• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    LIE-TROTTER FORMULA FOR THE HADAMARD PRODUCT *

    2020-08-02 05:11:48JingWANG王靜
    關(guān)鍵詞:王靜

    Jing WANG (王靜) ?

    School of Information, Beijing Wuzi University, Beijing 101149, China E-mail: wangjingzzumath@163.com

    Yonggang LI (李永剛)

    College of Science, Zhengzhou University of Aeronautics, Zhengzhou 450015, China E-mail: liyonggang914@126.com

    Huafei SUN (孫華飛)

    School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China Beijing Key Laboratory on MCAACI, Beijing 100081, China E-mail: huafeisun@bit.edu.cn

    Abstract Suppose that A and B are two positive-definite matrices, then, the limit of (Ap/2BpAp/2)1/p as p tends to 0 can be obtained by the well known Lie-Trotter formula. In this article, we generalize the usual product of matrices to the Hadamard product denoted as ? which is commutative, and obtain the explicit formula of the limit (Ap? Bp)1/p as p tends to 0. Furthermore, the existence of the limit of (Ap? Bp)1/p as p tends to +∞ is proved.

    Key words Lie-Trotter formula; reciprocal Lie-Trotter formula; Hadamard product; positive-definite matrix

    1 Introduction

    Let M(n,C) denote the space of all n×n matrices with complex entries, H(n) denote the vector space of Hermitian n×n matrices, and H+(n) denote the set of n×n positive-definite matrices. For X, Y ∈ M(n,C), the well-known Lie-Trotter formula, as originally established in [1, 2], is

    The Lie-Trotter formula can easily be modified to symmetric form ([3]), especially, when restricted to matrices A, B ∈H+(n), the formula (1.1) can be rephrased as

    A similar formula holds for the limit of(Ap?Bp)2/pas p tends to 0,where A?B is the geometric mean of A and B ([4]). In [5, 6], the authors considered the explicit formula of the limit of(Ap/2BpAp/2)1/pas p tends to+∞, which is called the reciprocal Lie-Trotter formula,and this formula can be obtained by the log-majorization relation ([7]).

    It is known that for any two positive-definite matrices A, B, the Hadamard product of A and B denoted by A ?B is also a positive-definite matrix ([8]). For A, B ∈H+(n), T. Ando settled affirmatively the conjecture of Johnson and Bapat on the Hadamard product ([9])

    where λi(A) are the eigenvalues of A, and λ1(A) ≥λ2(A) ≥···≥λn(A). In [10], by studying the eigenvalues of(Ap?Bp)1/pfor p ∈(0,1],G.Visick presented a number of intervening terms for inequality (1.3). Besides, to progress further on the Lie-Trotter formula (1.2), we find that the limit of (Ap?Bp)1/pas p tends to 0 is related to formula (1.2). That is, according to the latter case for the Hadamard product, the Lie-Trotter formula can be derived. Within this motivation, we investigate the Lie-Trotter problem that the limit of (Ap?Bp)1/pas p →0 for positive-definite matrices A and B, as well as the reciprocal Lie-Trotter problem. It is interesting that the explicit Lie-Trotter formula for the Hadamard product is obtained,and the existence of the reciprocal Lie-Trotter formula for the Hadamard product is proved.

    The remainder of the article is organized as follows. In Section 2,we review the fundamental notions and definitions, and show some important conclusions of operator-monotone function.The Lie-Trotter formula for the Hadamard product is obtained in Section 3. In Section 4, we prove the existence of the reciprocal Lie-Trotter formula for the Hadamard product.

    2 Preliminaries

    In this section, we recall some notions and definitions from matrix analysis, and introduce some important results of the operator-monotone function, which are used through the article(refer to [11–15]).

    Let Cnbe the n-dimensional complex vector space with the inner product

    where x,y ∈Cn, and superscript xHdenotes the conjugated transpose of x.

    We say A ∈H(n) is positive-semidefinite, that is, A ≥0, if A satisfies

    and positive-definite, that is, A>0, if

    We denote that A ≥B, B ∈H(n), if

    2.1 The Hadamard product and the tensor product

    For any two matrices A=(aij), B =(bij) in M(n,C), the Hadamard product (also known as the Schur product or the entrywise product) A ?B is defined as ([16, 17])

    It is noticed that the Hadamard product is different from the usual matrix product, and the most important is the commutativity of Hadamard multiplication, that is, A ?B =B ?A.

