• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON APPROXIMATE EFFICIENCY FOR NONSMOOTH ROBUST VECTOR OPTIMIZATION PROBLEMS?

    2020-08-02 05:29:30TadeuszANTCZAK

    Tadeusz ANTCZAK

    Faculty of Mathematics and Computer Science, University of Lód′z, Banacha 22, 90-238 Lódz, Poland E-mail: tadeusz.antczak@wmii.uni.lodz.pl

    Yogendra PANDEY

    Department of Mathematics, Satish Chandra College, Ballia 277001, India

    Vinay SINGH

    Department of Mathematics, National Institute of Technology, Aizawl-796012, Mizoram, India

    Shashi Kant MISHRA

    Department of Mathematics, Banaras Hindu University, Varanasi-221005, India

    Abstract In this article,we use the robust optimization approach(also called the worst-case approach) for finding ?-efficient solutions of the robust multiobjective optimization problem defined as a robust (worst-case) counterpart for the considered nonsmooth multiobjective programming problem with the uncertainty in both the objective and constraint functions.Namely, we establish both necessary and sufficient optimality conditions for a feasible solution to be an ?-efficient solution (an approximate efficient solution) of the considered robust multiobjective optimization problem. We also use a scalarizing method in proving these optimality conditions.

    Key words Robust optimization approach; robust multiobjective optimization; ?-efficient solution; ?-optimality conditions; scalarization

    1 Introduction

    Robust optimization methodology (the worst-case approach) is a powerful approach for examining and solving optimization problems under data uncertainty. In robust optimization,the data is uncertain but bounded, that is, the data is varying in a given uncertainty set,and we choose the best solution among the robust feasible ones; for detail, we refer to [1–6,9, 12, 20–26, 28, 29, 31, 32, 38]. Ben-Tal et al. [5] introduced the concept of the uncertain linear optimization problem and its robust counterpart, and discussed the computational issues. Also, Bertsimas et al. [6] characterized the robust counterpart of a linear mathematical programming problem with uncertainty set described by an arbitrary norm. Jeyakumar and Li[23, 24] presented basic theory and applications of an uncertain linear mathematical program problem. Jeyakumar and Li [25] derived a robust theorem of the alternative for parameterized convex inequality systems using conjugate analysis and introduced duality theory for convex mathematical programming problems in the face of data uncertainty via robust optimization.Jeyakumar et al. [26] considered a nonlinear optimization problem with face of data uncertainty and established robust KKT necessary and sufficient optimality conditions for a robust minimizer. Furthermore, Jeyakumar et al. [26] introduced robust duality theory for generalized convex mathematical programming problems in the face of data uncertainty within the framework of robust optimization and established robust strong duality between an uncertain nonlinear primal optimization problem and its uncertain Lagrangian dual.

    Robust optimization for solving multiobjective optimization problems with uncertain data is a current topic of research. Kuroiwa and Lee [31] defined three kind of robust efficient solutions and established necessary optimality theorems for weakly and properly robust efficient solutions for the considered uncertain multiobjective optimization problem. Recently, Chuong[9]established the necessary optimality conditions and,under the generalized convexity assumptions, sufficient optimality conditions for a (weakly) robust efficient solution of the considered uncertain multiobjective programming problem. Besides, robust multiobjective optimization with optimality defining by a partial order has been widely applied to solve many practical problems like internet routing, portfolio optimization, energy production scheduling in microgrids, transport, agriculture, industry-specific applications, health care applications, among others (see, for example, [3, 7, 8, 10, 14–17, 27, 30]).

    In recent years, many authors have established epsilon optimality conditions for several kind of optimization problems (see, for example, [13, 18, 19, 32–36, 39, 40]). Lee and Lee [32]established optimality theorems for epsilon solutions of the scalar robust convex optimization problem.

    In this article, we treat the robust approach for the considered uncertain multiobjective programming problem with the uncertainty in both objective and constraint functions which is the worst case approach for finding approximate efficient solutions for such multiobjective optimization problems. In this approach, for the considered uncertain multiobjective optimization problem, its robust (worst-case) counterpart is constructed as an associated robust multiobjective optimization problem. Then, motivated by works of Kuroiwa and Lee [31] and Lee and Lee[32],we derive the ?-efficiency theorem for the considered uncertain multiobjective programming problem by examining its robust (worst-case) counterpart. In other words, we prove necessary and sufficient optimality conditions for a feasible solution to be an ?-efficient solution (an approximate efficient solution) of the robust multiobjective optimization problem.Moreover, we use a scalarizing method in proving these optimality results. In this method,for the robust multiobjective optimization problem, its associated scalar optimization problem is constructed. Then, we prove the equivalence between an approximate efficient solution of the robust multiobjective optimization problem and an approximate solution of its associated scalar optimization problem constructed in the scalarizing method which is used in this article.The ?-efficiency theorem established in this article for the considered uncertain multiobjective programming problem is illustrated by an example of such a vector optimization problem with the uncertainty in both objective and constraint functions.

