• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON APPROXIMATE EFFICIENCY FOR NONSMOOTH ROBUST VECTOR OPTIMIZATION PROBLEMS?

    2020-08-02 05:29:30TadeuszANTCZAK

    Tadeusz ANTCZAK

    Faculty of Mathematics and Computer Science, University of Lód′z, Banacha 22, 90-238 Lódz, Poland E-mail: tadeusz.antczak@wmii.uni.lodz.pl

    Yogendra PANDEY

    Department of Mathematics, Satish Chandra College, Ballia 277001, India

    Vinay SINGH

    Department of Mathematics, National Institute of Technology, Aizawl-796012, Mizoram, India

    Shashi Kant MISHRA

    Department of Mathematics, Banaras Hindu University, Varanasi-221005, India

    Abstract In this article,we use the robust optimization approach(also called the worst-case approach) for finding ?-efficient solutions of the robust multiobjective optimization problem defined as a robust (worst-case) counterpart for the considered nonsmooth multiobjective programming problem with the uncertainty in both the objective and constraint functions.Namely, we establish both necessary and sufficient optimality conditions for a feasible solution to be an ?-efficient solution (an approximate efficient solution) of the considered robust multiobjective optimization problem. We also use a scalarizing method in proving these optimality conditions.

    Key words Robust optimization approach; robust multiobjective optimization; ?-efficient solution; ?-optimality conditions; scalarization

    1 Introduction

    Robust optimization methodology (the worst-case approach) is a powerful approach for examining and solving optimization problems under data uncertainty. In robust optimization,the data is uncertain but bounded, that is, the data is varying in a given uncertainty set,and we choose the best solution among the robust feasible ones; for detail, we refer to [1–6,9, 12, 20–26, 28, 29, 31, 32, 38]. Ben-Tal et al. [5] introduced the concept of the uncertain linear optimization problem and its robust counterpart, and discussed the computational issues. Also, Bertsimas et al. [6] characterized the robust counterpart of a linear mathematical programming problem with uncertainty set described by an arbitrary norm. Jeyakumar and Li[23, 24] presented basic theory and applications of an uncertain linear mathematical program problem. Jeyakumar and Li [25] derived a robust theorem of the alternative for parameterized convex inequality systems using conjugate analysis and introduced duality theory for convex mathematical programming problems in the face of data uncertainty via robust optimization.Jeyakumar et al. [26] considered a nonlinear optimization problem with face of data uncertainty and established robust KKT necessary and sufficient optimality conditions for a robust minimizer. Furthermore, Jeyakumar et al. [26] introduced robust duality theory for generalized convex mathematical programming problems in the face of data uncertainty within the framework of robust optimization and established robust strong duality between an uncertain nonlinear primal optimization problem and its uncertain Lagrangian dual.

    Robust optimization for solving multiobjective optimization problems with uncertain data is a current topic of research. Kuroiwa and Lee [31] defined three kind of robust efficient solutions and established necessary optimality theorems for weakly and properly robust efficient solutions for the considered uncertain multiobjective optimization problem. Recently, Chuong[9]established the necessary optimality conditions and,under the generalized convexity assumptions, sufficient optimality conditions for a (weakly) robust efficient solution of the considered uncertain multiobjective programming problem. Besides, robust multiobjective optimization with optimality defining by a partial order has been widely applied to solve many practical problems like internet routing, portfolio optimization, energy production scheduling in microgrids, transport, agriculture, industry-specific applications, health care applications, among others (see, for example, [3, 7, 8, 10, 14–17, 27, 30]).

    In recent years, many authors have established epsilon optimality conditions for several kind of optimization problems (see, for example, [13, 18, 19, 32–36, 39, 40]). Lee and Lee [32]established optimality theorems for epsilon solutions of the scalar robust convex optimization problem.

    In this article, we treat the robust approach for the considered uncertain multiobjective programming problem with the uncertainty in both objective and constraint functions which is the worst case approach for finding approximate efficient solutions for such multiobjective optimization problems. In this approach, for the considered uncertain multiobjective optimization problem, its robust (worst-case) counterpart is constructed as an associated robust multiobjective optimization problem. Then, motivated by works of Kuroiwa and Lee [31] and Lee and Lee[32],we derive the ?-efficiency theorem for the considered uncertain multiobjective programming problem by examining its robust (worst-case) counterpart. In other words, we prove necessary and sufficient optimality conditions for a feasible solution to be an ?-efficient solution (an approximate efficient solution) of the robust multiobjective optimization problem.Moreover, we use a scalarizing method in proving these optimality results. In this method,for the robust multiobjective optimization problem, its associated scalar optimization problem is constructed. Then, we prove the equivalence between an approximate efficient solution of the robust multiobjective optimization problem and an approximate solution of its associated scalar optimization problem constructed in the scalarizing method which is used in this article.The ?-efficiency theorem established in this article for the considered uncertain multiobjective programming problem is illustrated by an example of such a vector optimization problem with the uncertainty in both objective and constraint functions.