    An important way of putting matrices together is to construct their tensor product (sometimes called the Kronecker product). If A, B ∈M(n,C), then, their tensor product is defined as

    The matrix A ?B is an n2-square matrix. The following formulas for tensor product are well known ([18])

    In [19, 20], the authors showed that the Hadamard product is a principal submatrix of the tensor product, and the main result can be summarized as follows.

    Lemma 2.1For any A, B ∈M(n,C), then,

    where Q?= [E11,··· ,Enn], and the n×n matrices Eiifor i = 1,··· ,n have a 1 in position(i,i) and zeros elsewhere.

    Remark 2.2The n2×n matrix Q satisfies the property Q?Q=I,where I is an n-square identity matrix.

    2.2 The operator-monotone function

    The operator-monotone function is a generalization of the real-valued function, and the special case is the matrix monotone function. For A ∈H+(n), using the spectral theorem, we have ([21])

    where U is a unitary matrix.

    For the function f(x) (x ∈(0,+∞)), we define the matrix function as

    where the operator-monotone function satisfies that

    In 1933,K.L?wner successfully characterized the operator monotonicity in term of positive semi-definiteness of the so-called L?wner matrices. A part of the deep theory of L?wner is summarized in the following lemma. A complete account of L?wner’s theory can be found in the book [22].

    Lemma 2.3The following statements are equivalent for a real-valued continuous function f on (0,+∞):

    (i) f is operator-monotone;

    (ii) fadmits an analytic continuation to the whole domain Im z≠0 in such a way that Im f(z)·Im z ≥0;

    (iii) f admits an integral representation

    where α is a real number,β is a non-negative real number,and dμ(t)is a finite positive measure on (?∞,0].

    According to L?wner’s theory, T. Ando gave a characterization for the operator-monotone function associated with the normalized positive linear map in [23].

    Lemma 2.4If a function f is operator-monotone on (0,+∞), then, the map A →f(A)is concave on H+(n). And if Φ is a normalized positive linear map on H(n), then, for any A ∈H+(n)

    3 Lie-Trotter Formula for the Hadamard Product

    This section aims at investigating the Lie-Trotter problem for the Hadamard product, and finding the explicit expression. At the same time, the proving method is applied to derived the well-known Lie-Trotter formula.

    3.1 Limit of (Ap ?Bp)1/p as p →0

    At first, we prove the following lemma.

    Lemma 3.1If A, B ∈H+(n) and p ∈(0,+∞), then, the following result holds

    ProofAccording to (2.1) and (2.2), we have

    From now on, we will prove

    that is, for the Frobenius norm,

    As (A ?B)H=AH?BH=A ?B, we have

    From the fact that Q?Q=I, we have

    and

    Noticing that the functions tr ln(Q?(A ?B)pQ), and tr ln2(Q?(A ?B)pQ) are continuously differentiable with respect to p, using the L′H?ospital’s rule, we obtain

    and

    Let g(p) = tr ln(Q?(A ?B)pQ)· (Q?(A ?B)pQ)?1· Q?(A ?B)pln(A ?B)Q. As g(p) is continuously differentiable and

    equality (3.7) can be recast as

    where

    Furthermore, we have

    where

    Thus, according to (3.5), (3.6), and (3.9), we have

    which verifies conclusion (3.4). Therefore, (3.1) can be obtained from (3.2) and (3.3).

    The main result of this article is the next theorem showing the Lie-Trotter formula for the Hadamard product.

    Theorem 3.2If A, B ∈H+(n) and p ∈(0,+∞), then, the following result holds

    ProofAccording to Lemma 3.1,and noticing that the exponential function is continuous,we have

    This completes the proof of Theorem 3.2.

    According to Theorem 3.2, we can obtain the following corollary.

    Corollary 3.3If A1,A2,··· ,Am∈H+(n)(m ≥2)and p ∈(0,+∞),the following result holds,

    3.2 Application

    Note that A, B >0,

    The Lie-Trotter formula for the Hadamard product can be rewritten as

    The result (3.10) has been studied to present some intervening terms for the log-majorization relation (1.3) as follows (see [10])

    In the following part, we provide a link between Theorem 3.2 and the Lie-Trotter formula(1.2).

