• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SYNCHRONIZATION OF SINGULAR MARKOVIAN JUMPING NEUTRAL COMPLEX DYNAMICAL NETWORKS WITH TIME-VARYING DELAYS VIA PINNING CONTROL?

    2020-08-02 05:28:44ANAND

    K. S. ANAND

    APS College of Engineering, Bangalore 560082, India

    J. YOGAMBIGAI

    MMES College of Arts and Science, Melvisharam, Tamilnadu, India

    G. A. HARISH BABU

    Reva Institute of Technology and Management, Bengaluru- 560064

    M. SYED ALI

    Department of Mathematics, Thiruvalluvar University, Vellore, Tamilnadu 632 115, India E-mail: syedgru@gmail.com

    S. PADMANABHAN

    RNS Institute of Technology, Channasandra, Bangalore 560098, India

    Abstract This article discusses the synchronization problem of singular neutral complex dynamical networks (SNCDN) with distributed delay and Markovian jump parameters via pinning control. Pinning control strategies are designed to make the singular neutral complex networks synchronized. Some delay-dependent synchronization criteria are derived in the form of linear matrix inequalities based on a modified Lyapunov-Krasovskii functional approach. By applying the Lyapunov stability theory,Jensen’s inequality,Schur complement,and linear matrix inequality technique, some new delay-dependent conditions are derived to guarantee the stability of the system. Finally, numerical examples are presented to illustrate the effectiveness of the obtained results.

    Key words Singular complex networks;synchronization;Lyapunov-krasovski method;markovian jump; pinning control; linear matrix inequality

    1 Introduction

    Over the past decade,complex networks have been studied intensively in various disciplines,such as sociology, biology, mathematics, and engineering [1–6]. A complex network is a large set of interconnected nodes, where the nodes and connections can be anything, and a node is a fundamental unit having specific contents and exhibiting dynamical behavior. There are two ways of connection between nodes: directed connection and undirected connection, and the connection relationship can be unweighted and weighted. According to different ways of connection and whether there are weights or not between nodes, we get some different kinds of complex networks, such as undirected unweighted network, directed weighted network, etc.A complex network can exhibit complicated dynamics which may be absolutely different from that of a single node.

    The most well-known examples are electrical power grids, communication networks, internet, World Wide Web, metabolic systems, food webs, and so on. Hence, the investigation of complex dynamical networks is of great importance, and many systems in science and technology can be modeled as complex networks[8–10]. Time delay is encountered in many dynamical systems and often results in poor performance and even instability of control systems [11–13].Because delay is usually time-varying in many practical system, many approaches were developed to investigate the stability of systems with time-varying delay such as descriptor model transformation method; the improved bounding technique; free weighting matrices; and the properly chosen Lyapunov-Krasovskii functional (LKFs) (see [14–16] and references therein).

    Synchronization is a kind of typical collective behaviors and basic motions in nature[17–19].Recently, one of the interesting and significant phenomena in complex dynamical networks is the synchronization of all dynamical nodes in a network. It is well known that there are many useful network synchronization phenomena in our real life, such as the synchronous transfer of digital or analog signals in communication networks [20]. More recently, adaptive synchronization in networks or coupled oscillators has received an increasing attention [21]. In particular,one of the interesting phenomena in complex networks is the synchronization, which is an important research subject with the rapidly increasing research, and there are amounts of results[22]. There are many different kinds of synchronization, such as generalized synchronization,phase synchronization, projective synchronization, cluster synchronization, and so on [23–27].Moreover, synchronization has some potential applications in real-world systems, such as synchronization phenomena on the Internet, synchronization related to biological neural networks.As we know the real-world complex networks normally have a large number of nodes. Therefore, it is usually difficult to control a complex network by adding the controllers to all nodes.To reduce the number of the controllers, a natural approach is to control a complex network by pinning part of nodes. In [28–32], the authors explored the controllability of complex networks via pinning. In [33], authors analyzed the synchronization of general complex dynamical network via pinning control.

    Singular systems describe the physical systems better than the regular (nonsingular) ones.They have variety of physical processes such as power systems and circuit systems. These systems are sometimes called generalized systems, descriptor systems, differential-algebraic systems, or implicit systems. It has been noted that a considerable number of results of regular(nonsingular) systems were extended to singular systems (see references [34–37]). As pointed out in [38], singular systems can be introduced to improve the traditional complex networks to describe the singular dynamic behaviours of nodes.

    Singular systems can be introduced to improve the traditional complex networks to describe the singular dynamic behaviors of nodes. Recently, there has been a growing interest in singular systems for their extensive application in control theory, circuits, economics, mechanical systems, and other areas, inspired by [39–42]. The neutral-type complex dynamic network of coupled identical nodes is described by a group of neutral functional differential equations, in which the derivatives of the past state variables are involved as well in the present state of the system [43]. Synchronization of neutral complex dynamical networks (NCDNs) with coupling time-varying delays is investigated in[44]. Synchronization of neutral complex dynamical networks with Markovian switching based on sampled-data controller is discussed in [45].