    2 Preliminaries

    The following convention for equalities and inequalities will be used throughout this article.

    For any vectors x=(x1,...,xn)T,y =(y1,...,yn)Tin Rn,we give the following definitions:

    (i) x=y if and only if xi=yifor all i=1,...,n;

    (ii) x

    (iii) x ≦y if and only if xi≦yifor all i=1,...,n;

    (iv) x ≤y if and only if x ≦y and

    In this section, we provide some definitions and results that we shall use in the sequel.

    The inner product in Rnis defined by 〈x,y〉:=xTy for all x,y ∈Rn: The set C is convex whenever λx+(1 ?λ)y ∈C for all x,y ∈C and any λ ∈[0,1]. The set C ?Rnis a cone if αC ?C for all α ≧0. The indicator function δC:Rn→R ∪{+∞} of a set C is defined by

    A function f :Rn→R∪{+∞}is said to be convex on Rnif the inequality f(λx+(1?λ)y)≦λf(y)is satisfied for all x,y ∈Rnand any λ ∈[0,1].The effective domain of f,denoted by domf,is defined by domf :={x ∈Rn:f(x)<+∞}.The epigraph of the function f :Rn→R∪{+∞},denoted by epif, is defined by

    Let f :Rn→R∪{+∞}be a convex function. The ?-subdifferential of f at∈domf is defined by

    Let f be a proper convex function on Rn. Its conjugate function f?: Rn→R ∪{+∞} is defined at x?∈Rnby

    Clearly, f?is a proper lower semicontinuous convex function and, moreover,

    Proposition 2.1([25, 32]) Let f1: Rn→R be a continuous convex function and f2:Rn→R ∪{+∞} be a proper lower semicontinuous convex function. Then,

    Proposition 2.2([25]) Let fi,i ∈I,(where I is an arbitrary index set)be a proper lower semicontinuous convex function on Rn.Furthermore,assume that there exists∈Rnsuch that. Then,

    Now, let gj(·,vj) : Rn×Rq→R,vj∈Vj?Rq,j = 1,...,m, be convex functions. Then,the set

    is called a robust characteristic cone.

    Proposition 2.3([25]) Let gj: Rn×Rq→R,j = 1,...,m, be a continuous function,such that for each vj∈Vj?Rq,gj(·,vj) is a convex function. Then, the following set

    is a cone.

    Proposition 2.4([25]) Let gj: Rn×Rq→R,j = 1,...,m, be continuous functions and, for each j = 1,...,m,Vj?Rqbe a convex set. Furthermore, assume that, for each vj∈Vj,gj(·,vj) is a convex function on Rnand, for each x ∈Rn,gj(x,·) is a concave function on Vj. Then,

    is a convex cone.

    Proposition 2.5([21, 32]) Let f : Rn→R ∪{+∞} be a proper lower semicontinuous convex function and∈domf. Then,

    Proposition 2.6([25]) Let gj:Rn×Rq→R,j =1,...,m,be continuous functions such that, for each vj∈Vj?Rq,gj(·,vj) be a convex function on Rn. Furthermore, assume that each set Vj,j = 1,...,m, is compact, and there exists∈Rnsuch that gj(,vj) < 0 for any vj∈Vj,j =1,...,m. Then, the set

    is closed.

    3 ?-Optimality Conditions

    In this section, we derive both necessary and sufficient optimality conditions for a feasible solution to be an ?-robust efficient solution of the considered uncertain multiobjective programming problem with the uncertainty in both objective and constraint functions by examining its robust (worst-case) counterpart, that is, its associated robust multiobjective programming problem.

    In this article, we consider an uncertain multiobjective programming problem defined as follows:

    where fi: Rn×Rp→R,i = 1,...,s, and gj: Rn×Rp→R,j = 1,...,m, are continuous functions and ui∈Ui,vj∈Vj, are uncertain parameters,that is,the data vectors uiand vjare not known exactly at the time when the solution has to be determined, Uiand Vjare convex compact subsets of Rpand Rq, respectively.

    Hence, the robust counterpart (RMP) of the uncertain multiobjective programming problem (UMP) is defined as the following multiobjective programming problem:

    Let us denote by S the set of all feasible solutions for the robust multiobjective programming problem (RMP), that is, S ={x ∈Rn:gj(x,vj)≦0,j =1,...,m,?vj∈Vj}.

    Definition 3.1A point x ∈Rnis a robust feasible solution of the considered uncertain robust multiobjective programming problem (RMP) if gj(x,vj)≦0,j =1,...,m,?vj∈Vj.

    Now,we give the definition of ?-efficiency(approximate efficiency)for the defined uncertain robust multiobjective programming problem (RMP) which is, at the same time, a robust ?efficient solution of the original uncertain multiobjective programming problem (UMP).

