动物交配视频| 亚洲国产精品专区欧美| 日日摸夜夜添夜夜添av毛片| 亚洲精品国产av成人精品| 亚洲美女黄色视频免费看| 国产精品麻豆人妻色哟哟久久| 激情五月婷婷亚洲| 人体艺术视频欧美日本| 国产无遮挡羞羞视频在线观看| 精品午夜福利在线看| 人妻制服诱惑在线中文字幕| 熟女人妻精品中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 在线播放无遮挡| 99久久精品国产国产毛片| 一区在线观看完整版| 亚洲丝袜综合中文字幕| 18禁在线无遮挡免费观看视频| 国产黄色免费在线视频| 老女人水多毛片| 久久人人爽av亚洲精品天堂| 欧美xxⅹ黑人| 亚洲av不卡在线观看| 日韩伦理黄色片| 亚洲人成网站在线观看播放| 一本久久精品| 精华霜和精华液先用哪个| 久久这里有精品视频免费| 精品国产国语对白av| av在线观看视频网站免费| 国产成人精品一,二区| 黄色毛片三级朝国网站 | 国产深夜福利视频在线观看| 久久久久人妻精品一区果冻| 欧美xxⅹ黑人| 免费黄网站久久成人精品| 国产精品一区二区在线不卡| 成年美女黄网站色视频大全免费 | 性高湖久久久久久久久免费观看| 99热6这里只有精品| 97超视频在线观看视频| 欧美日本中文国产一区发布| 丝袜脚勾引网站| 亚洲综合色惰| 免费看光身美女| 51国产日韩欧美| 久久久久久久久大av| 一个人看视频在线观看www免费| 男人爽女人下面视频在线观看| 亚洲美女视频黄频| 国产成人一区二区在线| 久久久久精品性色| 国产成人91sexporn| 伊人久久精品亚洲午夜| 久久精品夜色国产| 各种免费的搞黄视频| 女性生殖器流出的白浆| 国产日韩欧美视频二区| 美女国产视频在线观看| 国产在线视频一区二区| 少妇人妻精品综合一区二区| 黑人高潮一二区| 成人亚洲精品一区在线观看| 妹子高潮喷水视频|