    2 Preliminaries

    The following convention for equalities and inequalities will be used throughout this article.

    For any vectors x=(x1,...,xn)T,y =(y1,...,yn)Tin Rn,we give the following definitions:

    (i) x=y if and only if xi=yifor all i=1,...,n;

    (ii) x

    (iii) x ≦y if and only if xi≦yifor all i=1,...,n;

    (iv) x ≤y if and only if x ≦y and

    In this section, we provide some definitions and results that we shall use in the sequel.

    The inner product in Rnis defined by 〈x,y〉:=xTy for all x,y ∈Rn: The set C is convex whenever λx+(1 ?λ)y ∈C for all x,y ∈C and any λ ∈[0,1]. The set C ?Rnis a cone if αC ?C for all α ≧0. The indicator function δC:Rn→R ∪{+∞} of a set C is defined by

    A function f :Rn→R∪{+∞}is said to be convex on Rnif the inequality f(λx+(1?λ)y)≦λf(y)is satisfied for all x,y ∈Rnand any λ ∈[0,1].The effective domain of f,denoted by domf,is defined by domf :={x ∈Rn:f(x)<+∞}.The epigraph of the function f :Rn→R∪{+∞},denoted by epif, is defined by

    Let f :Rn→R∪{+∞}be a convex function. The ?-subdifferential of f at∈domf is defined by

    Let f be a proper convex function on Rn. Its conjugate function f?: Rn→R ∪{+∞} is defined at x?∈Rnby

    Clearly, f?is a proper lower semicontinuous convex function and, moreover,

    Proposition 2.1([25, 32]) Let f1: Rn→R be a continuous convex function and f2:Rn→R ∪{+∞} be a proper lower semicontinuous convex function. Then,

    Proposition 2.2([25]) Let fi,i ∈I,(where I is an arbitrary index set)be a proper lower semicontinuous convex function on Rn.Furthermore,assume that there exists∈Rnsuch that. Then,

    Now, let gj(·,vj) : Rn×Rq→R,vj∈Vj?Rq,j = 1,...,m, be convex functions. Then,the set

    is called a robust characteristic cone.

    Proposition 2.3([25]) Let gj: Rn×Rq→R,j = 1,...,m, be a continuous function,such that for each vj∈Vj?Rq,gj(·,vj) is a convex function. Then, the following set

    is a cone.

    Proposition 2.4([25]) Let gj: Rn×Rq→R,j = 1,...,m, be continuous functions and, for each j = 1,...,m,Vj?Rqbe a convex set. Furthermore, assume that, for each vj∈Vj,gj(·,vj) is a convex function on Rnand, for each x ∈Rn,gj(x,·) is a concave function on Vj. Then,

    is a convex cone.

    Proposition 2.5([21, 32]) Let f : Rn→R ∪{+∞} be a proper lower semicontinuous convex function and∈domf. Then,

    Proposition 2.6([25]) Let gj:Rn×Rq→R,j =1,...,m,be continuous functions such that, for each vj∈Vj?Rq,gj(·,vj) be a convex function on Rn. Furthermore, assume that each set Vj,j = 1,...,m, is compact, and there exists∈Rnsuch that gj(,vj) < 0 for any vj∈Vj,j =1,...,m. Then, the set

    is closed.

    3 ?-Optimality Conditions

    In this section, we derive both necessary and sufficient optimality conditions for a feasible solution to be an ?-robust efficient solution of the considered uncertain multiobjective programming problem with the uncertainty in both objective and constraint functions by examining its robust (worst-case) counterpart, that is, its associated robust multiobjective programming problem.

    In this article, we consider an uncertain multiobjective programming problem defined as follows:

    where fi: Rn×Rp→R,i = 1,...,s, and gj: Rn×Rp→R,j = 1,...,m, are continuous functions and ui∈Ui,vj∈Vj, are uncertain parameters,that is,the data vectors uiand vjare not known exactly at the time when the solution has to be determined, Uiand Vjare convex compact subsets of Rpand Rq, respectively.

    Hence, the robust counterpart (RMP) of the uncertain multiobjective programming problem (UMP) is defined as the following multiobjective programming problem:

    Let us denote by S the set of all feasible solutions for the robust multiobjective programming problem (RMP), that is, S ={x ∈Rn:gj(x,vj)≦0,j =1,...,m,?vj∈Vj}.

    Definition 3.1A point x ∈Rnis a robust feasible solution of the considered uncertain robust multiobjective programming problem (RMP) if gj(x,vj)≦0,j =1,...,m,?vj∈Vj.

    Now,we give the definition of ?-efficiency(approximate efficiency)for the defined uncertain robust multiobjective programming problem (RMP) which is, at the same time, a robust ?efficient solution of the original uncertain multiobjective programming problem (UMP).