    Definition 3.2(?-efficient solution of (RMP)) Let ? ∈Rs,? ≧0 be given. A point∈S is said to be an ?-efficient solution of the robust multiobjective programming problem (RMP)(thus, a robust ?-efficient solution of the considered uncertain multiobjective programming problem (UMP)) if there is no a feasible solution x of (RMP) such that

    In this article, we shall assume that, for any ? ∈Rs,? ≧0, the set of ?-efficient solutions of the robust multiobjective programming problem (RMP) is nonempty.

    Now, for the considered uncertain robust multiobjective programming problem(RMP), we define its associated scalar optimization problem.

    Now, we give the definition of a γ-optimal solution of the scalar optimization problem(SMRP?).

    Definition 3.3Let γ be a given nonnegative real number. A feasible pointof the scalar optimization problem (SMRP?) is said to be a γ-optimal solution of the scalar optimization problem (SMRP?) if the inequality

    holds for all feasible solutions of the problem (SMRP?).

    Now, we prove the equivalency between the problems (RMP) and (SMRP?).

    Lemma 3.4Let ? ≧0 be given. Then,∈S is an ?-efficient solution of (RMP) if and only ifis a γ-optimal solution of (SMRP?), where

    ProofLetbe an ?-efficient solution of(RMP). Asis an ?-efficient solution of(RMP),by Definition 3.2, there is no other feasible solution x ∈S such that

    This means that there is no x ∈satisfying both (3.1) and (3.2). Then, by (3.1) and (3.2),it follows that the inequality

    is not fulfilled for any x ∈. Thus,by Definition 3.3,this means thatis a γ-optimal solution of (SMRP?).

    Now, we extend the result established by Jeyakumar and Li (Theorem 2.4 [25]) to the vectorial case.

    Lemma 3.5Let fi(·,ui),i = 1,...,s, be a convex and continuous function and gj:Rn×Rn→R,j =1,...,m, be a continuous function such that, for each vj∈Vj, where Vjis a compact subset of Rq,gj(·,vj) is a convex function. Furthermore, assume that S is nonempty.Then, exactly one of the following two statements holds:

    ProofAssume that condition (ii) is fulfilled. Then, the following relation

    By Proposition 2.2, it follows that

    Then, by Proposition 2.1, (3.7) is equivalent to

    Thus, by the definition of the epigraph, we have

    Hence, by the definition of the conjugate function, (3.9) is equivalent to

    By the definition of an indicator function, it follows that δA?(x) = 0 for any x ∈. Hence,(3.10) is equivalent to F(x) ≧0 for any x ∈. Thus, we have shown that the case when the condition (ii) is fulfilled is equivalent to the fact that the condition (i) is not satisfied. This completes the proof of this lemma.

    Now, we use Lemma 3.5 to prove the next result.

    Theorem 3.6Let fi: Rn×Rp→R,i=1,...,s, be continuous functions such that, for each ui,fi(·,ui) is a convex function. Also, let gj: Rn×Rq→R,j = 1,...,m, be continuous functions such that, for each vj∈Rq,gj(·,vj) is a convex function. Furthermore, assume that the set

    is closed and convex. Then,is a γ-optimal solution of (SMRP?), if and only if there existsuch that the following inequality

    ProofLetbe a γ-optimal solution of(SMRP?). Then,by Definition 3.2,it follows that the inequality F(x) ≧F()?γ holds for all x ∈, whereLet H(x)=F(x)?F()+γ. Then, by the above inequality, the inequality

    Using the definition of the function H, (3.13) can be re-written as follows:

    Thus, (3.14) gives

    Again by using the definition of the conjugate function, (3.15) yields

    By(3.12),it follows that the condition(i) in Lemma 3.5 is not satisfied. Hence,by Lemma 3.5,it follows that the condition (ii) is fulfilled, that is, the relation

    holds. By assumption, the set

    is closed and convex. Thus, (3.17) gives

    By (3.18), it follows that there existsuch that the relation

    holds. Then, there exist t?∈Rn,a ≧0,∈Rn,bi≧0,i = 1,...,s,∈Rn, and cj≧0,j =1,...,m, such that

    Hence, the above relation yields, respectively,

    and

    By (3.19), it follows that

    Combining(3.20)and(3.21),and by the definition of a conjugate function,then we obtain that the relation

    holds for any x ∈Rn. Then, (3.22) yields

    By the definition of a conjugate function for the functionswe have

    By the definition of the function F, it follows that the inequality

    Conversely, assume that there exist≧0,i = 1,...,s,∈Vj,j = 1,...,m, such that inequality (3.11) is fulfilled for any x ∈. As≧0,i = 1,...,s,≧0,j = 1,...,m, and x ∈, (3.11) implies that

    Using Lemma 3.4 and Lemma 3.5, we prove the following ?-efficiency theorem for the considered robust multiobjective programming problem (RMP).