    Motivated by the above, we investigate synchronization of Markovian jumping singular neutral complex dynamical network with time- delays via pinning control by utilizing a novel Lyapunov - Krasovskii functional. The novel delay dependent synchronization conditions are derived in terms of linear matrix inequalities, then synchronization problem is studied for the complex networks. By constructing a new Lyapunov-Krasovskii functional containing tripleintegral terms,employing Newton-Leibnitz formulation and linear matrix inequality techniques,and introducing free-weighting matrices,some robust global asymptotic stability criteria are derived in terms of linear matrix inequalities (LMIs). To the best of our knowledge, synchronization of singular neutral complex dynamical network with Markovian jumping and time delays via pinning control have received very little research attention, therefore, the main purpose of this article is to shorten such a gap. By employing some analysis techniques, less conservative sufficient conditions are derived in terms of LMIs. Finally, numerical example are provided to demonstrate the advantage and applicability of the proposed result.

    NotationThe following notations are used throughout this article. Rndenotes the n dimensional Euclidean space and Rm×nis the set of all m×n real matrices. The superscript′T′denotes matrix transposition, and the notation X ≥Y (respectively, X < Y), where X and Y are symmetric matrices, means that X-Y is positive semidefinite (respectively, positive definite),anddenotes the Euclidean norm in Rn. If A is a square matrix,denote by λmax(A)(respectively, λmin(A)) means the largest(respectively, smallest) eigenvalue of A. Moreover, let(?,F,{Ft}t≥0,P)be a complete probability space with a filtration{Ft}t≥0satisfying the usual conditions (that is, the filtration contains all P-null sets and is right continuous). The asterisb?in a symmetric matrix is used to denote term that is induced by symmetry. Given a complete probability space{?,F,{Ft}t≥0,P},let a natural filtration{Ft}t≥0satisfy the usual conditions,where ? is the sample space, F is the algebra of events, and P is the probability measure defined on F. Let {r(t)(t ≥0)} be a right-continuous Markovian chain on the probability space (?,F,{Ft}t≥0,P) taking values in the finite space S = {1,2,··· ,m} with generator Π={πij}m×m(i,j ∈S) given by

    Here, ?>0 and πij≥0 is the transition rate from i to j ifwhile

    2 Problem Formulation and Preliminaries

    2.1 Problem description

    Consider the following Markovian jumping singular neutral complex dynamical network with time varying distributed delay consisting of N identical nodes, in which each node is an n-dimensional dynamical subsystem:

    where E ∈Rn×nis a singular matrix and rank(E) = r(0 < r < n);xk(t) ∈Rnis the state variable of the node k ∈1,2,··· ,N;{r(t)(t ≥0)} is the continuous-time Markov process which describes the evolution of the mode at time t;A(r(t)),B(r(t)),C(r(t)),D(r(t)),L(r(t)),H(r(t)),and J(r(t))∈Rn×nare parametric matrices with real values in mode r(t);and f1,f2,f3:Rn→Rnare continuously nonlinear vector functions which are,with respect to the current state xk(t),the delayed state xk(t ?d(t,r(t))) and the neutral delay state(t ?τ(t,r(t))).

    The nonlinear functions are globally Lipschitz,

    where lk1,lk2, and lk3are non-negative constants.

    Γ1(r(t)) ∈Rn×n, Γ2(r(t)) ∈Rn×n, and Γ3(r(t)) ∈Rn×nrepresent the inner-coupling matrices linking between the subsystems in mode r(t)., G(2)(r(t)) =andare the coupling configuration matrices of the networks representing the coupling strength and the topological structure of the SNCDN in mode r(t),in whichis defined as follows: if there exists a connection between kthandnodes, then, otherwise,and

    For simplicity of notations,we denote A(r(t)),B(r(t)),C(r(t)),D(r(t)),L(r(t)),H(r(t)),J(r(t)),G(m)(r(t)),Γm(r(t)),(m=1,2,3), by Ai,Bi,Ci,Di,Li,Hi,Ji,,Γmifor r(t)=i ∈s.

    Remark 2.1The synchronization of Markovian jumping SNCDN (2.1) is investigated in this work, which is devoted to revealing the effect of pinning controller over the Markovian switching network topologies. The network topology switching is governed by a time homogenous Markov process, whose state space corresponds to all the possible topologies. However, a general complex network always has a fixed network topology, which can not describe the situation changing, so the research on the complex networks under randomly switching topologies,such as SNCDN (2.1), is very significant and important.

    Assumption 1τ(t,r(t)),h(t,r(t)),and d(t,r(t))denote the mode-dependent time-varying neutral delay, distributed delay, and retarded delay, respectively. They are assumed to satisfy the followings:

    Correspondingly the response complex network with the control inputs uk(t) ∈RN(k =1,2,··· ,N) can be written as

    where uk(t) is defined by

    2.2 Basic ideas and Lemmas

    In this section, we provide some definitions and lemmas which are absolutely necessary to derive the proposed synchronization criterion.

    Definition 2.2([50]) Complex dynamical network (2.1) is said to be global (asymptotically) synchronized by pinning control, if

    Definition 2.3([51]) The pair (E,Ai+b1Γ1iλk?b4σkΓ4) is said to be regular, if the det(aE ?(Ai+b1Γ1iλk?b4σkΓ4)), for some finite complex number a, is not identically zero.

