• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON NEW APPROXIMATIONS FOR GENERALIZED CAUCHY FUNCTIONAL EQUATIONS USING BRZDE?K AND CIEPLI′NSKI’S FIXED POINT THEOREMS IN 2-BANACH SPACES?

    2020-08-02 05:27:10LaddawanAIEMSOMBOONWutipholSINTUNAVARAT

    Laddawan AIEMSOMBOON Wutiphol SINTUNAVARAT

    Department of Mathematics and Statistics, Faculty of Science and Technology,Thammasat University Rangsit Center, Pathumthani 12121, Thailand

    E-mail: Laddawan Aiemsomboon@hotmail.com; wutiphol@mathstat.sci.tu.ac.th

    Abstract In this work, we apply the Brzd?ek and Ciepli′nski’s fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form where a,b ∈N and f is a mapping from a commutative group (G,+) to a 2-Banach space(Y, ). Our results are generalizations of main results of Brzd?ek and Ciepli′nski [J Brzd?ek,K Ciepli′nski. On a fixed point theorem in 2-normed spaces and some of its applications.Acta Mathematica Scientia, 2018, 38B(2): 377–390].

    Key words Fixed point theorem; generalized Cauchy functional equation; 2-normed space;stability

    1 Introduction and Preliminaries

    Throughout this article, the pairs (G,+) and (Y,) denote a commutative group and a 2-normed space, respectively. Also, N stands for the set of all positive integers, N0:=N ∪{0},R+:=[0,∞), and BAdenotes the family of all functions from a set A into a set B.

    In the mid 1960s,the concept of a 2-normed space and the theory of 2-normed spaces were first introduced by G¨ahler[10]. Next,G¨ahler[11]and White[20]studied the theory of 2-Banach space.

    Definition 1.1Let X be a real vector space with dim X ≥2. A function:X×X →R+is called a 2-norm on X if it satisfies the following conditions for all x,y,z ∈X and α ∈R:

    Example 1.2Let X =R2and:X ×X →R+be defined by

    for all x=(x1,x2),y =(y1,y2)∈R2. Then,is a 2-norm on R2.

    Example 1.3Let X =R3and:X ×X →R+be defined by

    for all x=(x1,x2,x3),y =(y1,y2,y3)∈R3. Then,is a 2-norm on R3.

    Definition 1.4A sequence {xn} in a 2-normed space (X,) is called a Cauchy sequence if there are linearly dependent y,z ∈X such that

    whereas {xn} is said to be convergent if there exists a point x ∈X (called a limit of this sequence and denoted bywithfor all y ∈X.

    Definition 1.5A 2-normed space in which every Cauchy sequence is convergent is called a 2-Banach space.

    The following lemma is derived from the fact that every convergent sequence has exactly one limit and properties of the limit.

    Lemma 1.6([8]) Suppose that X is a 2-normed space. If x,y1,y2∈X,y1,y2are linearly independent and

    then x=0.

    Lemma 1.7([8]) Suppose that X is a 2-normed space. If {xn} is a convergent sequence in X, then

    for all y ∈X.

    On the other hand, the stability theory for functional equations was initiated by a question of Ulam [19] in 1940 as follows:

    QuestionLet (G1,?) be a groups and (G2,?,d) be a metric group with a metric d :G2×G2→[0,∞). Given ? > 0, does there exist a δ > 0 such that if a function h : G1→G2satisfies the inequality

    for all x,y ∈G1, then there is a homomorphism H :G1→G2with

    for all x ∈G1?

    Afterward,Hyers[13]gave a partial answer to Ulam’s question and established the stability result as follows:

    Theorem 1.8([13]) Let E1and E2be two Banach spaces and f :E1→E2be a function such that

    for some δ >0 and for all x,y ∈E1. Then, the limit

    exists for each x ∈E1, and a mapping A : E1→E2defined by (1.2) is the unique additive function such that

    for all x ∈E1. Moreover, if f(tx) is continuous in t for each fixed x ∈E1, then the function A is linear.

    In view of this result, the additive Cauchy equation f(x+y)=f(x)+f(y) is said to have the Ulam-Hyers stability on (E1,E2) if for each function f :E1→E2satisfying the inequality(1.1) for some δ > 0 and for all x,y ∈E1, there exists an additive function A : E1→E2such that f ?A is bounded on E1. Next, Aoki [4] and also independently Rassias [17] obtained the following theorem.

    Theorem 1.9([17]) Let E1and E2be two Banach spaces and f :E1→E2be a function.If there is a real number p such that 0 ≤p<1 and f satisfies the following inequality

    for some θ ≥0 and for all x,y ∈E1, then there exists a unique additive mapping A:E1→E2such that

    for each x ∈E1. Moreover, if f(tx) is continuous in t for each fixed x ∈E1, then the function A is linear.