    Let A, B ∈H+(n). By using the spectral decomposition, we have

    Thus,

    In fact, by calculations, we have

    Furthermore,

    According to (3.12), (3.11) is recast as

    4 Reciprocal Lie-Trotter Formula for the Hadamard Product

    In this section, we will prove the existence of the reciprocal Lie-Trotter formula for the Hadamard product. For A,B ∈H+(n), using the spectral theorem, we have

    where U = (uij) and V = (vij) are unitary matrices. Firstly, we show that the limit of(Ap?Bp)1/pas p →+∞exists for the special case that A and B are diagonal matrices of H+(n), that is

    In fact, noticing that

    we have

    If A and B are any positive-definite matrices,we have not obtained the accurate expression of the limit (Ap?Bp)1/pas p tends to +∞. However, the following result gives the existence of the reciprocal Lie-Trotter formula for the Hadamard product.

    Theorem 4.1If A,B ∈H+(n) and p ∈(0,+∞), then, the following limit exists

    ProofLetBecause the mapis a normalized positive linear map, we have

    which shows that Q?is operator-monotone. By Lemma 2.4, for the operator-monotone map f :, p ∈(1,+∞), we have

    We can verify that (Q?Q)1/pis monotonically increasing with respect to p ∈(1,+∞). In fact, let(s ∈(1,+∞)), then, (4.3) can be rewritten as

    Furthermore, we have

    As

    and Ap≤(A)I, Bp≤(B)I for any p ∈(0,+∞), according to (4.2) and (4.5), we can obtain

    and

    where λ1(A) and λ1(B) are the maximum eigenvalues of A and B, respectively.

    Consequently, for p ∈(1,+∞), from (4.6), we have

    From now on, we will prove the existence of the following limit

    In fact, we denote the following Schatten 1-norm as

    where si(A) (i = 1,··· ,n) are the singular values of A, and s1(A) ≥s2(A) ≥··· ≥sn(A),especially, for A ∈H+(n),

    where λi(A) are the eigenvalues of A, and λ1(A)≥λ2(A)≥···≥λn(A).

    Because (Q?(A ?B)pQ)1/pfor p ∈(1,+∞) is monotonically increasing, that is, for 1

    Notice that if A ≤B, then, tr A ≤tr B. Thus, according to (4.9), we have

    that is, ?ε>0, ?N >0, when P1,P2>N, then,

    Therefore, we have

    where the first equality in (4.11)holds because (Q?(A ?B)pQ)1/pis an operator-monotone for p ∈(1,+∞). This verifies conclusion (4.8). From formula (3.2), we finishe the proof of the existence of (4.1).

    From the proof of Theorem 4.1, we can obtain the following corollaries.

    Corollary 4.2If A1,A2,··· ,Am∈H+(n) (m ≥2) and p ∈(0,+∞), then, the following limit exists

    Corollary 4.3If A1,A2,··· ,Am∈H+(n) (m ≥2), then, the following inequality of the H?lder type holds

    In this article,we can not give the explicit expression of the reciprocal Lie-Trotter formula,but we can obtain the first eigenvalue of the reciprocal Lie-Trotter formula for the Hadamard product (refer to [6]).