    Definition 2.4([51]) The pair (E,Ai+b1Γ1iλk?b4σkΓ4) is said to be impulse free, if deg(det(aE ?(Ai+b1Γ1iλk?b4σkΓ4)))=rank(E) for some finite complex number ‘a(chǎn)’.

    Lemma 2.5([50]) The eigenvalues of an irreducible matrix G = (gkw) ∈RN×Nwithsatisfy the following properties:

    (i) Real parts of all eigenvalues of G are less than or equal to 0 with multiplicity 1;

    (ii) G has an eigenvalue 0 with multiplicity 1 and the right eigenvector (1,1,··· ,1)T.

    Lemma 2.6([52]) The pair (E,Ai+b1Γ1iλk?b4σkΓ4) is regular and impulse free if and only if there exist matrices Pkisuch that the following inequalities hold for k =2,3,··· ,N :

    Lemma 2.7([53]) If for any constant matrix R ∈Rm×m,R=RT>0, scalar γ >0, and a vector function ? : [0,γ] →Rmsuch that the integrations concerned are well defined, the following inequality holds:

    Let the error be ek(t) = yk(t)?xk(t). So, the error dynamics of Markovian jumping SNCDN(2.1) can be derived as follows:

    Remark 2.8The pinning controllers are applied to achieve synchronization of the Markovian jumping SNCDN (2.1). It can be seen that the synchronization problem of (2.1) is equivalent to the stabilization problem of the error dynamical systems (2.7) at the origin. The controller (2.5) accelerate each node to synchronizing with the target node according to the instantaneous state information, and the similar one also can be found in [28]. We only exert control actions on the pinned nodes to achieve the synchronization and reduce the number of controllers.

    Remark 2.9The novelty of this article can be summarized as follows: (1) Synchronization of Markovian jumping singular neutral complex dynamical networks via pinning control is considered in this article; (2) A new Lyapunov-Krasovskii functional is constructed with triple-integral term.

    3 Main Results

    3.1 Asymptotic stability of complex dynamical systems

    In this section,we derive delay-dependent stability criteria for the error dynamical network system (2.7). We also discuss the impact of additive time-varying delays on the stability of the system.

    Denoting σk=0(k =l+1,l+2,··· ,N),then we may write the error system in its compact form as

    where e(t) = (e1(t),e2(t),··· ,eN(t)), F1(e(t)) = (F11(e1(t)),F21(e2(t)),··· ,FN1(eN(t))),F2(e(t ?di(t))=(F12(e1(t ?di(t)),F22(e2(t ?di(t)),··· ,FN2(eN(t ?di(t))), F3((t ?τi(t)))=(F13((t ?τi(t))),F23((t ?τi(t))),··· ,FN3((t ?τi(t)))), and σ =diag{σ1,σ2,··· ,σN}.

    By the properties of the outer-coupling matrix(a=1,2,3), there exists a unitary matrix U =[U1,U2,··· ,UN]∈RN×Nsuch that UT=ΛiUTwith Λi=diag{λ1i,λ2i,··· ,λNi}(a = 1,2,3) and UUT= I. Using the nonsingular transform e(t)U = z(t) = [z1(t),z2(t),··· ,zN(t)]∈RN×N, from equation (3.1), it follows the matrix equation

    In a similar way, model (3.2) can be written as

    where hk1(t)=F1(e(t))Uk,hk2(t)=F2(e(t ?di(t))Uk, and hk3(t)=F3(˙e(t ?τi(t)))Uk.

    So far, we transformed the synchronization problem of the singular complex dynamical networks (3.1) into the synchronization problem of the N pieces of the corresponding error dynamical network (3.3). From Lemma 2.5, λi1= 0 and z1(t) = e(t)U1= 0. Therefore, if the following (N ?1) pieces of the corresponding error dynamical network,

    are asymptotically stable, which implies that the synchronized states (3.1) are asymptotically stable.

    Let us define

    The inequality(2.2)and the Lipschitz continuity of hk1(t)can be used to make hk1(t)to satisfy

    where ukwis the ω-th element of Ukand=max lk1. Therefore, the following inequality

    holds, if the inequality

    is satisfied. Similarly, the following inequalities holds:

    if the following inequalities are satisfied that

    where

    Theorem 3.1For given scalars,νi,,σi,d1i,d2i,μiand constant scalar dmisatisfying d1i< dmi< d2i, the Markovian jumping singular error dynamical network (3.4) is asymptotically stable if there exist positive constants αk, matrices Pki>0,Qk1i>0,Qk2i>0,Rk1i>0,Rk2i> 0, Tk1i> 0, Qkj> 0,Rkj> 0 (j = 3,4),Tkj> 0 (j = 2,3,4),Ukj> 0 (j = 1,2,3),Wkj> 0, Mkj> 0,Nkj> 0 (j = 1,2,3,4,5), and positive diagonal matrices Skj(j = 1,2,3)such that the following LMIs hold for all i ∈S:

    where

    ProofConstruct the Lyapunov-Krasovskii functional:

    where

    The derivative of Vkr(zk(t),i,t) along the trajectory of (3.4) with respect to t is given by

    Notice (a) of Lemma 2.7, then,

    Notice (b) of Lemma 2.7, then,

    From equations (3.12) and (3.17)–(3.34), we obtain

    By Schur complement Lemma, we get (3.14), and

    As ETPki=PkiE ≥0, the stable result cannot be obtained via the Lyapunov stability theory because the rank of ETPkiin the Lyapunov function Vk1(zk(t),i,t) is r

    By Lemma 2.6,it is clear that the pair(E,Ai+b1Γ1iλk?b4σkΓ4)is regular and impulse free whenever inequalities(3.13)–(3.16)hold. Then,the nonsingular matrices areand. The following decomposition holds:

    where Xk1∈Rr×n, Xk2∈R(n?r)×n, Yk1∈Rn×r,Yk2∈Rn×(n?r), and∈Rr×r, k =2,3,··· ,N.