    Theorem 3.7(?-efficiency theorem) Let fi: Rn×Rp→R,i = 1,...,s, be continuous functions such that, for each ui, every function fi(·,ui) is convex. Also, let gj: Rn×Rp→R,j =1,...,m, be continuous functions such that, for each vj∈Rq, every function gj(·,vj) is convex. Furthermore, assume that the setis closed and convex. Then, the following statements are equivalent:

    (i) x ∈S is an ?-efficient solution of the robust multiobjective programming problem(RMP);

    and

    ProofThe equivalency between the conditions (i) and (ii) follows by Theorem 3.6.

    Now, we prove the equivalency between the conditions (ii) and (iii).

    Now, we prove the equivalency of conditions (iii) and (iv).

    Let us assume that the condition (iii) is fulfilled, that is, (3.18) is satisfied. Hence, by(3.18), it follows that there existsuch that the relation

    holds. Then, by Proposition 2.5, it follows that there exist≧0,i=1,...,s,≧0,∈Vj,j =1,...,m, such that

    holds. The above relation implies equivalently that there existsuch that

    and

    Relation (3.25) is equivalent to the fact that there existj =1,...,m, such that

    Hence, (3.27) and (3.26) are precisely the condition (iv).

    Thus, the proof of this theorem is completed.

    In order to illustrate the results established in Theorem 3.7, we give the example of an uncertain multiobjective programming problem with the uncertainty in both objective and constraint functions.

    Example 3.8Consider the following uncertain multiobjective programming problem with the uncertainty in both objective and constraint functions defined as follows:

    where u1∈U1= [0,1],u2∈U2= [0,1],v1∈V1= [], v2∈V2= [?1,0] are uncertain parameters. Its robust counterpart,that is,the uncertain multiobjective programming problem(RMP1), is defined as follows:

    Condition (i)Note that the following inequalities, if at least one of them is strict,

    are not satisfied for any feasible solutionof the robust multiobjective programming problem (RMP1). Hence, by Definition 3.2,= (0,) is, in fact, an ?-efficient solution of(RMP1).

    Condition (ii)LetHence,. Note that the following inequalityis satisfied for all feasible solutions of the associated scalar optimization problem(SRMP?)defined for the robust multiobjective programming problem(RMP).Then,by Definition 3.3,=(0,12)is a γ-optimal solution of the problem (SRMP?).

    Condition (iii)By the definition of the conjugate function, we have

    Hence, by the definition of the epigraph of a function, we have

    By the definition of the epigraph of a function, Proposition 2.1, and (2.4), we have

    Now, we check the condition (iii). Thus, we have

    Condition (iv)In order to check condition (iv), we set

    Taking into account the calculated above ?-subdifferentials of the appropriate functions, we have

    Hence, it follows that

    Furthermore, note that also the second relation in condition (iv) is fulfilled at the considered case. Indeed, we haveThen, we have shown that condition (iv) is also fulfilled.

    4 Conclusions

    In this article, the robust approach is used for finding approximate efficient solutions of the considered multiobjective programming problem with the uncertainty in both objective and constraint functions. Namely, we study the ?-efficiency theorem for the considered uncertain convex multiobjective programming problem by examining its robust(worst-case)counterpart.In other words,we establish both necessary and sufficient optimality conditions for an ?-efficient solution of the robust multiobjective optimization problem. In proving this result, we also use a scalarizing method. Furthermore, the ?-efficiency theorem established in this article is illustrated by the example of a nondifferentiable multiobjective programming problem with the uncertainty in both objective and constraint functions.

    However, some interesting topics for further research remain. Also, it would be interesting to prove similar optimality results for other classes of uncertain multiobjective optimization problems. We shall investigate these questions in subsequent papers.