    However, Aoki did not prove the last part of Theorem 1.9, that is, if f(tx) is continuous in t for each fixed x ∈E1, then the function A is linear. Later, Rassias [18] noted that the proof of Theorem 1.9 can be applied to the case p<0. Afterwards,Gajda[9]complemented Rassias’result (Theorem 1.9) in the case of p>1 and gave an example to show that Theorem 1.9 fails when p=1.

    Theorem 1.10([9]) Let E1be a normed space,E2be a Banach space, and f :E1→E2be a function. If there is a real number p such thatand f satisfies the functional inequality

    for some θ ≥0 and for all x,y ∈E1?{0}, then there exists a unique additive mapping A:E1→E2such that

    for each x ∈E1?{0}. Moreover, if f(tx) is continuous in t for each fixed x ∈E1?{0}, then the function A is linear.

    In 1994, Theorem 1.10 was generalized by Gˇavrut?a [12] by replacing the right hand side of(1.3) in Theorem 1.10 by a general control function as follows:

    Theorem 1.11([12]) Let G be an commutative group, E be a Banach space, and φ :G →E be a function satisfying

    for all x,y ∈G. If f :G →E satisfies the functional inequality

    for all x,y ∈G, then there exists a unique additive mapping A:G →E such that

    for all x ∈G.

    In 2013, Brzd?ek and Ciepli′nski gave stability and hyperstability results for the Cauchy functional equation up to the case of p ∈R as follows.

    Theorem 1.12([7]) Let E1and E2be normed spaces and f : E1→E2be a function.Assume that there is a real number p such that p≠1 and f satisfies the following inequality

    for some θ ≥0 and for all x,y ∈E1?{0}.

    ? If p ≥0 and E2is complete, then there exists a unique additive mapping A : E1→E2such that

    for each x ∈E1?{0}.

    ? If p<0, then f satisfies

    for each x,y ∈E1.

    This theorem shows that we obtain the stability results of the Cauchy functional equation in the case p ≥0 while we receive the hyperstability results of the Cauchy functional equation in the case p<0.

    Recently, Brzd?ek and Ciepli′nski [8] prove the fixed point theorem in 2-Banach spaces and gave its applications to the stability of the Cauchy functional equation in 2-Banach spaces.Here, we give the main stability result of Brzd?ek and Ciepli′nski [8] as follows.

    For a group (G,?), AutG denote the family of all its automorphisms by

    for all x ∈G, u ∈GGand

    for all x ∈G and for all u ∈GG, where a,b ∈N.

    Theorem 1.13([8]) Let (G,+) be a commutative group,(Y,)be a 2-Banach space,and Y0be a subset of Y containing two linearly independent vectors, and h:G0×G0×Y0→R+be a function such that

    where s(u):=inf{t ∈R+: h(nx,ny,z)≤th(x,y,z) for all x,y ∈G0,z ∈Y0} for u ∈AutG. If f :G →Y satisfies the following inequality

    for all x,y ∈G0,z ∈Y0, then, for any nonempty and commutative U ?M(G), there exists a unique generalized Cauchy function T :G →Y such that

    for all x ∈G0and z ∈Y0, where

    Nowadays,several extensions of the stability and hyperstability results of the Cauchy functional equation have been investigated by many mathematicians. One of such extensions can be considered as the generalized form of the Cauchy functional equation(see[1,3,5,7,14–16]).

    Inspired by the above facts, we are interested in studying the stability of the generalized Cauchy functional equation of the form

    where a,b ∈N and f is a mapping from a commutative semigroup (G,+) to a 2-normed space(Y,). Our results are extensions of main results of Brzd?ek and Ciepli′nski [8].

    2 Auxiliary Tools

    In a few decades, many mathematicians investigated several stability results of various functional equations by using the fixed point method in many spaces. For instance, Brzdek [6]proved the Ulam’s type stability of the additivity Cauchy functional equation of the form

    where f is a mapping from a commutative semigroup (G1,?) to a commutative group (G2,?),by using the following fixed point theorem in metric spaces.

    Theorem 2.1([6]) Let X be a nonempty set, (Y,d) be a complete metric space, and f1,f2: X →X be given mappings. Assume that T : YX→YXis an operator satisfying the inequality

    for all ξ,μ ∈YXand x ∈X. Suppose that there exist functions ε : X →R+and ? : X →Y such that for each x ∈X, we have

    and

    for all x ∈X.

    Afterwards,Aiemsomboon and Sintunavarat[2]used the same fixed point theorem with[6]for proving the stability result of the generalized Cauchy functional equation of the form

    where a,b ∈N and f is a mapping from a commutative semigroup (G1,?) to a commutative group (G2,?), which is the generalized Brzdek’s result in [6].