    Proposition 4.4If A, B ∈H+(n), then, the first eigenvalue of the following limit

    ProofLetBy the definition of matrix function, we have

    On the one hand, we have

    thus,

    On the other hand, noting that

    we have

    According to (4.12) and (4.13), we have

    猜你喜歡
    王靜
    Reciprocal transformations of the space–time shifted nonlocal short pulse equations
    Fusionable and fissionable waves of(2+1)-dimensional shallow water wave equation
    The Management Methods And Thinking Of Personnel Files
    客聯(lián)(2021年9期)2021-11-07 19:21:33
    The Development of Contemporary Oil Painting Art
    青年生活(2019年16期)2019-10-21 01:46:49
    王靜博士簡(jiǎn)介
    Income Inequality in Developing Countries
    商情(2017年17期)2017-06-10 12:27:58
    Let it Go隨它吧
    Rumor Spreading Model with Immunization Strategy and Delay Time on Homogeneous Networks?
    鳳崗鬼事
    RIGIDITY OF COMPACT SURFACES IN HOMOGENEOUS 3-MANIFOLDS WITH CONSTANT MEAN CURVATURE?
    床上黄色一级片| 2021少妇久久久久久久久久久| 99热这里只有是精品在线观看| 午夜精品一区二区三区免费看| 国产黄片美女视频| 久久国产乱子免费精品| 成人漫画全彩无遮挡| 日本一二三区视频观看| 别揉我奶头 嗯啊视频| 午夜视频国产福利| 国产爱豆传媒在线观看| 麻豆国产97在线/欧美| av卡一久久| 久久精品久久久久久久性| 精品一区二区三卡| 成年女人看的毛片在线观看| 婷婷六月久久综合丁香| 欧美xxxx黑人xx丫x性爽| 久热久热在线精品观看| 赤兔流量卡办理| 日本黄大片高清| 美女国产视频在线观看| 亚洲精品国产av成人精品| 亚洲久久久久久中文字幕| 特级一级黄色大片| 美女主播在线视频| 少妇裸体淫交视频免费看高清| 最近的中文字幕免费完整| 中文字幕久久专区| 久久久久久九九精品二区国产| 国产精品国产三级国产av玫瑰| 卡戴珊不雅视频在线播放| 干丝袜人妻中文字幕| 国产精品人妻久久久久久| 国产高潮美女av| 我的女老师完整版在线观看| 99久久精品国产国产毛片| 丝瓜视频免费看黄片| 天天一区二区日本电影三级| 深夜a级毛片| 舔av片在线| 国产黄色视频一区二区在线观看| 97超碰精品成人国产| 天天躁夜夜躁狠狠久久av| 我的女老师完整版在线观看| av女优亚洲男人天堂| 真实男女啪啪啪动态图| 成年女人看的毛片在线观看| 天堂√8在线中文| 最近手机中文字幕大全| 亚洲三级黄色毛片| 亚洲精品乱码久久久久久按摩| 欧美精品国产亚洲| 能在线免费观看的黄片| 国产成人午夜福利电影在线观看| 自拍偷自拍亚洲精品老妇| 噜噜噜噜噜久久久久久91| 久99久视频精品免费| 日韩电影二区| 国产av在哪里看| 色哟哟·www| 亚洲国产色片| 免费看不卡的av| 91午夜精品亚洲一区二区三区| 