    国产欧美日韩综合在线一区二区| 在线av久久热| www.熟女人妻精品国产| 琪琪午夜伦伦电影理论片6080| 国产麻豆成人av免费视频| 丁香欧美五月| 岛国在线观看网站| 日韩欧美在线二视频| 又大又爽又粗| 国产精品av久久久久免费| 啦啦啦免费观看视频1| 成人av一区二区三区在线看| 啦啦啦韩国在线观看视频| 一级作爱视频免费观看| 高清黄色对白视频在线免费看| 中文字幕人成人乱码亚洲影| 999精品在线视频| 咕卡用的链子| 亚洲 欧美一区二区三区| 性少妇av在线| 日本 欧美在线| 少妇裸体淫交视频免费看高清 | 一边摸一边做爽爽视频免费| 午夜福利影视在线免费观看| 国产精品久久电影中文字幕| 欧美日韩福利视频一区二区| 国产精品久久久久久人妻精品电影| 啦啦啦 在线观看视频| 国产主播在线观看一区二区| 99久久久亚洲精品蜜臀av| 欧美激情久久久久久爽电影 | 亚洲少妇的诱惑av| 国产精品国产高清国产av| 中文字幕久久专区| 欧美日韩亚洲国产一区二区在线观看| 久久性视频一级片| 亚洲七黄色美女视频| 欧美午夜高清在线| 一级a爱片免费观看的视频| 老汉色∧v一级毛片| 亚洲三区欧美一区| 欧美 亚洲 国产 日韩一| 国产精品亚洲av一区麻豆| 一区在线观看完整版| 久久久久久久精品吃奶| 日韩三级视频一区二区三区| 国产精品久久久人人做人人爽| 无遮挡黄片免费观看| 国产高清视频在线播放一区| 一二三四在线观看免费中文在| 久久国产亚洲av麻豆专区| 丁香六月欧美| 久久久久久久久免费视频了| 少妇的丰满在线观看| 美女 人体艺术 gogo| 午夜精品在线福利| 如日韩欧美国产精品一区二区三区| www.www免费av| 国产精品久久视频播放| 亚洲国产精品成人综合色| 欧美在线一区亚洲| 制服丝袜大香蕉在线| 黑丝袜美女国产一区| 亚洲激情在线av| 国产欧美日韩一区二区三| 巨乳人妻的诱惑在线观看| 午夜精品国产一区二区电影| 不卡一级毛片| 久久香蕉精品热| 手机成人av网站| 午夜福利影视在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 99国产精品一区二区三区| 亚洲av成人一区二区三| 日日摸夜夜添夜夜添小说| 日本三级黄在线观看| 精品日产1卡2卡| 欧美另类亚洲清纯唯美| 女人被狂操c到高潮| 十分钟在线观看高清视频www| 久久这里只有精品19| 免费在线观看黄色视频的| 久久九九热精品免费| 国产精品久久久久久人妻精品电影| 亚洲狠狠婷婷综合久久图片| 亚洲精品国产精品久久久不卡| 十八禁网站免费在线| 久久久水蜜桃国产精品网| 午夜福利,免费看| 99在线人妻在线中文字幕| 啦啦啦 在线观看视频| 久久中文字幕人妻熟女| 黑丝袜美女国产一区| 黑丝袜美女国产一区| 久久中文字幕人妻熟女| 免费人成视频x8x8入口观看| 男女下面插进去视频免费观看| 久久久久久久精品吃奶| 日韩大码丰满熟妇| 又大又爽又粗| 成人手机av| 精品熟女少妇八av免费久了| 成人手机av| 久久久国产成人免费| 国产精品秋霞免费鲁丝片| 很黄的视频免费| 免费在线观看亚洲国产| 99精品久久久久人妻精品| 久久精品国产99精品国产亚洲性色 | 亚洲成人久久性| 18禁观看日本| 日韩精品青青久久久久久| 18禁观看日本| 亚洲精品中文字幕在线视频| av中文乱码字幕在线| 色在线成人网| 国产一区在线观看成人免费| 久久精品国产亚洲av香蕉五月| 午夜免费观看网址| 色综合站精品国产| 女性生殖器流出的白浆| 嫩草影院精品99| 国产高清有码在线观看视频 | 69精品国产乱码久久久| 在线观看午夜福利视频| 青草久久国产| 18禁裸乳无遮挡免费网站照片 | 亚洲欧美日韩无卡精品| 伊人久久大香线蕉亚洲五| av天堂在线播放| 波多野结衣av一区二区av| 村上凉子中文字幕在线| 欧美在线黄色| 国产一区在线观看成人免费| 岛国视频午夜一区免费看| 69av精品久久久久久| 99国产精品一区二区蜜桃av| 淫妇啪啪啪对白视频| 国产成人系列免费观看| 婷婷六月久久综合丁香| 人人妻人人爽人人添夜夜欢视频| 亚洲精品美女久久久久99蜜臀| 成人亚洲精品一区在线观看| av视频在线观看入口| 嫁个100分男人电影在线观看| 中文字幕人妻熟女乱码| 三级毛片av免费| 成年女人毛片免费观看观看9| 久久人妻av系列| 亚洲国产欧美网| 国产精品一区二区精品视频观看| 亚洲电影在线观看av| 亚洲国产精品999在线| 