    In 2018, Brzd?ek and Ciepli′nski [8] proved the stability of the Cauchy functional equation in 2-Banach spaces by using the following fixed point result.

    Theorem 2.2([8]) Let U be a nonempty set, (Y,) be a 2-Banach space, and Y0be a subset of Y containing two linearly independent vectors, k ∈N, fi: U →U, gi: Y0→Y0,and Li: U ×Y0→R+are given mappings for i = 1,2,··· ,k. Suppose that T : YU→YUis an operator satisfying the inequality

    for all ξ,μ ∈YU, x ∈U, and y ∈Y0. Assume that there are functions ε : U ×Y0→R+and ?:U →Y fulfil the following conditions for each x ∈U and y ∈Y0:

    and

    for all x ∈U and y ∈Y0.

    3 Approximation of the Generalized Cauchy Functional Equation(1.6)

    For a group (G,?), AutG denote the family of all its automorphisms by

    for all x ∈X, u ∈GGand

    for all x ∈G and for all u ∈GG, where a,b ∈N and i is an identity function from G into its self.

    Theorem 3.1Let a,b be two fixed natural numbers, (G,+) be a commutative group such thatand aG0,bG0?G0, (Y,) be a 2-Banach space, and Y0be a subset of Y containing two linearly independent vectors, and h : G0×G0×Y0→R+be a function such that

    where s(u) := inf{t ∈R+: h(ux,uy,z) ≤th(x,y,z) for all x,y ∈G0,z ∈Y0} for u ∈AutG.

    Suppose that f :G →Y satisfies the following inequality

    for all x,y ∈G0and z ∈Y0. Then, for any nonempty and commutative U ?M(G), there exists a unique generalized Cauchy function T :G →Y such that

    for all x ∈G0and for all z ∈Y0, where

    ProofFix a nonempty and commutative U ?M(G). First of all, we will show the first important fact for going to the next step. Note that if u ∈U ?M(G), then we have u,u′∈AutG. This implies that ux,u′x ∈G0for all x ∈G0. It follows from aG0,bG0?G0that

    for all x ∈G0.

    On the basis of the above fact, for each u ∈U, x ∈G0, and z ∈Y0, replacing x by u′x and y by ux in (3.1), we obtain

    For each u ∈U, we define operators Tu:YG0→YG0andby

    Then, it is easily seen that, for each u ∈U, Λ := Λuhas the form described in (2.4) with U := G0, k = 2, L1(x,z) = a,L2(x,z) = b,g1(z) = z = g2(z), f1(x) = u′x, and f2(x) = ux.

    Then, inequality (3.3) follows that

    and

    for all u ∈U,ξ,μ∈YG0, x ∈G0, z ∈Y0. Consequently, for each u ∈U, condition (2.3) is valid with T :=Tu.

    By the definition of s(u), we have

    for all u ∈U, x,y ∈G0, and z ∈Y0. Next, we will show that

    for all n ∈N0, u ∈U, x ∈G0, and z ∈Y0. It is easy to see that condition (3.8)holds for n=0.

    From (3.4), we have

    for all u ∈U, x ∈G0, and z ∈Y0. From the above relation, we obtain

    for all u ∈U, x ∈G0, and z ∈Y0. In the same way, we get

    for all n ∈N0, u ∈U, x ∈G0, and z ∈Y0. For u ∈U, x ∈G0, and z ∈Y0, we get

    Now, we apply Theorem 2.2 with ε=εuand ?=f. According to it, the limit

    exists for each u ∈U and x ∈G0, and

    for all u ∈U, x ∈G0, and z ∈Y0.

    Next, we will show that

    for all n ∈N0, u ∈U, x,y ∈G0, and z ∈Y0. As the case n = 0 is just (3.1), take k ∈N0and assume that (3.12) holds for n=k and every x,y ∈G0with ax+by ∈G0, n ∈N0and u ∈U.