    Definition 3.2(?-efficient solution of (RMP)) Let ? ∈Rs,? ≧0 be given. A point∈S is said to be an ?-efficient solution of the robust multiobjective programming problem (RMP)(thus, a robust ?-efficient solution of the considered uncertain multiobjective programming problem (UMP)) if there is no a feasible solution x of (RMP) such that

    In this article, we shall assume that, for any ? ∈Rs,? ≧0, the set of ?-efficient solutions of the robust multiobjective programming problem (RMP) is nonempty.

    Now, for the considered uncertain robust multiobjective programming problem(RMP), we define its associated scalar optimization problem.

    Now, we give the definition of a γ-optimal solution of the scalar optimization problem(SMRP?).

    Definition 3.3Let γ be a given nonnegative real number. A feasible pointof the scalar optimization problem (SMRP?) is said to be a γ-optimal solution of the scalar optimization problem (SMRP?) if the inequality

    holds for all feasible solutions of the problem (SMRP?).

    Now, we prove the equivalency between the problems (RMP) and (SMRP?).

    Lemma 3.4Let ? ≧0 be given. Then,∈S is an ?-efficient solution of (RMP) if and only ifis a γ-optimal solution of (SMRP?), where

    ProofLetbe an ?-efficient solution of(RMP). Asis an ?-efficient solution of(RMP),by Definition 3.2, there is no other feasible solution x ∈S such that

    This means that there is no x ∈satisfying both (3.1) and (3.2). Then, by (3.1) and (3.2),it follows that the inequality

    is not fulfilled for any x ∈. Thus,by Definition 3.3,this means thatis a γ-optimal solution of (SMRP?).

    Now, we extend the result established by Jeyakumar and Li (Theorem 2.4 [25]) to the vectorial case.

    Lemma 3.5Let fi(·,ui),i = 1,...,s, be a convex and continuous function and gj:Rn×Rn→R,j =1,...,m, be a continuous function such that, for each vj∈Vj, where Vjis a compact subset of Rq,gj(·,vj) is a convex function. Furthermore, assume that S is nonempty.Then, exactly one of the following two statements holds:

    ProofAssume that condition (ii) is fulfilled. Then, the following relation

    By Proposition 2.2, it follows that

    Then, by Proposition 2.1, (3.7) is equivalent to

    Thus, by the definition of the epigraph, we have

    Hence, by the definition of the conjugate function, (3.9) is equivalent to

    By the definition of an indicator function, it follows that δA?(x) = 0 for any x ∈. Hence,(3.10) is equivalent to F(x) ≧0 for any x ∈. Thus, we have shown that the case when the condition (ii) is fulfilled is equivalent to the fact that the condition (i) is not satisfied. This completes the proof of this lemma.

    Now, we use Lemma 3.5 to prove the next result.

    Theorem 3.6Let fi: Rn×Rp→R,i=1,...,s, be continuous functions such that, for each ui,fi(·,ui) is a convex function. Also, let gj: Rn×Rq→R,j = 1,...,m, be continuous functions such that, for each vj∈Rq,gj(·,vj) is a convex function. Furthermore, assume that the set

    is closed and convex. Then,is a γ-optimal solution of (SMRP?), if and only if there existsuch that the following inequality

    ProofLetbe a γ-optimal solution of(SMRP?). Then,by Definition 3.2,it follows that the inequality F(x) ≧F()?γ holds for all x ∈, whereLet H(x)=F(x)?F()+γ. Then, by the above inequality, the inequality

    Using the definition of the function H, (3.13) can be re-written as follows:

    Thus, (3.14) gives

    Again by using the definition of the conjugate function, (3.15) yields

    By(3.12),it follows that the condition(i) in Lemma 3.5 is not satisfied. Hence,by Lemma 3.5,it follows that the condition (ii) is fulfilled, that is, the relation

    holds. By assumption, the set

    is closed and convex. Thus, (3.17) gives

    By (3.18), it follows that there existsuch that the relation

    holds. Then, there exist t?∈Rn,a ≧0,∈Rn,bi≧0,i = 1,...,s,∈Rn, and cj≧0,j =1,...,m, such that

    Hence, the above relation yields, respectively,

    and

    By (3.19), it follows that

    Combining(3.20)and(3.21),and by the definition of a conjugate function,then we obtain that the relation

    holds for any x ∈Rn. Then, (3.22) yields

    By the definition of a conjugate function for the functionswe have

    By the definition of the function F, it follows that the inequality

    Conversely, assume that there exist≧0,i = 1,...,s,∈Vj,j = 1,...,m, such that inequality (3.11) is fulfilled for any x ∈. As≧0,i = 1,...,s,≧0,j = 1,...,m, and x ∈, (3.11) implies that

    Using Lemma 3.4 and Lemma 3.5, we prove the following ?-efficiency theorem for the considered robust multiobjective programming problem (RMP).