午夜激情久久久久久久| 在线免费观看不下载黄p国产| 日韩一区二区视频免费看| 纵有疾风起免费观看全集完整版 | 亚洲av电影在线观看一区二区三区 | 午夜亚洲福利在线播放| 中文字幕免费在线视频6| 日韩,欧美,国产一区二区三区| 欧美日韩在线观看h| 欧美性感艳星| 欧美 日韩 精品 国产| 亚洲欧美日韩东京热| 精品人妻视频免费看| 超碰av人人做人人爽久久| 麻豆av噜噜一区二区三区| 色5月婷婷丁香| 国产黄频视频在线观看| 国精品久久久久久国模美| 中文字幕亚洲精品专区| 国产毛片a区久久久久| 五月伊人婷婷丁香| 日本一二三区视频观看| 午夜视频国产福利| 久久精品国产自在天天线| 日韩av在线大香蕉| 欧美97在线视频| 日韩欧美 国产精品| 久久人人爽人人爽人人片va| 在线免费十八禁| 成人欧美大片| 国产真实伦视频高清在线观看| 观看美女的网站| 91精品国产九色| 欧美激情久久久久久爽电影| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最近2019中文字幕mv第一页| 欧美激情国产日韩精品一区| 亚洲国产av新网站| 亚洲精品国产av成人精品| 成人综合一区亚洲| 自拍偷自拍亚洲精品老妇| 天美传媒精品一区二区| 午夜久久久久精精品| 免费看光身美女| 国产真实伦视频高清在线观看| 日日摸夜夜添夜夜爱| 亚洲精品乱码久久久v下载方式| 亚洲经典国产精华液单| 九九久久精品国产亚洲av麻豆| 一区二区三区免费毛片| 中文字幕久久专区| 亚洲精品成人久久久久久| 性插视频无遮挡在线免费观看| 久久精品国产鲁丝片午夜精品| 欧美区成人在线视频| 97超视频在线观看视频| 国产黄色视频一区二区在线观看| 白带黄色成豆腐渣| 色吧在线观看| 99热全是精品| 搞女人的毛片| 日本wwww免费看| 婷婷色综合www| 夜夜爽夜夜爽视频| 亚洲精品视频女| 一级二级三级毛片免费看| 久久草成人影院| 网址你懂的国产日韩在线| 高清日韩中文字幕在线| 在线免费十八禁| 亚洲欧美成人精品一区二区| 亚洲熟女精品中文字幕| 最后的刺客免费高清国语| 国产淫语在线视频| av国产免费在线观看| 天天躁日日操中文字幕| 日韩欧美一区视频在线观看 | 中文字幕亚洲精品专区| 中文天堂在线官网| 久久6这里有精品| 伊人久久国产一区二区| 亚洲av国产av综合av卡| 大片免费播放器 马上看| 国产高清三级在线| 日本色播在线视频| 欧美成人一区二区免费高清观看| 亚洲三级黄色毛片| 在线观看一区二区三区| 日本欧美国产在线视频| 久久久久久久久久成人| 亚洲一级一片aⅴ在线观看| 午夜精品在线福利| 久久久久久久久中文| 欧美日韩在线观看h| 一区二区三区免费毛片| av专区在线播放| 日本与韩国留学比较| 日本爱情动作片www.在线观看| 国产在视频线在精品| 亚洲av日韩在线播放| 狂野欧美激情性xxxx在线观看| 国产v大片淫在线免费观看| 久久久久久久久久久免费av| 国产精品爽爽va在线观看网站| 国产精品伦人一区二区| 亚洲第一区二区三区不卡| 精品久久久久久久久av| 中文字幕制服av| 国产成人精品久久久久久| av一本久久久久| 特大巨黑吊av在线直播| 永久免费av网站大全| 欧美性猛交╳xxx乱大交人| 成人亚洲精品av一区二区| 国产一级毛片七仙女欲春2| 国产亚洲最大av| 亚洲av电影不卡..在线观看| 亚洲精品自拍成人| 欧美日韩国产mv在线观看视频 | 高清在线视频一区二区三区| 亚洲精品日韩在线中文字幕| 91精品伊人久久大香线蕉| 成人美女网站在线观看视频| av播播在线观看一区| 性插视频无遮挡在线免费观看| 成年女人在线观看亚洲视频 | 欧美性感艳星| 国产探花在线观看一区二区| 在线观看一区二区三区| 韩国av在线不卡| 国产白丝娇喘喷水9色精品| 五月玫瑰六月丁香| 亚洲不卡免费看| 国产免费一级a男人的天堂| 日本免费a在线| 国产在视频线在精品| 汤姆久久久久久久影院中文字幕 | 国产精品不卡视频一区二区| 