    Then

    By mathematical induction,we have shown that(3.12)holds for every x,y ∈G0with ax+by ∈G0, n ∈N0, and u ∈U. Letting n →∞in (3.12)and using Lemmas 1.6 and 1.7,we obtain the equality

    for all x,y ∈G0, u ∈U and the function Tu: G →Y, defined in this way, is a solution of the equation

    Next, we will prove that each generalized Cauchy function T :G →Y, satisfying the inequality

    with some L> 0, is equal to Tu0for each u0∈U. To this end, fix u0∈U and the generalized Cauchy function T :G →Y satisfying (3.15). Then, we observe that

    where L0= L(1 ?as()?bs(u0))+1 (the case h(x) ≡0 is trivial, so we exclude it here).Observe yet that T and Tu0are solutions to equation (3.14) for all u0∈U. We will show that for each j ∈N0, we have

    The case j = 0 is exactly (3.16). So, fix l ∈N0and assume that (3.17) hold for j =l. In view of (3.16), for each u0∈U, we obtain

    for all x ∈G0and z ∈Y0. Thus, we have shown (3.17). Now, letting j →∞in (3.17) and using Lemmas 1.6, we get

    Thus, we have also proved that Tu=Tu0for each u ∈U, which (in view of (3.11)) yields

    This implies (3.2) with T := Tu; clearly, equality (3.18) means the uniqueness of T as well.

    This completes the proof.

    Remark 3.2Note that for fixed two natural numbers a,b, there are many illustrative examples of a commutative group G such that

    We give some examples of such groups as follows:

    ? a commutative group(R,+), where+is a usual addition,with any two natural numbers a,b;

    ? a commutative group (Z2,+2), where +2is a addition modulo 2, with any two positive odd numbers a,b;

    ? a commutative group (G,·), where

    and · is a matrix multiplication, with any two positive odd numbers a,b:

    ? a commutative group (G,·), where

    and · is a matrix multiplication, with any two natural numbers a,b.

    It is easily seen that Theorem 3.1 yields the subsequent corollary in 2-Banach spaces.

    Corollary 3.3([8]) Let (G,+) be a commutative group such that(Y,) be a 2-Banach space, and Y0be a subset of Y containing two linearly independent vectors, and h:G0×G0×Y0→R+be a function such that

    where s(u) := inf{t ∈R+: h(ux,uy,z) ≤th(x,y,z) for all x,y ∈G0,z ∈Y0} for u ∈AutG.Suppose that f :G →Y satisfies the following inequality

    for all x,y ∈G0and z ∈Y0. Then, for any nonempty and commutative U ?M(G), there exists a unique generalized Cauchy function T :G →Y, such that

    for all x ∈G0and z ∈Y0, where

    ProofThis result can be obtained from Theorem 3.1 by taking a=b=1.

    Remark 3.4By using the same technique in Corollary 6.2 of Brzd?ek and Ciepli′nski[8],we get the generalized results on the inhomogeneous generalized Cauchy equation. Furthermore,we can apply Theorem 3.1 with the same technique in the proofs of Corollaries 6.4–6.7 for obtaining the several generalized results corresponding to the hyperstability outcomes from[8].