少妇被粗大的猛进出69影院| 在线天堂中文资源库| 波多野结衣av一区二区av| 午夜a级毛片| av免费在线观看网站| АⅤ资源中文在线天堂| 欧美乱妇无乱码| 婷婷六月久久综合丁香| 亚洲黑人精品在线| 亚洲av熟女| 99在线视频只有这里精品首页| 99久久综合精品五月天人人| 亚洲在线自拍视频| 91精品国产国语对白视频| 九色亚洲精品在线播放| 一区二区三区激情视频| 激情视频va一区二区三区| 亚洲精品一区av在线观看| 在线观看一区二区三区| 亚洲精品国产精品久久久不卡| 久久精品国产亚洲av高清一级| av福利片在线| 少妇的丰满在线观看| 久久久久久久久免费视频了| 又黄又爽又免费观看的视频| 亚洲成人久久性| 国产精品香港三级国产av潘金莲| 国产91精品成人一区二区三区| 露出奶头的视频| 欧美乱妇无乱码| 午夜福利成人在线免费观看| 国产在线精品亚洲第一网站| 女人爽到高潮嗷嗷叫在线视频| 午夜激情av网站| 韩国精品一区二区三区| 无遮挡黄片免费观看| 99国产精品免费福利视频| 久久精品国产亚洲av高清一级| 香蕉国产在线看| 老司机午夜福利在线观看视频| av天堂久久9| 99久久99久久久精品蜜桃| 国产精品免费视频内射| 男人舔女人的私密视频| 在线观看免费视频网站a站| 国产精品爽爽va在线观看网站 | 一边摸一边做爽爽视频免费| 大型黄色视频在线免费观看| 午夜福利欧美成人| 亚洲av成人av| 亚洲精品中文字幕一二三四区| 日本一区二区免费在线视频| 亚洲国产精品久久男人天堂| 免费一级毛片在线播放高清视频 | 国产精品自产拍在线观看55亚洲| 嫁个100分男人电影在线观看| 精品午夜福利视频在线观看一区| 国产日韩一区二区三区精品不卡| 757午夜福利合集在线观看| 不卡一级毛片| 美女免费视频网站| 久久久国产精品麻豆| 波多野结衣一区麻豆| 色尼玛亚洲综合影院| 日本a在线网址| 99国产精品免费福利视频| 麻豆av在线久日| 熟女少妇亚洲综合色aaa.| 国产熟女xx| 好男人电影高清在线观看| 天堂动漫精品| 18美女黄网站色大片免费观看| 国产亚洲欧美98| 亚洲色图综合在线观看| 黄网站色视频无遮挡免费观看| 成人三级黄色视频| 免费女性裸体啪啪无遮挡网站| 欧美日韩一级在线毛片| 黄色丝袜av网址大全| 日韩国内少妇激情av| 亚洲 国产 在线| 久久精品国产清高在天天线| 国产成人精品在线电影| 香蕉国产在线看| 91大片在线观看| 欧美乱色亚洲激情| 成人国产一区最新在线观看| 欧美黄色片欧美黄色片| 人成视频在线观看免费观看| 首页视频小说图片口味搜索| 成人精品一区二区免费| 黄色 视频免费看| 国产精品一区二区三区四区久久 | 国产精品香港三级国产av潘金莲| 极品教师在线免费播放| 人人妻人人澡人人看| 成人欧美大片| 麻豆久久精品国产亚洲av| 色综合亚洲欧美另类图片| 国产高清有码在线观看视频 | 9热在线视频观看99| 日韩欧美国产一区二区入口| АⅤ资源中文在线天堂| 午夜福利视频1000在线观看 | 久久精品aⅴ一区二区三区四区| 亚洲一码二码三码区别大吗| 国产区一区二久久| 在线国产一区二区在线| 99久久久亚洲精品蜜臀av| 91麻豆精品激情在线观看国产| 亚洲国产欧美一区二区综合| 91麻豆av在线| 99国产精品一区二区三区| 亚洲自拍偷在线| 一个人免费在线观看的高清视频| tocl精华| 中文字幕最新亚洲高清| 在线十欧美十亚洲十日本专区| av在线播放免费不卡| 亚洲欧美一区二区三区黑人| 三级毛片av免费| 精品高清国产在线一区| 麻豆成人av在线观看| 午夜免费观看网址| 久久天躁狠狠躁夜夜2o2o| 校园春色视频在线观看| 欧美 亚洲 国产 日韩一| 亚洲精品一区av在线观看| 亚洲精品美女久久av网站| 青草久久国产| 久久久久久久久免费视频了| 九色亚洲精品在线播放| 久久天堂一区二区三区四区| 亚洲国产欧美一区二区综合| 国内精品久久久久久久电影| 热re99久久国产66热| 悠悠久久av| 亚洲熟妇熟女久久| 嫁个100分男人电影在线观看| 久久久久精品国产欧美久久久| 久久国产精品影院| 久久天堂一区二区三区四区| 亚洲五月天丁香| 国产成人啪精品午夜网站| 亚洲色图av天堂| 在线观看一区二区三区| 夜夜爽天天搞| 午夜久久久在线观看| 精品福利观看| avwww免费| 国产高清有码在线观看视频 | 亚洲中文字幕日韩| 精品乱码久久久久久99久播| 国产精华一区二区三区| 