    Theorem 3.7(?-efficiency theorem) Let fi: Rn×Rp→R,i = 1,...,s, be continuous functions such that, for each ui, every function fi(·,ui) is convex. Also, let gj: Rn×Rp→R,j =1,...,m, be continuous functions such that, for each vj∈Rq, every function gj(·,vj) is convex. Furthermore, assume that the setis closed and convex. Then, the following statements are equivalent:

    (i) x ∈S is an ?-efficient solution of the robust multiobjective programming problem(RMP);

    and

    ProofThe equivalency between the conditions (i) and (ii) follows by Theorem 3.6.

    Now, we prove the equivalency between the conditions (ii) and (iii).

    Now, we prove the equivalency of conditions (iii) and (iv).

    Let us assume that the condition (iii) is fulfilled, that is, (3.18) is satisfied. Hence, by(3.18), it follows that there existsuch that the relation

    holds. Then, by Proposition 2.5, it follows that there exist≧0,i=1,...,s,≧0,∈Vj,j =1,...,m, such that

    holds. The above relation implies equivalently that there existsuch that

    and

    Relation (3.25) is equivalent to the fact that there existj =1,...,m, such that

    Hence, (3.27) and (3.26) are precisely the condition (iv).

    Thus, the proof of this theorem is completed.

    In order to illustrate the results established in Theorem 3.7, we give the example of an uncertain multiobjective programming problem with the uncertainty in both objective and constraint functions.

    Example 3.8Consider the following uncertain multiobjective programming problem with the uncertainty in both objective and constraint functions defined as follows:

    where u1∈U1= [0,1],u2∈U2= [0,1],v1∈V1= [], v2∈V2= [?1,0] are uncertain parameters. Its robust counterpart,that is,the uncertain multiobjective programming problem(RMP1), is defined as follows:

    Condition (i)Note that the following inequalities, if at least one of them is strict,

    are not satisfied for any feasible solutionof the robust multiobjective programming problem (RMP1). Hence, by Definition 3.2,= (0,) is, in fact, an ?-efficient solution of(RMP1).

    Condition (ii)LetHence,. Note that the following inequalityis satisfied for all feasible solutions of the associated scalar optimization problem(SRMP?)defined for the robust multiobjective programming problem(RMP).Then,by Definition 3.3,=(0,12)is a γ-optimal solution of the problem (SRMP?).

    Condition (iii)By the definition of the conjugate function, we have

    Hence, by the definition of the epigraph of a function, we have

    By the definition of the epigraph of a function, Proposition 2.1, and (2.4), we have

    Now, we check the condition (iii). Thus, we have

    Condition (iv)In order to check condition (iv), we set

    Taking into account the calculated above ?-subdifferentials of the appropriate functions, we have

    Hence, it follows that

    Furthermore, note that also the second relation in condition (iv) is fulfilled at the considered case. Indeed, we haveThen, we have shown that condition (iv) is also fulfilled.

    4 Conclusions

    In this article, the robust approach is used for finding approximate efficient solutions of the considered multiobjective programming problem with the uncertainty in both objective and constraint functions. Namely, we study the ?-efficiency theorem for the considered uncertain convex multiobjective programming problem by examining its robust(worst-case)counterpart.In other words,we establish both necessary and sufficient optimality conditions for an ?-efficient solution of the robust multiobjective optimization problem. In proving this result, we also use a scalarizing method. Furthermore, the ?-efficiency theorem established in this article is illustrated by the example of a nondifferentiable multiobjective programming problem with the uncertainty in both objective and constraint functions.

    However, some interesting topics for further research remain. Also, it would be interesting to prove similar optimality results for other classes of uncertain multiobjective optimization problems. We shall investigate these questions in subsequent papers.