亚洲国产欧美在线一区| 狠狠精品人妻久久久久久综合| 欧美xxⅹ黑人| 性插视频无遮挡在线免费观看| a级一级毛片免费在线观看| 精华霜和精华液先用哪个| 日本一二三区视频观看| 白带黄色成豆腐渣| 一级毛片久久久久久久久女| 欧美97在线视频| 五月伊人婷婷丁香| 国产乱来视频区| 三级经典国产精品| 欧美性感艳星| 国产伦精品一区二区三区四那| 久久精品夜夜夜夜夜久久蜜豆| 久久久久网色| 人人妻人人澡人人爽人人夜夜 | 国产乱人偷精品视频| 男女啪啪激烈高潮av片| 国语对白做爰xxxⅹ性视频网站| 日韩一区二区视频免费看| 亚洲欧洲国产日韩| 韩国高清视频一区二区三区| 精品一区二区三区人妻视频| 久久6这里有精品| 国产伦精品一区二区三区四那| 搡女人真爽免费视频火全软件| 久久久久精品性色| www.av在线官网国产| 一级片'在线观看视频| 久久精品久久久久久久性| 永久网站在线| 一级毛片我不卡| 免费av观看视频| 国产成人91sexporn| 国产中年淑女户外野战色| .国产精品久久| 激情五月婷婷亚洲| 观看免费一级毛片| 少妇被粗大猛烈的视频| 国产精品国产三级国产专区5o| 亚洲国产高清在线一区二区三| 偷拍熟女少妇极品色| 又黄又爽又刺激的免费视频.| 哪个播放器可以免费观看大片| 99久国产av精品国产电影| 日韩国内少妇激情av| 777米奇影视久久| 国产91av在线免费观看| 亚洲精品乱码久久久久久按摩| 午夜老司机福利剧场| 91狼人影院| av又黄又爽大尺度在线免费看| 免费看日本二区| av卡一久久| 欧美变态另类bdsm刘玥| 高清av免费在线| 成人亚洲精品av一区二区| 男人舔奶头视频| 精品久久久精品久久久| 91狼人影院| 高清av免费在线| 日日啪夜夜爽| 欧美bdsm另类| 免费看av在线观看网站| 亚洲av日韩在线播放| 男女视频在线观看网站免费| 伦精品一区二区三区| 精品久久久久久久久av| 亚洲人成网站高清观看| 少妇丰满av| 水蜜桃什么品种好| 精品不卡国产一区二区三区| 色哟哟·www| 国产亚洲av片在线观看秒播厂 | 亚洲av电影在线观看一区二区三区 | 中文在线观看免费www的网站| 街头女战士在线观看网站| 国产老妇伦熟女老妇高清| 国内精品一区二区在线观看| 免费看美女性在线毛片视频| a级一级毛片免费在线观看| 免费不卡的大黄色大毛片视频在线观看 | 亚洲欧美日韩东京热| 麻豆国产97在线/欧美| 国产在线一区二区三区精| 日韩av不卡免费在线播放| 精品久久久久久久末码| 免费看光身美女| 国产视频首页在线观看| 乱码一卡2卡4卡精品| 日本午夜av视频| 午夜激情欧美在线| 亚洲精品自拍成人| 午夜激情福利司机影院| 国内精品美女久久久久久| 亚洲aⅴ乱码一区二区在线播放| 亚洲无线观看免费| 日韩av免费高清视频| 高清在线视频一区二区三区| 亚洲国产精品专区欧美| 亚洲美女搞黄在线观看| av国产免费在线观看| 国产精品国产三级国产专区5o| 欧美精品一区二区大全| 日韩亚洲欧美综合| 午夜福利在线观看免费完整高清在| 免费观看无遮挡的男女| 99久久九九国产精品国产免费| 少妇裸体淫交视频免费看高清| 日韩一区二区视频免费看| 国产一区亚洲一区在线观看| 老女人水多毛片| 日韩欧美精品v在线| 国产精品久久久久久精品电影小说 | 成人亚洲精品av一区二区| 国产黄频视频在线观看| 麻豆精品久久久久久蜜桃| 边亲边吃奶的免费视频| 久99久视频精品免费| 大话2 男鬼变身卡| 99久国产av精品国产电影| 精品国产一区二区三区久久久樱花 | 人人妻人人澡人人爽人人夜夜 | 美女被艹到高潮喷水动态| 久久久久久久久大av| 蜜桃亚洲精品一区二区三区| 免费高清在线观看视频在线观看| 亚洲成人久久爱视频| 国产有黄有色有爽视频| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区三区四区免费观看| 亚洲国产欧美人成| a级一级毛片免费在线观看| 亚洲18禁久久av| 