    The network system (3.4) is equivalent to

    If we choose Wk,such that,which leads

    This completes the proof.

    Remark 3.2In the literature,the authors([2,5,7,13,20,21])investigated the problem of complex dynamical networks with time delay components. It is noted that unfortunately in the existing literature the problem of synchronization criteria for a class of singular neutral complex dynamical networks with distributed delay and Markovian jump parameters via pinning control has not been considered yet. Motivated by this,in this article we provided a sufficient condition to ensure that the SNCDN (3.1) is global (asymptotically) synchronized.

    Remark 3.3Synchronization of the Markovian jumping neutral complex dynamical networks is considered in[45]. In this article,Markovian jumping singular neutral complex dynamical networks with pinning control is employed. Synchronization conditions are established in the form of linear matrix inequalities(LMIs). The solvability of derived conditions depends not only on the pinned nodes but also on the initial values of the Markovian jumping parameter.It is pointed out that there is no useful term is ignored while maintaining our stability results.

    4 Numerical Examples

    In this section, numerical examples are presented to demonstrate the effectiveness of the synchronization for pinning control.

    Example 4.1Consider the following time-varying delayed Markovian jumping SNCDN with 3-node and mode s=2,

    with

    (a = 1,2,3),Ji= Hi= 0,i = {1,2}. Let us consider b1= 1,b2= b3= 0.5,b4= 0.6, σ1= 0.4,σ2= 0.5, σ3= 0.3,== 0.2, ν1= ν2= 0.5,== 0.3, δ1= δ2= 0.6, d11= 0.4,d21= 0.6, dm1= 0.5,μ1= μ2= 0.4, and the eigenvalues ofare found to be λi1= 0,λi2= ?3 and λi3= ?3. By using Matlab LMI Toolbox, we solve the LMIs (3.13)–(3.16) in Theorem 3.1, we obtain the feasible solutions for N =3,k =1,i=1,2 as follows:

    Therefore, by Theorem 3.1, the Markovian jumping SNCDN with time-varying delays (3.1)achieve synchronization through the pinning controller uk(t) with the above mentioned parameters.

    Example 4.2Consider the following time-varying delayed Markovian jumping SNCDN

    with 5-node and mode s=2:

    with

    Ji= Hi= 0,i = {1,2}. Let us consider b1= 0.1,b2= b3= 0.3,b4= 0.2,σ1= 0.4, σ2= 0.5,σ3= 0.3,== 0.2, ν1= ν2= 0.5,== 0.3, δ1= δ2= 0.6, d11= 0.4, d21= 0.6,dm1= 0.5, μ1= μ2= 0.4. The eigenvalues ofandare found to be λ11= 0,λ12=λ13=λ14=?0.5, λ15=2.5, and λ21=0, λ22=λ23=λ24=λ25=?0.5. Using Matlab LMI Toolbox, we solve the LMIs (3.13)–(3.16) in Theorem 3.1, then we obtain the feasible solutions for N =5,k =1,i=1,2 as follows:

    Therefore, by Theorem 3.1, the Markovian jumping SNCDN with time-varying delays (2.1)achieve synchronization through the pinning controller uk(t) with the above mentioned parameters.

    Figure 1 State trajectories of the system in Example 2

    5 Conclusion

    In this article,some new synchronization stability criteria are proposed for a class of Markovian jumping SNCDNs with distributed delay and pinning control. On the basis of appropriate Lyapunov-Krasovskii functional which contains triple integral terms and bounding techniques,the novel delay dependent synchronization condition is derived in terms of linear matrix inequalities. We established some sufficiency conditions for synchronization, and the numerical results can demonstrate the effectiveness of the obtained result. In future,the preosed methods can be further extended to deal with some other problems on pinning control and synchronization for general stochastic dynamical networks, complex systems with impulsive perturbation,etc.