    男女边摸边吃奶| 3wmmmm亚洲av在线观看| 欧美少妇被猛烈插入视频| 国产在视频线精品| 亚洲精品乱码久久久v下载方式| 日韩在线高清观看一区二区三区| 日韩av不卡免费在线播放| 久久精品久久久久久噜噜老黄| 成人影院久久| 亚洲精品日本国产第一区| av黄色大香蕉| 国产av精品麻豆| 日本色播在线视频| 国产成人av激情在线播放 | 精品亚洲乱码少妇综合久久| 99国产精品免费福利视频| 欧美xxⅹ黑人| 大片电影免费在线观看免费| a级毛片黄视频| 十八禁高潮呻吟视频| a级毛片黄视频| 午夜福利视频在线观看免费| 欧美日韩综合久久久久久| 亚洲激情五月婷婷啪啪| a级毛片免费高清观看在线播放| 日韩亚洲欧美综合| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产日韩一区二区| 婷婷色综合大香蕉| 国产精品久久久久久av不卡| 中文乱码字字幕精品一区二区三区| 亚洲不卡免费看| 久久鲁丝午夜福利片| 亚洲精品,欧美精品| √禁漫天堂资源中文www| 老司机影院成人| 久久久国产欧美日韩av| 寂寞人妻少妇视频99o| 最近最新中文字幕免费大全7| 亚洲婷婷狠狠爱综合网| av在线app专区| 国产精品.久久久| 亚洲熟女精品中文字幕| 日本爱情动作片www.在线观看| 人妻系列 视频| 精品人妻在线不人妻| 男女免费视频国产| 一级毛片电影观看| 国产亚洲一区二区精品| 日韩成人伦理影院| 国产精品无大码| 国产高清国产精品国产三级| 国产黄片视频在线免费观看| 人人澡人人妻人| av在线老鸭窝| 欧美性感艳星| 五月玫瑰六月丁香| 亚洲综合色惰| 亚洲国产欧美在线一区| 大码成人一级视频| 国产精品欧美亚洲77777| 黑人高潮一二区| 大片电影免费在线观看免费| 久久影院123| 女性被躁到高潮视频| 99久久人妻综合| 青春草视频在线免费观看| 最近中文字幕2019免费版| 18在线观看网站| 七月丁香在线播放| 男女国产视频网站| 欧美精品国产亚洲| 丰满乱子伦码专区| 国内精品宾馆在线| 内地一区二区视频在线| 免费少妇av软件| 赤兔流量卡办理| 高清午夜精品一区二区三区| 少妇丰满av| 亚洲av福利一区| √禁漫天堂资源中文www| 亚洲精品av麻豆狂野| 精品久久久精品久久久| a 毛片基地| 日韩一区二区三区影片| 自线自在国产av| 成年女人在线观看亚洲视频| 欧美激情 高清一区二区三区| 伦精品一区二区三区| 成人亚洲精品一区在线观看| 亚洲av中文av极速乱| 国产伦精品一区二区三区视频9| √禁漫天堂资源中文www| 亚洲婷婷狠狠爱综合网| 久久久精品区二区三区| 久久精品国产鲁丝片午夜精品| 午夜免费男女啪啪视频观看| 欧美日本中文国产一区发布| 熟女电影av网| 欧美日韩综合久久久久久| 日韩av在线免费看完整版不卡| 26uuu在线亚洲综合色| 大片电影免费在线观看免费| 亚洲情色 制服丝袜| 精品久久久精品久久久| 麻豆精品久久久久久蜜桃| 精品亚洲成国产av| 97超碰精品成人国产| 欧美三级亚洲精品| 日本与韩国留学比较| 国产精品人妻久久久影院| 成人影院久久| 国产一区二区在线观看日韩| 精品国产一区二区三区久久久樱花| 国产精品秋霞免费鲁丝片| 视频中文字幕在线观看| 国产乱来视频区| 久久这里有精品视频免费| 男的添女的下面高潮视频| 七月丁香在线播放| 国产综合精华液| 99热6这里只有精品| 精品视频人人做人人爽| 日本-黄色视频高清免费观看| 亚洲国产av影院在线观看| 精品久久国产蜜桃| 丝袜脚勾引网站| 久久这里有精品视频免费| 美女大奶头黄色视频| 爱豆传媒免费全集在线观看| 2021少妇久久久久久久久久久| 纯流量卡能插随身wifi吗| 日韩成人伦理影院| 午夜福利在线观看免费完整高清在| 桃花免费在线播放| 午夜老司机福利剧场| 亚洲国产欧美日韩在线播放| 日韩,欧美,国产一区二区三区| 免费高清在线观看视频在线观看| 日韩大片免费观看网站| 国产成人a∨麻豆精品| 99久久人妻综合| 亚洲精品一二三| 最新的欧美精品一区二区| 午夜久久久在线观看| 亚洲av免费高清在线观看| 晚上一个人看的免费电影| h视频一区二区三区| 国产免费现黄频在线看| 免费高清在线观看视频在线观看| 有码 亚洲区| 亚洲高清免费不卡视频| 91精品国产九色| 91精品一卡2卡3卡4卡| 国产精品99久久久久久久久| 黑丝袜美女国产一区| 国产黄频视频在线观看| 