    脱女人内裤的视频| 精品国产乱码久久久久久小说| 99国产综合亚洲精品| 一二三四社区在线视频社区8| 国产亚洲精品第一综合不卡| 久热爱精品视频在线9| 日本欧美国产在线视频| 高清欧美精品videossex| 欧美久久黑人一区二区| 国产日韩欧美视频二区| 中文欧美无线码| 狠狠婷婷综合久久久久久88av| 宅男免费午夜| 国产成人系列免费观看| 中文字幕制服av| 久热爱精品视频在线9| 777久久人妻少妇嫩草av网站| av电影中文网址| 亚洲国产最新在线播放| av在线播放精品| 在线观看国产h片| 日韩av免费高清视频| 国产精品人妻久久久影院| 爱豆传媒免费全集在线观看| 亚洲国产av影院在线观看| 久久久精品国产亚洲av高清涩受| 观看av在线不卡| 国产一区二区三区av在线| 大香蕉久久成人网| 久久99精品国语久久久| 亚洲精品自拍成人| 久久久亚洲精品成人影院| 最近最新中文字幕大全免费视频 | 免费人妻精品一区二区三区视频| 岛国毛片在线播放| 欧美人与善性xxx| 久久天堂一区二区三区四区| 国产精品香港三级国产av潘金莲 | 后天国语完整版免费观看| 一区二区三区精品91| 欧美日韩成人在线一区二区| 国产黄色免费在线视频| 亚洲黑人精品在线| 纵有疾风起免费观看全集完整版| 中文字幕另类日韩欧美亚洲嫩草| 国产在线免费精品| 久久女婷五月综合色啪小说| 女人久久www免费人成看片| 久久狼人影院| 乱人伦中国视频| 免费在线观看视频国产中文字幕亚洲 | √禁漫天堂资源中文www| 少妇人妻 视频| 菩萨蛮人人尽说江南好唐韦庄| 日韩大码丰满熟妇| 又大又爽又粗| 国产成人影院久久av| 亚洲五月婷婷丁香| 一区在线观看完整版| 中文字幕人妻熟女乱码| 国产国语露脸激情在线看| 免费不卡黄色视频| e午夜精品久久久久久久| 亚洲免费av在线视频| 啦啦啦在线观看免费高清www| 国产成人91sexporn| 精品久久久久久电影网| 亚洲av男天堂| 精品欧美一区二区三区在线| 亚洲精品国产一区二区精华液| 各种免费的搞黄视频| √禁漫天堂资源中文www| 啦啦啦视频在线资源免费观看| 日日爽夜夜爽网站| 9191精品国产免费久久| 中文字幕精品免费在线观看视频| 亚洲精品国产av成人精品| 老司机影院成人| 老司机在亚洲福利影院| 少妇 在线观看| 亚洲精品中文字幕在线视频| 中文字幕制服av| 精品人妻1区二区| 极品少妇高潮喷水抽搐| h视频一区二区三区| 久热这里只有精品99| 国产精品久久久人人做人人爽| 天天躁狠狠躁夜夜躁狠狠躁| 少妇粗大呻吟视频| 久久精品国产a三级三级三级| 亚洲 国产 在线| 日本91视频免费播放| 欧美97在线视频| 热99久久久久精品小说推荐| 国产精品久久久人人做人人爽| 欧美97在线视频| 十八禁高潮呻吟视频| 女人被躁到高潮嗷嗷叫费观| 亚洲中文字幕日韩| 国产精品一区二区精品视频观看| 热re99久久国产66热| 2021少妇久久久久久久久久久| 国产人伦9x9x在线观看| 中文字幕色久视频| 国产精品亚洲av一区麻豆| 菩萨蛮人人尽说江南好唐韦庄| 日本wwww免费看| 在线av久久热| 欧美大码av| 国产成人免费无遮挡视频| 99久久99久久久精品蜜桃| 免费日韩欧美在线观看| 亚洲精品成人av观看孕妇| 激情视频va一区二区三区| 老汉色∧v一级毛片| 黑人巨大精品欧美一区二区蜜桃| 丝袜在线中文字幕| 老熟女久久久| 青春草视频在线免费观看| 免费看不卡的av| 成年人免费黄色播放视频| 久久中文字幕一级| 亚洲黑人精品在线| 波多野结衣一区麻豆| 国产成人欧美在线观看 | 久久久久久久久久久久大奶| 欧美亚洲 丝袜 人妻 在线| 操出白浆在线播放| 爱豆传媒免费全集在线观看| 看免费av毛片| 黄色毛片三级朝国网站| 激情视频va一区二区三区| 日韩制服丝袜自拍偷拍| avwww免费| 亚洲国产日韩一区二区| 国产精品一区二区在线观看99| 日本a在线网址| 欧美日韩成人在线一区二区| 国产精品秋霞免费鲁丝片| 亚洲国产欧美在线一区| 伦理电影免费视频| 亚洲色图综合在线观看| 欧美性长视频在线观看| 一级片'在线观看视频| 母亲3免费完整高清在线观看| 免费人妻精品一区二区三区视频| 操出白浆在线播放| 成年女人毛片免费观看观看9 | 精品国产一区二区三区久久久樱花| 欧美精品一区二区大全| 久久性视频一级片| 首页视频小说图片口味搜索 | 精品亚洲成a人片在线观看| 