高清毛片免费看| 欧美日韩在线观看h| 午夜激情福利司机影院| 日韩精品青青久久久久久| 精品一区二区三区视频在线| 1000部很黄的大片| 亚洲国产色片| 亚洲av日韩在线播放| 亚洲四区av| 夫妻性生交免费视频一级片| 国模一区二区三区四区视频| 国产老妇女一区| 日韩成人av中文字幕在线观看| 80岁老熟妇乱子伦牲交| 激情五月婷婷亚洲| 免费看不卡的av| 久久久久久国产a免费观看| 亚洲国产精品国产精品| 日日撸夜夜添| av黄色大香蕉| 99久久中文字幕三级久久日本| 久久精品国产亚洲av天美| 国产 一区精品| 日韩一区二区三区影片| 亚洲精品日韩在线中文字幕| 麻豆乱淫一区二区| 国产黄色免费在线视频| 日韩一区二区三区影片| 亚洲乱码一区二区免费版| 一级黄片播放器| 午夜福利在线在线| 99热这里只有是精品在线观看| 日韩精品青青久久久久久| 免费黄色在线免费观看| 午夜福利高清视频| 午夜激情欧美在线| 国产极品天堂在线| 久久精品国产亚洲网站| 汤姆久久久久久久影院中文字幕 | 精品一区二区三区人妻视频| 成年人午夜在线观看视频 | 久久精品久久精品一区二区三区| 久久精品国产亚洲av涩爱| 舔av片在线| 亚洲精华国产精华液的使用体验| 国产亚洲最大av| 小蜜桃在线观看免费完整版高清| 一级毛片电影观看| 中文资源天堂在线| 欧美一区二区亚洲| 伦精品一区二区三区| 深爱激情五月婷婷| 国产一区二区三区综合在线观看 | 菩萨蛮人人尽说江南好唐韦庄| 亚洲成人一二三区av| 97人妻精品一区二区三区麻豆| 免费黄色在线免费观看| 国产一区二区三区av在线| 欧美成人精品欧美一级黄| 五月伊人婷婷丁香| 高清在线视频一区二区三区| 国产精品一区二区三区四区久久| 精品一区二区三卡| 噜噜噜噜噜久久久久久91| 尾随美女入室| 丝袜美腿在线中文| 一个人看的www免费观看视频| 成人无遮挡网站| 久久久久久久久久人人人人人人| 亚洲欧美清纯卡通| 日韩人妻高清精品专区| 国产精品国产三级国产专区5o| 欧美日韩在线观看h| 18禁动态无遮挡网站| 久久精品国产自在天天线| 久久精品国产亚洲av天美| 我的女老师完整版在线观看| 一级毛片aaaaaa免费看小| 精品久久久久久久久av| 色5月婷婷丁香| 国产高清有码在线观看视频| 国产黄片美女视频| 国产精品熟女久久久久浪| 国内少妇人妻偷人精品xxx网站| 国产成人aa在线观看| 精品人妻偷拍中文字幕| 国产亚洲一区二区精品| 搡女人真爽免费视频火全软件| 国产大屁股一区二区在线视频| 欧美精品国产亚洲| 中国美白少妇内射xxxbb| 日本爱情动作片www.在线观看| 久久久久久久久久久免费av| 亚洲四区av| 22中文网久久字幕| 亚洲国产精品成人久久小说| 亚洲av中文av极速乱| 亚洲精品中文字幕在线视频 | 国产亚洲一区二区精品| 黄片wwwwww| 亚洲精品乱码久久久v下载方式| 免费电影在线观看免费观看| 青春草视频在线免费观看| 亚洲国产欧美人成| 精品少妇黑人巨大在线播放| 国产精品久久久久久av不卡| 久久久久久久久久人人人人人人| 国产片特级美女逼逼视频| 永久免费av网站大全| 色综合色国产| 国产精品久久久久久av不卡| 国产成人精品久久久久久| 成人av在线播放网站| 午夜日本视频在线| 嘟嘟电影网在线观看| 色综合亚洲欧美另类图片| 黄色欧美视频在线观看| 99九九线精品视频在线观看视频| h日本视频在线播放| 亚洲av免费高清在线观看| 亚洲av国产av综合av卡| 国产91av在线免费观看| 亚洲18禁久久av| 免费看不卡的av| 国产av国产精品国产| 国产男女超爽视频在线观看| 成年人午夜在线观看视频 | 最后的刺客免费高清国语| 国产精品一区二区三区四区免费观看| 亚洲国产精品成人综合色| 在线a可以看的网站| 国产免费视频播放在线视频 | 大片免费播放器 马上看| 日本黄大片高清| 麻豆精品久久久久久蜜桃| 少妇丰满av| 亚洲av成人精品一区久久| 男女边吃奶边做爰视频| 黄色配什么色好看| 