    首页视频小说图片口味搜索| 欧美激情极品国产一区二区三区| 91老司机精品| 精品国产乱码久久久久久男人| 日本黄色视频三级网站网址| 亚洲专区中文字幕在线| 国产精品一区二区三区四区久久 | 精品日产1卡2卡| 国产麻豆成人av免费视频| 亚洲人成77777在线视频| 国产av精品麻豆| 国产高清有码在线观看视频 | 久久婷婷人人爽人人干人人爱 | 欧美乱色亚洲激情| 亚洲中文字幕一区二区三区有码在线看 | 黑人巨大精品欧美一区二区蜜桃| 高清毛片免费观看视频网站| 我的亚洲天堂| 无限看片的www在线观看| 中亚洲国语对白在线视频| 又紧又爽又黄一区二区| 久久性视频一级片| 欧美老熟妇乱子伦牲交| 成人国产一区最新在线观看| 欧美国产精品va在线观看不卡| 看免费av毛片| 99久久精品国产亚洲精品| 神马国产精品三级电影在线观看 | 十分钟在线观看高清视频www| 51午夜福利影视在线观看| videosex国产| 欧美性长视频在线观看| 18美女黄网站色大片免费观看| 久久久久久大精品| 欧美日本中文国产一区发布| 亚洲av五月六月丁香网| 成人亚洲精品av一区二区| 免费搜索国产男女视频| 亚洲成av片中文字幕在线观看| 国产精品,欧美在线| 91字幕亚洲| 夜夜爽天天搞| 1024视频免费在线观看| 最新美女视频免费是黄的| 午夜日韩欧美国产| 亚洲一区高清亚洲精品| 午夜福利免费观看在线| av天堂在线播放| 午夜两性在线视频| 免费观看精品视频网站| 脱女人内裤的视频| 在线观看免费视频日本深夜| 午夜福利高清视频| 亚洲九九香蕉| 欧美日韩一级在线毛片| 久久青草综合色| 精品欧美一区二区三区在线| 亚洲avbb在线观看| 久久久久国产精品人妻aⅴ院| 久久婷婷成人综合色麻豆| 国产av在哪里看| 午夜福利18| 国产欧美日韩一区二区三区在线| 国产亚洲精品第一综合不卡| 夜夜看夜夜爽夜夜摸| 搞女人的毛片| 精品国产国语对白av| 韩国av一区二区三区四区| 窝窝影院91人妻| 国内久久婷婷六月综合欲色啪| 国产极品粉嫩免费观看在线| 国产一区二区在线av高清观看| 性少妇av在线| 在线播放国产精品三级| 亚洲aⅴ乱码一区二区在线播放 | 淫妇啪啪啪对白视频| 久久精品影院6| 亚洲狠狠婷婷综合久久图片| 在线观看舔阴道视频| 多毛熟女@视频| 男女之事视频高清在线观看| 国产欧美日韩一区二区三区在线| 国产伦人伦偷精品视频| 国产精品九九99| 国产成年人精品一区二区| 国产欧美日韩一区二区三| 日本精品一区二区三区蜜桃| www.999成人在线观看| 国产精品二区激情视频| avwww免费| 少妇粗大呻吟视频| 亚洲男人天堂网一区| av免费在线观看网站| 日韩欧美国产在线观看| 国产99久久九九免费精品| 中国美女看黄片| 人成视频在线观看免费观看| 在线观看舔阴道视频| 不卡av一区二区三区| 精品久久久久久,| 香蕉丝袜av| 自拍欧美九色日韩亚洲蝌蚪91| 欧美老熟妇乱子伦牲交| 天天躁夜夜躁狠狠躁躁| 中文字幕精品免费在线观看视频| 波多野结衣巨乳人妻| 久久精品国产99精品国产亚洲性色 | 久9热在线精品视频| 亚洲色图 男人天堂 中文字幕| 欧美成人一区二区免费高清观看 | 国产精品久久久av美女十八| 可以在线观看的亚洲视频| 日韩三级视频一区二区三区| 日韩欧美国产一区二区入口| 激情视频va一区二区三区| 久久久久久人人人人人| 黑人巨大精品欧美一区二区蜜桃| 亚洲人成网站在线播放欧美日韩| 亚洲国产高清在线一区二区三 | 黄片大片在线免费观看| 国产伦人伦偷精品视频| 国产精品久久久久久人妻精品电影| 亚洲成av人片免费观看| 国产av精品麻豆| 变态另类丝袜制服| 三级毛片av免费| 可以在线观看的亚洲视频| 精品日产1卡2卡| 亚洲五月天丁香| 午夜亚洲福利在线播放| 99国产精品免费福利视频| 日韩成人在线观看一区二区三区| 亚洲三区欧美一区| 亚洲一区二区三区不卡视频| 日韩有码中文字幕| 叶爱在线成人免费视频播放| 免费av毛片视频| 又紧又爽又黄一区二区| 国产1区2区3区精品| 亚洲国产高清在线一区二区三 | 一本综合久久免费| 少妇熟女aⅴ在线视频| 亚洲 国产 在线| 久热这里只有精品99| 美女午夜性视频免费| 88av欧美| 亚洲成人免费电影在线观看| 国产成人一区二区三区免费视频网站| 高清毛片免费观看视频网站| 婷婷丁香在线五月| 久久久久国产精品人妻aⅴ院| 午夜福利高清视频| 亚洲精品国产精品久久久不卡| 久久精品成人免费网站| 国产日韩一区二区三区精品不卡| 成人av一区二区三区在线看| 