成人18禁高潮啪啪吃奶动态图| 亚洲五月色婷婷综合| 少妇被粗大的猛进出69影院| 18禁裸乳无遮挡免费网站照片 | 国产国语露脸激情在线看| 亚洲 欧美一区二区三区| 色哟哟哟哟哟哟| 国产精品九九99| 精品一区二区三区四区五区乱码| 亚洲中文日韩欧美视频| 此物有八面人人有两片| 久久久久久大精品| 狂野欧美激情性xxxx| 亚洲色图av天堂| 国产精品免费一区二区三区在线| 男人操女人黄网站| 亚洲精品av麻豆狂野| 午夜精品国产一区二区电影| 久久久久久国产a免费观看| 日本撒尿小便嘘嘘汇集6| 熟妇人妻久久中文字幕3abv| 日韩欧美一区视频在线观看| 亚洲人成电影观看| 人妻丰满熟妇av一区二区三区| 91字幕亚洲| 大陆偷拍与自拍| 中出人妻视频一区二区| 一边摸一边做爽爽视频免费| 亚洲久久久国产精品| 可以在线观看的亚洲视频| 欧美日本视频| 美女大奶头视频| 757午夜福利合集在线观看| 国产主播在线观看一区二区| 一本久久中文字幕| 成人欧美大片| 欧美在线黄色| 禁无遮挡网站| 国产亚洲精品综合一区在线观看 | 中文字幕av电影在线播放| 涩涩av久久男人的天堂| 高清毛片免费观看视频网站| 侵犯人妻中文字幕一二三四区| 精品免费久久久久久久清纯| 亚洲一区二区三区不卡视频| 国产亚洲精品久久久久5区| 色综合婷婷激情| 女性生殖器流出的白浆| 精品卡一卡二卡四卡免费| 久久久久久久午夜电影| 看片在线看免费视频| 亚洲熟妇中文字幕五十中出| 久久青草综合色| 日本精品一区二区三区蜜桃| 一级毛片女人18水好多| 欧美激情极品国产一区二区三区| 一级毛片高清免费大全| 久久久精品欧美日韩精品| 国产成人免费无遮挡视频| 国产一区二区三区综合在线观看| 脱女人内裤的视频| 久久久久久久午夜电影| 9191精品国产免费久久| 极品教师在线免费播放| 女人爽到高潮嗷嗷叫在线视频| 国产av精品麻豆| 好看av亚洲va欧美ⅴa在| 国产精品av久久久久免费| 亚洲国产日韩欧美精品在线观看 | 成年女人毛片免费观看观看9| 久久国产乱子伦精品免费另类| 日本vs欧美在线观看视频| 韩国精品一区二区三区| 国产区一区二久久| 日韩 欧美 亚洲 中文字幕| 欧美日韩亚洲国产一区二区在线观看| 国产不卡一卡二| 色综合欧美亚洲国产小说| 国产精品香港三级国产av潘金莲| 精品一区二区三区av网在线观看| 亚洲精品中文字幕在线视频| 麻豆国产av国片精品| 国产一区二区三区视频了| 如日韩欧美国产精品一区二区三区| 亚洲精品中文字幕在线视频| 黄色片一级片一级黄色片| www.自偷自拍.com| 两人在一起打扑克的视频| 亚洲自拍偷在线| 老司机午夜福利在线观看视频| 国产又爽黄色视频| 国产精品永久免费网站| av视频免费观看在线观看| 中文字幕最新亚洲高清| 久久精品影院6| 亚洲精品av麻豆狂野| 成人免费观看视频高清| 欧美乱色亚洲激情| 久久久久久久久久久久大奶| 久久精品91蜜桃| 成人手机av| 悠悠久久av| 人人妻人人澡人人看| av天堂在线播放| 日韩一卡2卡3卡4卡2021年| 亚洲自拍偷在线| 自拍欧美九色日韩亚洲蝌蚪91| 日本 av在线| 法律面前人人平等表现在哪些方面| 在线观看一区二区三区| 最新美女视频免费是黄的| 中文字幕人妻丝袜一区二区| 丁香六月欧美| 亚洲九九香蕉| 老司机在亚洲福利影院| 十八禁人妻一区二区| 久久婷婷成人综合色麻豆| 国产麻豆成人av免费视频| 国产av在哪里看| 中出人妻视频一区二区| 免费av毛片视频| 国产片内射在线| 深夜精品福利| 久久久久久久久中文| 黄色视频,在线免费观看| 无限看片的www在线观看| 嫩草影院精品99| 久久香蕉激情| 亚洲avbb在线观看| 人人妻,人人澡人人爽秒播| av在线天堂中文字幕| 99精品在免费线老司机午夜| 亚洲第一青青草原| 亚洲国产精品久久男人天堂| 日韩欧美一区二区三区在线观看| 精品欧美国产一区二区三| 夜夜看夜夜爽夜夜摸| 如日韩欧美国产精品一区二区三区| 亚洲三区欧美一区| 大香蕉久久成人网| 亚洲全国av大片| 午夜老司机福利片| 在线视频色国产色| 成人三级做爰电影| 一区二区日韩欧美中文字幕| 精品第一国产精品| 啦啦啦 在线观看视频| 精品久久久久久久人妻蜜臀av | 国产精品爽爽va在线观看网站 | 亚洲欧美精品综合一区二区三区| 久久久久九九精品影院| 亚洲国产欧美日韩在线播放| 国产精品美女特级片免费视频播放器 | 一进一出好大好爽视频| 91老司机精品| 