国产精品嫩草影院av在线观看| 日韩av不卡免费在线播放| 欧美 日韩 精品 国产| 色吧在线观看| 97超碰精品成人国产| 色播亚洲综合网| 在线天堂最新版资源| 国产精品久久久久久精品电影小说 | 欧美日本视频| 久久韩国三级中文字幕| 中文天堂在线官网| 欧美日韩亚洲高清精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品一二三| av在线播放精品| 欧美日韩综合久久久久久| 亚洲国产色片| 欧美日韩精品成人综合77777| 十八禁国产超污无遮挡网站| 亚洲av电影在线观看一区二区三区 | 一级毛片黄色毛片免费观看视频| 日韩 亚洲 欧美在线| 五月伊人婷婷丁香| 成人综合一区亚洲| 国产黄片视频在线免费观看| 国产av码专区亚洲av| 亚洲精品第二区| 搡女人真爽免费视频火全软件| 精品国内亚洲2022精品成人| 少妇裸体淫交视频免费看高清| 美女脱内裤让男人舔精品视频| 免费黄色在线免费观看| 亚洲怡红院男人天堂| 免费观看精品视频网站| 最近中文字幕高清免费大全6| 肉色欧美久久久久久久蜜桃 | 亚洲伊人久久精品综合| 成人一区二区视频在线观看| 一个人免费在线观看电影| 国产高清不卡午夜福利| 久久人人爽人人片av| 久久国产乱子免费精品| 成人美女网站在线观看视频| 日本免费a在线| 欧美三级亚洲精品| 超碰97精品在线观看| 亚洲av.av天堂| 国产精品不卡视频一区二区| 精品久久久精品久久久| 久久99精品国语久久久| 日日啪夜夜爽| 听说在线观看完整版免费高清| 99久久九九国产精品国产免费| 国产淫片久久久久久久久| 日本与韩国留学比较| 老女人水多毛片| 偷拍熟女少妇极品色| 你懂的网址亚洲精品在线观看| 亚洲欧美一区二区三区国产| 日韩伦理黄色片| 日韩视频在线欧美| 国产黄色小视频在线观看| 永久网站在线| 国产精品蜜桃在线观看| 日韩三级伦理在线观看| 内射极品少妇av片p| 国产精品熟女久久久久浪| 久久国产乱子免费精品| 亚洲三级黄色毛片| 一二三四中文在线观看免费高清| 久久热精品热| 精品亚洲乱码少妇综合久久| 欧美性猛交╳xxx乱大交人| 在线天堂最新版资源| 欧美3d第一页| 国产亚洲91精品色在线| 色综合色国产| 97精品久久久久久久久久精品| 精品国产三级普通话版| 国产又色又爽无遮挡免| 国产在视频线精品| 自拍偷自拍亚洲精品老妇| 男女那种视频在线观看| 久久99热这里只频精品6学生| 国产成人精品久久久久久| 特大巨黑吊av在线直播| 亚洲国产欧美人成| 成人亚洲欧美一区二区av| 国产精品一二三区在线看| 亚洲av男天堂| 日韩成人伦理影院| 日本一二三区视频观看| 五月伊人婷婷丁香| 亚洲av中文字字幕乱码综合| 能在线免费看毛片的网站| av播播在线观看一区| 国产免费又黄又爽又色| 91久久精品国产一区二区成人| 日韩av在线免费看完整版不卡| 极品少妇高潮喷水抽搐| 少妇裸体淫交视频免费看高清| 国产免费一级a男人的天堂| 蜜桃久久精品国产亚洲av| or卡值多少钱| 在线天堂最新版资源| 国产v大片淫在线免费观看| 国产亚洲午夜精品一区二区久久 | 一级毛片 在线播放| 亚洲在久久综合| 五月天丁香电影| 亚洲欧美成人综合另类久久久| 欧美变态另类bdsm刘玥| 亚洲欧美清纯卡通| 黄片wwwwww| 免费看不卡的av| 国产亚洲精品久久久com| 3wmmmm亚洲av在线观看| 人人妻人人看人人澡| 精品久久久精品久久久| 哪个播放器可以免费观看大片| 天堂av国产一区二区熟女人妻| 一级毛片我不卡| 亚洲成人中文字幕在线播放| 成人一区二区视频在线观看| 欧美xxxx黑人xx丫x性爽| 国产一区二区三区av在线| 成人欧美大片| 国语对白做爰xxxⅹ性视频网站| av国产免费在线观看| 午夜免费男女啪啪视频观看| 性色avwww在线观看| 日韩中字成人| 国产在线男女| 一区二区三区乱码不卡18| 亚洲成人精品中文字幕电影| 国产色婷婷99| 国产成人a∨麻豆精品| 国产精品福利在线免费观看|