国产av一区二区精品久久| 久久鲁丝午夜福利片| 国产伦人伦偷精品视频| 大香蕉久久成人网| 久久久久久亚洲精品国产蜜桃av| 国产日韩一区二区三区精品不卡| 亚洲成人手机| 精品福利观看| 午夜视频精品福利| 日韩 欧美 亚洲 中文字幕| 国产欧美日韩精品亚洲av| 肉色欧美久久久久久久蜜桃| 嫁个100分男人电影在线观看 | 日韩一本色道免费dvd| 人人妻人人澡人人爽人人夜夜| 亚洲中文av在线| 亚洲欧美一区二区三区黑人| 国产一区二区三区av在线| 69精品国产乱码久久久| av又黄又爽大尺度在线免费看| 大码成人一级视频| 男女高潮啪啪啪动态图| 日日夜夜操网爽| 欧美乱码精品一区二区三区| 一级黄片播放器| 超碰97精品在线观看| 好男人电影高清在线观看| 精品一品国产午夜福利视频| 欧美变态另类bdsm刘玥| 久久亚洲国产成人精品v| 国产免费福利视频在线观看| 一级片'在线观看视频| 午夜91福利影院| 成人国产一区最新在线观看 | 婷婷丁香在线五月| 一区二区三区四区激情视频| 水蜜桃什么品种好| videos熟女内射| 国产又色又爽无遮挡免| 国产亚洲精品久久久久5区| 久9热在线精品视频| 亚洲欧洲日产国产| 国产1区2区3区精品| 国产精品一二三区在线看| 精品亚洲乱码少妇综合久久| 人妻一区二区av| 亚洲成av片中文字幕在线观看| 90打野战视频偷拍视频| 国产熟女欧美一区二区| a级毛片在线看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 首页视频小说图片口味搜索 | 丝袜脚勾引网站| 女人被躁到高潮嗷嗷叫费观| 国产成人系列免费观看| 国产91精品成人一区二区三区 | 黑人猛操日本美女一级片| 成年人黄色毛片网站| bbb黄色大片| 久久午夜综合久久蜜桃| 亚洲欧美清纯卡通| 欧美成人午夜精品| 一个人免费看片子| 视频区欧美日本亚洲| 亚洲五月婷婷丁香| 国产精品欧美亚洲77777| 最近手机中文字幕大全| 少妇精品久久久久久久| 欧美激情极品国产一区二区三区| 制服诱惑二区| 国语对白做爰xxxⅹ性视频网站| 男人添女人高潮全过程视频| 只有这里有精品99| 精品高清国产在线一区| 巨乳人妻的诱惑在线观看| 日韩人妻精品一区2区三区| 国产亚洲午夜精品一区二区久久| 亚洲成人手机| 亚洲第一av免费看| 久久免费观看电影| 久久热在线av| 国产日韩欧美视频二区| 深夜精品福利| av网站免费在线观看视频| 成人国语在线视频| 真人做人爱边吃奶动态| 黄网站色视频无遮挡免费观看| 久久久国产欧美日韩av| 亚洲av日韩精品久久久久久密 | 菩萨蛮人人尽说江南好唐韦庄| 一区二区三区四区激情视频| 亚洲国产成人一精品久久久| 国产欧美亚洲国产| 韩国高清视频一区二区三区| 亚洲精品一二三| 91国产中文字幕| 精品少妇久久久久久888优播| 免费在线观看影片大全网站 | 国产精品秋霞免费鲁丝片| 9191精品国产免费久久| 国产亚洲精品第一综合不卡| 中文字幕人妻丝袜制服| 日本猛色少妇xxxxx猛交久久| 日韩 亚洲 欧美在线| 久久鲁丝午夜福利片| 日韩一卡2卡3卡4卡2021年| 国产成人精品久久二区二区免费| 99久久人妻综合| 日韩人妻精品一区2区三区| 欧美日韩国产mv在线观看视频| 人妻一区二区av| 高清av免费在线| av天堂在线播放| 午夜av观看不卡| 欧美精品亚洲一区二区| 亚洲av日韩在线播放| 亚洲成人手机| 女性生殖器流出的白浆| 脱女人内裤的视频| 一本一本久久a久久精品综合妖精| 啦啦啦在线观看免费高清www| 成年av动漫网址| 成人手机av| 国产黄色视频一区二区在线观看| 久久中文字幕一级| 精品卡一卡二卡四卡免费| 亚洲国产精品999| 国产男女内射视频| 日本欧美视频一区| 亚洲av成人精品一二三区| 热re99久久精品国产66热6| 母亲3免费完整高清在线观看| 丰满少妇做爰视频| 久久女婷五月综合色啪小说| 91精品伊人久久大香线蕉| 深夜精品福利| 青青草视频在线视频观看| 人妻 亚洲 视频| 日韩中文字幕视频在线看片| 国产精品麻豆人妻色哟哟久久| 日本一区二区免费在线视频| 三上悠亚av全集在线观看| 亚洲精品久久久久久婷婷小说| 热99国产精品久久久久久7| 精品久久久久久久毛片微露脸 | 亚洲精品国产av成人精品| 国产亚洲欧美在线一区二区| 亚洲,一卡二卡三卡| 亚洲男人天堂网一区| √禁漫天堂资源中文www| 国产一区有黄有色的免费视频| 