国产视频首页在线观看| 男人爽女人下面视频在线观看| 国产成人精品一,二区| 成人亚洲欧美一区二区av| 日本色播在线视频| 观看美女的网站| 成年人午夜在线观看视频| 纯流量卡能插随身wifi吗| 成年人免费黄色播放视频| 视频在线观看一区二区三区| 九色成人免费人妻av| 夜夜骑夜夜射夜夜干| 亚洲少妇的诱惑av| 女性生殖器流出的白浆| 一区在线观看完整版| 欧美精品国产亚洲| 国模一区二区三区四区视频| 九九爱精品视频在线观看| 国产毛片在线视频| 亚洲天堂av无毛| 国产精品欧美亚洲77777| 国产黄色视频一区二区在线观看| 乱码一卡2卡4卡精品| 国产精品一区二区在线观看99| av免费观看日本| 日日爽夜夜爽网站| 国产日韩欧美亚洲二区| 夜夜看夜夜爽夜夜摸| 国产欧美日韩综合在线一区二区| 最近中文字幕高清免费大全6| 成人二区视频| 伊人久久精品亚洲午夜| 精品久久久久久久久亚洲| 9色porny在线观看| 亚洲欧美中文字幕日韩二区| 亚洲成人一二三区av| 国产一区有黄有色的免费视频| 91精品三级在线观看| 视频在线观看一区二区三区| 欧美精品国产亚洲| 亚洲精品国产av成人精品| 久久久久久久久久久丰满| 少妇高潮的动态图| 视频区图区小说| 啦啦啦中文免费视频观看日本| 欧美3d第一页| 丝瓜视频免费看黄片| 久久狼人影院| 精品熟女少妇av免费看| 制服诱惑二区| 妹子高潮喷水视频| 国产伦精品一区二区三区视频9| 五月玫瑰六月丁香| 久久午夜福利片| 国产精品久久久久久久久免| 97超碰精品成人国产| 国产av精品麻豆| 亚洲色图 男人天堂 中文字幕 | 午夜福利,免费看| 制服丝袜香蕉在线| 桃花免费在线播放| 美女内射精品一级片tv| 亚洲精品国产av蜜桃| 色5月婷婷丁香| 久久久午夜欧美精品| 国产精品人妻久久久影院| 99九九在线精品视频| 高清在线视频一区二区三区| 久久国产精品大桥未久av| 色婷婷av一区二区三区视频| 秋霞在线观看毛片| 国产女主播在线喷水免费视频网站| 人人澡人人妻人| 一级爰片在线观看| 久久精品久久久久久噜噜老黄| a 毛片基地| 波野结衣二区三区在线| 欧美国产精品一级二级三级| 久久久久久久亚洲中文字幕| 日韩不卡一区二区三区视频在线| 欧美亚洲日本最大视频资源| 亚洲精品久久久久久婷婷小说| 国模一区二区三区四区视频| www.av在线官网国产| 亚洲综合色网址| 欧美成人精品欧美一级黄| 亚洲av日韩在线播放| 日韩成人av中文字幕在线观看| 久久久久久久亚洲中文字幕| 亚洲综合色惰| 国产爽快片一区二区三区| 久久免费观看电影| 老司机亚洲免费影院| 免费看光身美女| 国产国拍精品亚洲av在线观看| 亚洲国产成人一精品久久久| 只有这里有精品99| 久久久久精品性色| 亚洲欧美一区二区三区黑人 | 精品久久国产蜜桃| 午夜影院在线不卡| 大陆偷拍与自拍| 中国国产av一级| 精品久久久噜噜| 欧美bdsm另类| 婷婷色av中文字幕| 午夜日本视频在线| 日日爽夜夜爽网站| 国产色爽女视频免费观看| 黄色一级大片看看| 亚洲精品日韩在线中文字幕| 精品一区在线观看国产| 欧美精品亚洲一区二区| 中文字幕久久专区| 亚洲精品久久久久久婷婷小说| 国产国拍精品亚洲av在线观看| 亚洲人与动物交配视频| 亚洲性久久影院| 精品一区二区免费观看| 能在线免费看毛片的网站| 婷婷成人精品国产| 秋霞伦理黄片| freevideosex欧美| 大片电影免费在线观看免费| 国语对白做爰xxxⅹ性视频网站| 亚洲国产毛片av蜜桃av| 人人妻人人澡人人爽人人夜夜| av在线观看视频网站免费| 青春草亚洲视频在线观看| 国产老妇伦熟女老妇高清| 国产在线一区二区三区精| 99国产综合亚洲精品| 日韩大片免费观看网站| 亚洲国产精品国产精品| 日本av免费视频播放| 久久久久精品性色| 欧美激情国产日韩精品一区| 亚洲怡红院男人天堂| 国产日韩欧美视频二区| 欧美激情极品国产一区二区三区 | 91在线精品国自产拍蜜月| 久热这里只有精品99| 亚洲综合色惰| 97在线人人人人妻| 国产精品秋霞免费鲁丝片| 久久久精品区二区三区| 这个男人来自地球电影免费观看 | av在线观看视频网站免费| 美女国产高潮福利片在线看| 国产成人精品久久久久久| 热re99久久国产66热| 国产又色又爽无遮挡免| 伦理电影免费视频| 免费人成在线观看视频色| 一级毛片 在线播放| 九九爱精品视频在线观看| 国产 一区精品| 韩国av在线不卡| 