淫秽高清视频在线观看| 母亲3免费完整高清在线观看| 亚洲 国产 在线| 色综合婷婷激情| svipshipincom国产片| 757午夜福利合集在线观看| 亚洲美女黄片视频| 亚洲人成77777在线视频| 久久午夜亚洲精品久久| 中文字幕久久专区| 男女午夜视频在线观看| 啪啪无遮挡十八禁网站| 制服人妻中文乱码| 老司机靠b影院| 欧美黑人欧美精品刺激| 大码成人一级视频| 国产成人免费无遮挡视频| 欧美一区二区精品小视频在线| 亚洲成av片中文字幕在线观看| 国产色视频综合| 级片在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产又色又爽无遮挡免费看| 亚洲黑人精品在线| 正在播放国产对白刺激| 久久久久久免费高清国产稀缺| 欧美黑人精品巨大| 久久天躁狠狠躁夜夜2o2o| 男人的好看免费观看在线视频 | 亚洲成人免费电影在线观看| 少妇的丰满在线观看| av天堂久久9| 欧美成人免费av一区二区三区| 日韩欧美国产在线观看| 国产精品野战在线观看| 性欧美人与动物交配| svipshipincom国产片| 美女 人体艺术 gogo| 日韩精品中文字幕看吧| 性少妇av在线| 一级毛片女人18水好多| 纯流量卡能插随身wifi吗| 少妇裸体淫交视频免费看高清 | 免费在线观看亚洲国产| 国产免费av片在线观看野外av| 少妇 在线观看| 亚洲av片天天在线观看| 怎么达到女性高潮| 国产精品久久电影中文字幕| 韩国av一区二区三区四区| 欧美日韩瑟瑟在线播放| 男女之事视频高清在线观看| 亚洲精品一区av在线观看| 激情在线观看视频在线高清| 美女高潮喷水抽搐中文字幕| 可以在线观看的亚洲视频| 国产成人精品久久二区二区免费| 神马国产精品三级电影在线观看 | 欧美日韩一级在线毛片| 热re99久久国产66热| 97碰自拍视频| 99国产综合亚洲精品| 中文字幕人妻丝袜一区二区| 女人爽到高潮嗷嗷叫在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲男人的天堂狠狠| 免费不卡黄色视频| 国产成人系列免费观看| 妹子高潮喷水视频| 久久国产精品影院| 欧美一区二区精品小视频在线| 亚洲专区中文字幕在线| 18禁观看日本| 欧美人与性动交α欧美精品济南到| 免费看十八禁软件| 黄色片一级片一级黄色片| 国产av一区在线观看免费| 国产免费男女视频| 国产精品影院久久| 在线免费观看的www视频| 成人亚洲精品一区在线观看| 电影成人av| 久久久国产成人精品二区| 亚洲国产欧美网| 黄网站色视频无遮挡免费观看| av欧美777| 日韩av在线大香蕉| 我的亚洲天堂| 国产av在哪里看| 日本免费a在线| √禁漫天堂资源中文www| 国产视频一区二区在线看| 黄片小视频在线播放| 亚洲人成电影免费在线| 窝窝影院91人妻| 精品乱码久久久久久99久播| 国产成人精品无人区| 制服人妻中文乱码| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美一区二区三区黑人| av天堂久久9| 国产欧美日韩一区二区三区在线| 一夜夜www| 亚洲国产中文字幕在线视频| 成人国产一区最新在线观看| 夜夜爽天天搞| 日日爽夜夜爽网站| 亚洲国产精品999在线| 久久久久久久久久久久大奶| 亚洲色图综合在线观看| 国产又爽黄色视频| 嫁个100分男人电影在线观看| 免费观看精品视频网站| 国产亚洲精品第一综合不卡| 最近最新免费中文字幕在线| 成人亚洲精品av一区二区| 国产精品1区2区在线观看.| 一二三四社区在线视频社区8| 欧美色欧美亚洲另类二区 | 99国产极品粉嫩在线观看| 亚洲狠狠婷婷综合久久图片| 国产片内射在线| 久久久久久免费高清国产稀缺| 久久久久久国产a免费观看| 色哟哟哟哟哟哟| 久久久精品欧美日韩精品| 国产亚洲欧美精品永久| 99久久久亚洲精品蜜臀av| 久久久国产精品麻豆| 首页视频小说图片口味搜索| 国产精品99久久99久久久不卡| 黄片小视频在线播放| 熟女少妇亚洲综合色aaa.