亚洲av成人精品一二三区| 国产成人精品久久二区二区免费| 午夜福利,免费看| 国产精品欧美亚洲77777| 在线观看一区二区三区激情| 成年女人毛片免费观看观看9 | 后天国语完整版免费观看| 又紧又爽又黄一区二区| 1024视频免费在线观看| 一级黄色大片毛片| cao死你这个sao货| 手机成人av网站| 国产伦人伦偷精品视频| 免费在线观看视频国产中文字幕亚洲 | 十八禁高潮呻吟视频| 别揉我奶头~嗯~啊~动态视频 | a级片在线免费高清观看视频| 成人三级做爰电影| 免费少妇av软件| 在线av久久热| 在线观看一区二区三区激情| 国产男人的电影天堂91| 悠悠久久av| 男女之事视频高清在线观看 | 欧美国产精品va在线观看不卡| 午夜影院在线不卡| 天天躁夜夜躁狠狠久久av| 高潮久久久久久久久久久不卡| 亚洲图色成人| 电影成人av| 免费一级毛片在线播放高清视频 | 国产色视频综合| 欧美精品av麻豆av| www.自偷自拍.com| 狠狠婷婷综合久久久久久88av| 国产一区亚洲一区在线观看| 国产精品免费视频内射| 欧美日本中文国产一区发布| 国产一区二区在线观看av| 亚洲欧美一区二区三区国产| 亚洲成av片中文字幕在线观看| 一区二区av电影网| 亚洲七黄色美女视频| 夫妻午夜视频| 亚洲 国产 在线| 久久性视频一级片| 久热爱精品视频在线9| 国产伦人伦偷精品视频| 久久青草综合色| 午夜免费观看性视频| 少妇的丰满在线观看| 韩国精品一区二区三区| 男人操女人黄网站| 99热全是精品| 久久人妻福利社区极品人妻图片 | 亚洲图色成人| 久久精品成人免费网站| av电影中文网址| 久久鲁丝午夜福利片| 搡老乐熟女国产| 美女中出高潮动态图| 一区二区av电影网| 丰满饥渴人妻一区二区三| 欧美在线一区亚洲| 好男人视频免费观看在线| 亚洲精品美女久久av网站| av天堂久久9| 午夜影院在线不卡| 国产极品粉嫩免费观看在线| 一级黄片播放器| 男女免费视频国产| 午夜日韩欧美国产| 在线精品无人区一区二区三| 亚洲国产欧美在线一区| 久久久久久免费高清国产稀缺| 免费女性裸体啪啪无遮挡网站| 丰满迷人的少妇在线观看| av在线老鸭窝| 日本av免费视频播放| 久久青草综合色| 日韩 欧美 亚洲 中文字幕| 欧美人与性动交α欧美精品济南到| 99久久综合免费| 久久久欧美国产精品| 精品国产一区二区久久| 男人爽女人下面视频在线观看| 亚洲精品美女久久久久99蜜臀 | 午夜两性在线视频| 性高湖久久久久久久久免费观看| 久久热在线av| 丝袜在线中文字幕| 天堂中文最新版在线下载| 精品一区二区三区av网在线观看 | 人体艺术视频欧美日本| 黄色毛片三级朝国网站| 久久av网站| 国产精品 欧美亚洲| 精品亚洲成国产av| 国产成人一区二区三区免费视频网站 | 精品久久久精品久久久| 国产欧美日韩一区二区三 | 国产色视频综合| 久久人人爽人人片av| 亚洲欧美一区二区三区黑人| av国产久精品久网站免费入址| www.999成人在线观看| av网站在线播放免费| 日本五十路高清| 日本av免费视频播放| 亚洲精品第二区| 最近最新中文字幕大全免费视频 | 18禁国产床啪视频网站| 免费不卡黄色视频| 午夜视频精品福利| 这个男人来自地球电影免费观看| 国产成人免费无遮挡视频| kizo精华| 少妇的丰满在线观看| 欧美日韩黄片免| 精品免费久久久久久久清纯 | 国产精品久久久久久精品古装| 麻豆av在线久日| 久久久久网色| 国产亚洲精品久久久久5区| 精品少妇内射三级| 中文字幕人妻丝袜一区二区| 2018国产大陆天天弄谢| 免费黄频网站在线观看国产| 大香蕉久久成人网| 欧美性长视频在线观看| 在线天堂中文资源库| 欧美日韩亚洲国产一区二区在线观看 | 如日韩欧美国产精品一区二区三区| 一级毛片我不卡| 国产伦理片在线播放av一区| 少妇人妻 视频| 国产亚洲av高清不卡| 天堂中文最新版在线下载| 美国免费a级毛片| 国产有黄有色有爽视频| 咕卡用的链子| 最近中文字幕2019免费版| av电影中文网址| 亚洲人成77777在线视频| 91老司机精品| 久久天堂一区二区三区四区| xxx大片免费视频| 亚洲精品国产av蜜桃| 亚洲一卡2卡3卡4卡5卡精品中文| 九色亚洲精品在线播放| 最黄视频免费看| 最新在线观看一区二区三区 | 久久久精品免费免费高清| 18禁黄网站禁片午夜丰满| 一级黄片播放器| 精品免费久久久久久久清纯 | 