午夜福利网站1000一区二区三区| 国产精品久久久久成人av| 欧美激情极品国产一区二区三区 | 国产亚洲一区二区精品| 在线观看免费日韩欧美大片 | 国产一区二区在线观看日韩| 欧美成人精品欧美一级黄| 蜜臀久久99精品久久宅男| 国产 精品1| 亚洲国产精品一区二区三区在线| 国产精品久久久久成人av| 亚洲人成77777在线视频| 91在线精品国自产拍蜜月| 国产伦理片在线播放av一区| 亚洲国产精品一区三区| 国产毛片在线视频| 黄片播放在线免费| 伦精品一区二区三区| 狂野欧美激情性xxxx在线观看| 国产色婷婷99| 又粗又硬又长又爽又黄的视频| 丁香六月天网| 女人精品久久久久毛片| 日日啪夜夜爽| 我的女老师完整版在线观看| tube8黄色片| 日韩不卡一区二区三区视频在线| 九九爱精品视频在线观看| 国产一区二区在线观看日韩| 成年av动漫网址| 精品久久久久久久久亚洲| 亚洲精品中文字幕在线视频| av免费观看日本| 成人二区视频| 精品久久久久久久久亚洲| 热re99久久精品国产66热6| 蜜臀久久99精品久久宅男| 51国产日韩欧美| 亚洲av欧美aⅴ国产| 99久国产av精品国产电影| 国产av码专区亚洲av| 久久午夜福利片| 亚洲成色77777| 亚洲成人手机| .国产精品久久| 美女内射精品一级片tv| 99视频精品全部免费 在线| 91精品伊人久久大香线蕉| www.av在线官网国产| 国产高清有码在线观看视频| 伦理电影大哥的女人| 啦啦啦视频在线资源免费观看| 伦精品一区二区三区| 国产综合精华液| 欧美+日韩+精品| 国产日韩一区二区三区精品不卡 | 自拍欧美九色日韩亚洲蝌蚪91| 精品亚洲成a人片在线观看| 国产精品秋霞免费鲁丝片| 亚洲美女搞黄在线观看| 日日撸夜夜添| 老女人水多毛片| 少妇被粗大猛烈的视频| 欧美成人午夜免费资源| 亚洲伊人久久精品综合| 亚洲欧美色中文字幕在线| 精品久久蜜臀av无| 久久狼人影院| 国产亚洲最大av| 少妇的逼水好多| 97在线视频观看| 午夜视频国产福利| 亚洲国产精品一区三区| 日本黄色日本黄色录像| 国产成人a∨麻豆精品| 免费av不卡在线播放| 热re99久久国产66热| 欧美最新免费一区二区三区| 我要看黄色一级片免费的| 久久久久久久久久人人人人人人| 高清欧美精品videossex| 午夜福利在线观看免费完整高清在| 日本欧美国产在线视频| 久久久久久久久久久久大奶| 51国产日韩欧美| 18在线观看网站| 天堂俺去俺来也www色官网| 一级,二级,三级黄色视频| 水蜜桃什么品种好| 91国产中文字幕| 亚洲精品456在线播放app| 日本午夜av视频| 精品99又大又爽又粗少妇毛片| 久久久久精品久久久久真实原创| videos熟女内射| 日韩中文字幕视频在线看片| 一级毛片aaaaaa免费看小| 色哟哟·www| 国产不卡av网站在线观看| 日日撸夜夜添| 久久精品熟女亚洲av麻豆精品| √禁漫天堂资源中文www| 免费看不卡的av| 青青草视频在线视频观看| 人妻制服诱惑在线中文字幕| 成人无遮挡网站| 欧美日韩一区二区视频在线观看视频在线| 简卡轻食公司| 人成视频在线观看免费观看| 大片免费播放器 马上看| 午夜视频国产福利| 精品人妻熟女毛片av久久网站| av有码第一页| 亚洲欧美日韩卡通动漫| 男女边摸边吃奶| 成年人午夜在线观看视频| 亚洲欧美精品自产自拍| 丝袜美足系列| 日韩熟女老妇一区二区性免费视频| 日韩成人av中文字幕在线观看| 一个人免费看片子| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av不卡在线观看| 国产黄色免费在线视频| 国产在视频线精品| 精品国产一区二区三区久久久樱花| 国产成人a∨麻豆精品| 久久久久久久久久久免费av| 啦啦啦视频在线资源免费观看| 免费看光身美女| av在线播放精品| 少妇高潮的动态图| 黄色毛片三级朝国网站| 欧美+日韩+精品| 美女xxoo啪啪120秒动态图| 国产精品不卡视频一区二区| 久久久久国产精品人妻一区二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | videossex国产| 国产一区二区三区综合在线观看 | 免费观看无遮挡的男女| 国产毛片在线视频| 激情五月婷婷亚洲| 中文字幕久久专区| 一本—道久久a久久精品蜜桃钙片| 中文字幕亚洲精品专区| 日产精品乱码卡一卡2卡三| 免费黄色在线免费观看| 看非洲黑人一级黄片| 国产日韩欧美亚洲二区| 欧美少妇被猛烈插入视频| 99re6热这里在线精品视频| 大片免费播放器 马上看| 亚洲国产精品一区二区三区在线| 国产亚洲一区二区精品| 亚洲国产精品专区欧美| 男女无遮挡免费网站观看| 美女xxoo啪啪120秒动态图| 性高湖久久久久久久久免费观看| 一本一本综合久久| 国产精品国产三级专区第一集| 纯流量卡能插随身wifi吗| 成人国语在线视频| 蜜桃在线观看..