| 天天躁夜夜躁狠狠躁躁| 别揉我奶头~嗯~啊~动态视频| 欧美日韩精品网址| 满18在线观看网站| 一本综合久久免费| 国产精品自产拍在线观看55亚洲| 波多野结衣巨乳人妻| 欧美激情 高清一区二区三区| 久久久国产成人精品二区| 天天躁夜夜躁狠狠躁躁| 高清黄色对白视频在线免费看| 亚洲天堂国产精品一区在线| 女人被躁到高潮嗷嗷叫费观| 黄频高清免费视频| 91精品国产国语对白视频| 嫩草影视91久久| 满18在线观看网站| 亚洲色图综合在线观看| 免费在线观看影片大全网站| 人妻丰满熟妇av一区二区三区| 一级a爱视频在线免费观看| 宅男免费午夜| 桃色一区二区三区在线观看| 国产精品98久久久久久宅男小说| 国产一区二区在线av高清观看| 欧美另类亚洲清纯唯美| 精品国产亚洲在线| 俄罗斯特黄特色一大片| 欧洲精品卡2卡3卡4卡5卡区| 欧美亚洲日本最大视频资源| 国产精品精品国产色婷婷| 欧美色欧美亚洲另类二区 | 男女午夜视频在线观看| 嫁个100分男人电影在线观看| 看免费av毛片| 97人妻精品一区二区三区麻豆 | 国产午夜福利久久久久久| 午夜影院日韩av| 国产精品自产拍在线观看55亚洲| 国产高清videossex| 99久久久亚洲精品蜜臀av| 国产亚洲精品久久久久5区| 久久午夜综合久久蜜桃| 人人妻人人澡欧美一区二区 | 亚洲最大成人中文| 国产国语露脸激情在线看| 国产亚洲精品一区二区www| 他把我摸到了高潮在线观看| 国产成人精品久久二区二区91| 黄片播放在线免费| 亚洲成人精品中文字幕电影| 成人亚洲精品一区在线观看| 校园春色视频在线观看| 国产精品综合久久久久久久免费 | 久久香蕉国产精品| 久久草成人影院| 999久久久精品免费观看国产| 久久久久久久午夜电影| 国产精品久久电影中文字幕| 天天躁夜夜躁狠狠躁躁| 久久精品91无色码中文字幕| av在线播放免费不卡| 99香蕉大伊视频| 亚洲自偷自拍图片 自拍| 一进一出好大好爽视频| 国产成人一区二区三区免费视频网站| 欧美精品啪啪一区二区三区| 19禁男女啪啪无遮挡网站| 可以免费在线观看a视频的电影网站| 国产精品永久免费网站| 国语自产精品视频在线第100页| 国产成人精品在线电影| 久久久久久久久免费视频了| 男女下面进入的视频免费午夜 | 国产野战对白在线观看| 免费无遮挡裸体视频| 美女高潮到喷水免费观看| 日本欧美视频一区| 亚洲国产欧美一区二区综合| 精品高清国产在线一区| 好男人电影高清在线观看| 男女做爰动态图高潮gif福利片 | 色尼玛亚洲综合影院| 亚洲成人免费电影在线观看| 亚洲aⅴ乱码一区二区在线播放 | 午夜成年电影在线免费观看| 午夜福利18| 久9热在线精品视频| 色老头精品视频在线观看| 成人三级黄色视频| 在线观看日韩欧美| 老鸭窝网址在线观看| 日日爽夜夜爽网站| 露出奶头的视频| 久久人人精品亚洲av| 麻豆av在线久日| 搞女人的毛片| 美女高潮到喷水免费观看| 国产成人啪精品午夜网站| 亚洲人成网站在线播放欧美日韩| 美女大奶头视频| av在线播放免费不卡| 色老头精品视频在线观看| 12—13女人毛片做爰片一| 少妇裸体淫交视频免费看高清 | 久久婷婷成人综合色麻豆| 国产精品二区激情视频| 一区二区三区精品91| 久久影院123| 久热爱精品视频在线9| 一进一出抽搐gif免费好疼| 国产高清激情床上av| bbb黄色大片| 精品福利观看| 国产精品久久久久久精品电影 | 一级毛片高清免费大全| 免费在线观看视频国产中文字幕亚洲| 日本精品一区二区三区蜜桃| 正在播放国产对白刺激| 一边摸一边做爽爽视频免费| videosex国产| 日韩大尺度精品在线看网址 | 午夜福利一区二区在线看| 在线观看免费日韩欧美大片| 欧美午夜高清在线| 亚洲精品久久国产高清桃花| 国产精品野战在线观看| 少妇被粗大的猛进出69影院| 亚洲精品国产一区二区精华液| 国产精品影院久久| 亚洲成av人片免费观看| 亚洲va日本ⅴa欧美va伊人久久| 免费高清视频大片| 51午夜福利影视在线观看| 99精品在免费线老司机午夜| 亚洲人成77777在线视频| 欧美一级毛片孕妇| 国产在线观看jvid| 日本一区二区免费在线视频| 黄网站色视频无遮挡免费观看| 国产午夜精品久久久久久| 欧美最黄视频在线播放免费| 叶爱在线成人免费视频播放| 丝袜美足系列| 成在线人永久免费视频| 日韩精品中文字幕看吧| 日韩av在线大香蕉| 国产99白浆流出| 在线观看免费午夜福利视频| 黑人巨大精品欧美一区二区蜜桃| 99久久综合精品五月天人人| 悠悠久久av| bbb黄色大片| 久久国产乱子伦精品免费另类| 国产精品秋霞免费鲁丝片| 国产男靠女视频免费网站| 精品国产一区二区久久| 成人三级黄色视频| 高清在线国产一区| 久久中文看片网| 99精品在免费线老司机午夜| 国产精品一区二区三区四区久久 | 亚洲欧美精品综合一区二区三区| 电影成人av| 精品国产超薄肉色丝袜足j| 久久天躁狠狠躁夜夜2o2o| 精品不卡国产一区二区三区| 精品熟女少妇八av免费久了| 