一本大道久久a久久精品| 90打野战视频偷拍视频| 黄色毛片三级朝国网站| 老汉色av国产亚洲站长工具| 中文字幕最新亚洲高清| 极品少妇高潮喷水抽搐| 婷婷色麻豆天堂久久| 手机成人av网站| 亚洲七黄色美女视频| 老司机亚洲免费影院| 精品免费久久久久久久清纯 | 国产精品久久久久久精品古装| 日韩大码丰满熟妇| 一边摸一边做爽爽视频免费| 日韩一本色道免费dvd| 国产精品一区二区精品视频观看| cao死你这个sao货| 亚洲欧美中文字幕日韩二区| 欧美在线一区亚洲| 曰老女人黄片| 免费观看人在逋| 亚洲欧美清纯卡通| 精品国产一区二区三区久久久樱花| 精品卡一卡二卡四卡免费| 久久精品人人爽人人爽视色| 亚洲成人手机| 久久精品人人爽人人爽视色| 91精品国产国语对白视频| 国产在线视频一区二区| 日本av手机在线免费观看| 国产成人一区二区在线| 50天的宝宝边吃奶边哭怎么回事| 亚洲第一青青草原| 成人18禁高潮啪啪吃奶动态图| 久久久欧美国产精品| 伦理电影免费视频| 国产欧美日韩一区二区三 | 免费不卡黄色视频| 国产在线一区二区三区精| 日韩伦理黄色片| 久久久精品区二区三区| 国产精品成人在线| 少妇 在线观看| 性色av乱码一区二区三区2| 一本大道久久a久久精品| 狠狠婷婷综合久久久久久88av| 午夜日韩欧美国产| 亚洲精品美女久久久久99蜜臀 | 精品人妻一区二区三区麻豆| 亚洲人成电影免费在线| 亚洲精品在线美女| 国产成人影院久久av| 国产亚洲一区二区精品| 在线观看免费日韩欧美大片| 午夜两性在线视频| 两性夫妻黄色片| 丝袜在线中文字幕| 日韩伦理黄色片| 精品亚洲乱码少妇综合久久| 少妇人妻久久综合中文| 91成人精品电影| 国产精品人妻久久久影院| 欧美在线黄色| 夫妻午夜视频| 宅男免费午夜| 午夜免费鲁丝| 女性生殖器流出的白浆| 国产成人精品久久二区二区免费| 国产精品久久久久成人av| 国产免费福利视频在线观看| www日本在线高清视频| 伊人亚洲综合成人网| 国产黄色视频一区二区在线观看| 伊人亚洲综合成人网| 久久国产精品影院| 成年人黄色毛片网站| 女人被躁到高潮嗷嗷叫费观| 午夜老司机福利片| videos熟女内射| 亚洲精品乱久久久久久| 一二三四在线观看免费中文在| 日韩制服丝袜自拍偷拍| 亚洲人成电影免费在线| 热re99久久精品国产66热6| 国产黄色免费在线视频| 国产老妇伦熟女老妇高清| 午夜福利在线免费观看网站| 91精品伊人久久大香线蕉| 老司机影院毛片| 不卡av一区二区三区| 性色av乱码一区二区三区2| av不卡在线播放| 伊人亚洲综合成人网| 亚洲中文字幕日韩| 国产精品一国产av| 飞空精品影院首页| 精品一区二区三区四区五区乱码 | 考比视频在线观看| 黄片播放在线免费| 岛国毛片在线播放| av国产久精品久网站免费入址| 美女脱内裤让男人舔精品视频| 免费在线观看视频国产中文字幕亚洲 | 国产无遮挡羞羞视频在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲国产欧美日韩在线播放| 午夜老司机福利片| 国产xxxxx性猛交| 在线观看国产h片| 国产精品九九99| 婷婷色综合www| 亚洲激情五月婷婷啪啪| 国产成人欧美| 操美女的视频在线观看| 亚洲第一av免费看| √禁漫天堂资源中文www| 看免费成人av毛片| 亚洲专区国产一区二区| 在线av久久热| 国产欧美亚洲国产| 亚洲欧美日韩另类电影网站| 亚洲精品乱久久久久久| 九草在线视频观看| 亚洲精品第二区| 可以免费在线观看a视频的电影网站| 高清视频免费观看一区二区| 亚洲国产精品成人久久小说| 精品久久久久久电影网| 人人妻人人爽人人添夜夜欢视频| 五月天丁香电影| 久久这里只有精品19| 亚洲男人天堂网一区| 手机成人av网站| av片东京热男人的天堂| 亚洲精品美女久久av网站| 少妇 在线观看| 成年女人毛片免费观看观看9 | 日韩制服骚丝袜av| 久久国产精品男人的天堂亚洲| 丰满人妻熟妇乱又伦精品不卡| 欧美老熟妇乱子伦牲交| 久久久久久久精品精品| 国产高清不卡午夜福利| 国产精品99久久99久久久不卡| 久久精品成人免费网站| 18禁观看日本| 桃花免费在线播放| 精品人妻在线不人妻| 啦啦啦中文免费视频观看日本| 国产熟女欧美一区二区| 国产精品免费视频内射| 日本午夜av视频| 女人高潮潮喷娇喘18禁视频| 男女高潮啪啪啪动态图| 女性生殖器流出的白浆|