视频区欧美日本亚洲| 国产熟女xx| 亚洲国产精品成人综合色| 国产亚洲av高清不卡| 两性夫妻黄色片| 丝袜在线中文字幕| 最新在线观看一区二区三区| 精品一品国产午夜福利视频| 高潮久久久久久久久久久不卡| 亚洲精品美女久久av网站| 黑人操中国人逼视频| 亚洲七黄色美女视频| av免费在线观看网站| 成人手机av| 日本免费一区二区三区高清不卡 | 一进一出好大好爽视频| 国产精品电影一区二区三区| 国产av精品麻豆| www日本在线高清视频| 久久精品91无色码中文字幕| 麻豆久久精品国产亚洲av| 日本vs欧美在线观看视频| 国产xxxxx性猛交| 亚洲精品国产色婷婷电影| www.999成人在线观看| 久久 成人 亚洲| 搡老妇女老女人老熟妇| av免费在线观看网站| 久9热在线精品视频| 婷婷精品国产亚洲av在线| 中出人妻视频一区二区| 黄片小视频在线播放| 日日摸夜夜添夜夜添小说| 俄罗斯特黄特色一大片| 欧美精品亚洲一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 成人三级黄色视频| 国产高清videossex| 美女高潮到喷水免费观看| 成人永久免费在线观看视频| 18禁裸乳无遮挡免费网站照片 | 亚洲片人在线观看| 欧美一级a爱片免费观看看 | 亚洲狠狠婷婷综合久久图片| 亚洲午夜精品一区,二区,三区| 亚洲色图 男人天堂 中文字幕| 婷婷精品国产亚洲av在线| 久久伊人香网站| 99在线人妻在线中文字幕| 成人永久免费在线观看视频| 亚洲五月婷婷丁香| 99国产极品粉嫩在线观看| 色尼玛亚洲综合影院| 在线天堂中文资源库| 无限看片的www在线观看| 高清毛片免费观看视频网站| 最好的美女福利视频网| 九色国产91popny在线| 极品教师在线免费播放| 亚洲成人免费电影在线观看| 国产麻豆69| 精品一品国产午夜福利视频| 免费一级毛片在线播放高清视频 | 女警被强在线播放| av欧美777| 一级毛片精品| cao死你这个sao货| 日本免费一区二区三区高清不卡 | 亚洲精品美女久久av网站| 欧美性长视频在线观看| 99在线视频只有这里精品首页| 日韩欧美国产一区二区入口| 伦理电影免费视频| 黄色视频,在线免费观看| 精品不卡国产一区二区三区| 国产精品秋霞免费鲁丝片| 亚洲精品久久成人aⅴ小说| 日日摸夜夜添夜夜添小说| 人成视频在线观看免费观看| 成人av一区二区三区在线看| 精品午夜福利视频在线观看一区| 一进一出好大好爽视频| 9191精品国产免费久久| 在线观看午夜福利视频| 国产精品影院久久| 日韩欧美国产在线观看| 丝袜美腿诱惑在线| 妹子高潮喷水视频| 少妇的丰满在线观看| 午夜福利,免费看| 超碰成人久久| 久久香蕉激情| 久久亚洲精品不卡| 色播在线永久视频| 视频在线观看一区二区三区| 好男人电影高清在线观看| 国产亚洲欧美精品永久| 国产精品日韩av在线免费观看 | 99精品久久久久人妻精品| 在线观看一区二区三区| 国产1区2区3区精品| 一级,二级,三级黄色视频| 日本五十路高清| 久久热在线av| 久久人妻熟女aⅴ| 欧美日韩黄片免| 国产成人欧美在线观看| 99国产精品免费福利视频| 不卡av一区二区三区| 99香蕉大伊视频| avwww免费| 精品卡一卡二卡四卡免费| 嫁个100分男人电影在线观看| 亚洲国产精品sss在线观看| 久久青草综合色| 亚洲国产欧美一区二区综合| 亚洲少妇的诱惑av| 九色国产91popny在线| 51午夜福利影视在线观看| 黄色 视频免费看| √禁漫天堂资源中文www| 91成年电影在线观看| 亚洲国产高清在线一区二区三 | 国产区一区二久久| 中文字幕人成人乱码亚洲影| 亚洲av电影不卡..在线观看| 少妇被粗大的猛进出69影院| 伦理电影免费视频| 在线免费观看的www视频| 成人18禁高潮啪啪吃奶动态图| 午夜免费观看网址| 久久久久久久久免费视频了| 日韩欧美三级三区| 级片在线观看| 中文字幕人妻丝袜一区二区| 久久青草综合色| 亚洲av电影在线进入| 欧美绝顶高潮抽搐喷水| av网站免费在线观看视频| 国产亚洲精品久久久久久毛片| 国产欧美日韩一区二区精品| 老汉色∧v一级毛片| 老司机午夜福利在线观看视频| av有码第一页| 一区二区三区激情视频| 久久草成人影院| 久久精品人人爽人人爽视色| 久久精品91蜜桃| 国产激情久久老熟女| or卡值多少钱| 欧美亚洲日本最大视频资源| 色尼玛亚洲综合影院| 国产伦人伦偷精品视频|