91字幕亚洲| 中文字幕色久视频| 日韩欧美一区二区三区在线观看| 国产精品一区二区在线不卡| 欧美黑人欧美精品刺激| 精品卡一卡二卡四卡免费| 黑丝袜美女国产一区| 成人国产综合亚洲| 久久精品91无色码中文字幕| 国产精品综合久久久久久久免费 | 少妇熟女aⅴ在线视频| 亚洲五月天丁香| 757午夜福利合集在线观看| 母亲3免费完整高清在线观看| 999久久久精品免费观看国产| 亚洲av五月六月丁香网| 久久九九热精品免费| 精品国产亚洲在线| av片东京热男人的天堂| 亚洲片人在线观看| 国产精品一区二区在线不卡| 午夜福利免费观看在线| 欧美激情久久久久久爽电影 | 女同久久另类99精品国产91| 黄片大片在线免费观看| 女人被躁到高潮嗷嗷叫费观| 可以免费在线观看a视频的电影网站| 国产精品久久久久久精品电影 | 丝袜人妻中文字幕| 少妇粗大呻吟视频| 久久草成人影院| 午夜免费观看网址| 亚洲精品av麻豆狂野| 制服丝袜大香蕉在线| 一级黄色大片毛片| 如日韩欧美国产精品一区二区三区| 午夜免费成人在线视频| 成熟少妇高潮喷水视频| 免费高清视频大片| 亚洲国产欧美网| 久久久久久久久久久久大奶| 12—13女人毛片做爰片一| 很黄的视频免费| 午夜福利欧美成人| 久久青草综合色| 欧美激情高清一区二区三区| 岛国在线观看网站| 亚洲色图 男人天堂 中文字幕| 国产av在哪里看| 婷婷丁香在线五月| 99国产精品免费福利视频| 精品第一国产精品| 日韩三级视频一区二区三区| 久久精品亚洲熟妇少妇任你| 高清毛片免费观看视频网站| 国产精品影院久久| 黄色丝袜av网址大全| 亚洲av成人av| 熟妇人妻久久中文字幕3abv| 日韩大码丰满熟妇| 免费看a级黄色片| 亚洲欧洲精品一区二区精品久久久| 精品乱码久久久久久99久播| av电影中文网址| 这个男人来自地球电影免费观看| 精品福利观看| 国产欧美日韩一区二区精品| 丁香欧美五月| 校园春色视频在线观看| 亚洲精品国产精品久久久不卡| 又黄又爽又免费观看的视频| 国产精品久久视频播放| 久久久久久人人人人人| 免费久久久久久久精品成人欧美视频| 亚洲精品久久成人aⅴ小说| 日日夜夜操网爽| 亚洲aⅴ乱码一区二区在线播放 | 91字幕亚洲| 美女扒开内裤让男人捅视频| 免费在线观看完整版高清| 99久久99久久久精品蜜桃| 色精品久久人妻99蜜桃| 每晚都被弄得嗷嗷叫到高潮| 国产成人欧美在线观看| 精品乱码久久久久久99久播| 国产成人免费无遮挡视频| 一个人观看的视频www高清免费观看 | 亚洲国产中文字幕在线视频| 亚洲第一av免费看| 欧美一级a爱片免费观看看 | 欧美乱色亚洲激情| 久久精品国产亚洲av高清一级| 欧美成人午夜精品| 亚洲一区高清亚洲精品| 国产蜜桃级精品一区二区三区| 久久 成人 亚洲| 国产精品 国内视频| 少妇 在线观看| 日本vs欧美在线观看视频| 久久婷婷人人爽人人干人人爱 | 一二三四社区在线视频社区8| 亚洲va日本ⅴa欧美va伊人久久| 色播亚洲综合网| www.自偷自拍.com| 成人18禁在线播放| 老汉色av国产亚洲站长工具| 亚洲av五月六月丁香网| 无人区码免费观看不卡| 日韩 欧美 亚洲 中文字幕| 日日爽夜夜爽网站| av超薄肉色丝袜交足视频| 丝袜在线中文字幕| 校园春色视频在线观看| 亚洲无线在线观看| 少妇熟女aⅴ在线视频| 免费在线观看黄色视频的| 两个人免费观看高清视频| 黄片播放在线免费| 大型av网站在线播放| 伊人久久大香线蕉亚洲五| 精品不卡国产一区二区三区| 99久久精品国产亚洲精品| 久久亚洲精品不卡| 最近最新中文字幕大全电影3 | 老熟妇乱子伦视频在线观看| av视频在线观看入口| 午夜两性在线视频| x7x7x7水蜜桃| 国产精品二区激情视频| 亚洲午夜精品一区,二区,三区| 香蕉国产在线看| 精品一品国产午夜福利视频| 色综合婷婷激情| 夜夜爽天天搞| 国产野战对白在线观看| 久久青草综合色| 久久人妻熟女aⅴ| 悠悠久久av| www.熟女人妻精品国产| 欧美黄色片欧美黄色片| www日本在线高清视频| 人人妻人人澡人人看| 国产成人系列免费观看| 久久国产亚洲av麻豆专区| 十八禁人妻一区二区| 伊人久久大香线蕉亚洲五| 九色国产91popny在线| 国产成人精品久久二区二区91| 久热爱精品视频在线9| 三级毛片av免费| 88av欧美| 精品福利观看| 日韩有码中文字幕| 国产精品,欧美在线| 欧美激情久久久久久爽电影 | 久久热在线av| 日韩三级视频一区二区三区| 又黄又爽又免费观看的视频|