| av国产精品久久久久影院| 插逼视频在线观看| 国产黄色视频一区二区在线观看| 日韩中字成人| 精品久久久噜噜| 丰满迷人的少妇在线观看| 亚洲中文av在线| 久久国内精品自在自线图片| 亚洲av国产av综合av卡| 蜜桃久久精品国产亚洲av| 亚洲国产欧美在线一区| 伦精品一区二区三区| av国产久精品久网站免费入址| 欧美精品一区二区大全| 国产精品蜜桃在线观看| 亚洲一级一片aⅴ在线观看| 国产av一区二区精品久久| av在线播放精品| 狠狠婷婷综合久久久久久88av| 最近2019中文字幕mv第一页| 69精品国产乱码久久久| 欧美一级a爱片免费观看看| 激情五月婷婷亚洲| 成人亚洲精品一区在线观看| 国产精品一区www在线观看| 国产一区二区三区av在线| 丁香六月天网| 国产日韩一区二区三区精品不卡 | 精品少妇久久久久久888优播| 国产熟女欧美一区二区| 午夜激情福利司机影院| 99热国产这里只有精品6| 国产免费又黄又爽又色| 亚洲精品久久午夜乱码| 寂寞人妻少妇视频99o| 欧美3d第一页| 亚洲精品色激情综合| 亚洲国产精品999| 好男人视频免费观看在线| 精品人妻偷拍中文字幕| 91精品国产九色| 黑人高潮一二区| 人人妻人人爽人人添夜夜欢视频| av电影中文网址| 欧美亚洲 丝袜 人妻 在线| 国产在线一区二区三区精| 97在线视频观看| 成人免费观看视频高清| 国产精品一区www在线观看| 久久精品国产自在天天线| 久久狼人影院| 久久 成人 亚洲| 大话2 男鬼变身卡| 欧美 日韩 精品 国产| 爱豆传媒免费全集在线观看| 高清视频免费观看一区二区| 欧美 亚洲 国产 日韩一| 国产一区二区三区av在线| 欧美精品高潮呻吟av久久| 美女xxoo啪啪120秒动态图| 在线天堂最新版资源| 国产日韩欧美视频二区| 色吧在线观看| 伦精品一区二区三区| 大香蕉97超碰在线| 国产精品无大码| 少妇精品久久久久久久| 美女xxoo啪啪120秒动态图| 日本免费在线观看一区| 天堂俺去俺来也www色官网| 国产精品国产三级国产av玫瑰| 亚洲性久久影院| 我要看黄色一级片免费的| 日本av免费视频播放| 免费少妇av软件| 啦啦啦中文免费视频观看日本| 国产免费一级a男人的天堂| 18禁动态无遮挡网站| 日本猛色少妇xxxxx猛交久久| 岛国毛片在线播放| 亚洲人与动物交配视频| www.色视频.com| 久久亚洲国产成人精品v| 婷婷色综合www| 国产 一区精品| 青春草视频在线免费观看| 黄色毛片三级朝国网站| 日韩av在线免费看完整版不卡| 国产乱人偷精品视频| 99九九线精品视频在线观看视频| 狠狠婷婷综合久久久久久88av| 亚洲av综合色区一区| 亚洲国产欧美在线一区| 精品酒店卫生间| 亚洲欧美一区二区三区国产| 亚洲综合色惰| 国产精品99久久久久久久久| 成年人午夜在线观看视频| 免费播放大片免费观看视频在线观看| 少妇被粗大的猛进出69影院 | 下体分泌物呈黄色| 国产一区二区在线观看av| 91精品一卡2卡3卡4卡| 国产精品久久久久成人av| 美女主播在线视频| 秋霞伦理黄片| 性色avwww在线观看| av播播在线观看一区| 男人添女人高潮全过程视频| 男男h啪啪无遮挡| av在线观看视频网站免费| 免费少妇av软件| 久久韩国三级中文字幕| 欧美日韩成人在线一区二区| 国产精品偷伦视频观看了| 少妇精品久久久久久久| av国产精品久久久久影院| 一级,二级,三级黄色视频| 在线观看人妻少妇| 国产高清有码在线观看视频| 一级,二级,三级黄色视频| 久久久国产欧美日韩av| 国精品久久久久久国模美| 久久热精品热| 精品亚洲成a人片在线观看| 久久青草综合色| 日韩人妻高清精品专区| 精品亚洲成国产av| 一区二区三区四区激情视频| 日韩av不卡免费在线播放| 国产色爽女视频免费观看| 高清不卡的av网站| 男女边摸边吃奶| 亚洲欧美色中文字幕在线| 久久韩国三级中文字幕| 国产黄频视频在线观看|