• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SYNCHRONIZATION OF SINGULAR MARKOVIAN JUMPING NEUTRAL COMPLEX DYNAMICAL NETWORKS WITH TIME-VARYING DELAYS VIA PINNING CONTROL?

    2020-08-02 05:28:44ANAND

    K. S. ANAND

    APS College of Engineering, Bangalore 560082, India

    J. YOGAMBIGAI

    MMES College of Arts and Science, Melvisharam, Tamilnadu, India

    G. A. HARISH BABU

    Reva Institute of Technology and Management, Bengaluru- 560064

    M. SYED ALI

    Department of Mathematics, Thiruvalluvar University, Vellore, Tamilnadu 632 115, India E-mail: syedgru@gmail.com

    S. PADMANABHAN

    RNS Institute of Technology, Channasandra, Bangalore 560098, India

    Abstract This article discusses the synchronization problem of singular neutral complex dynamical networks (SNCDN) with distributed delay and Markovian jump parameters via pinning control. Pinning control strategies are designed to make the singular neutral complex networks synchronized. Some delay-dependent synchronization criteria are derived in the form of linear matrix inequalities based on a modified Lyapunov-Krasovskii functional approach. By applying the Lyapunov stability theory,Jensen’s inequality,Schur complement,and linear matrix inequality technique, some new delay-dependent conditions are derived to guarantee the stability of the system. Finally, numerical examples are presented to illustrate the effectiveness of the obtained results.

    Key words Singular complex networks;synchronization;Lyapunov-krasovski method;markovian jump; pinning control; linear matrix inequality

    1 Introduction

    Over the past decade,complex networks have been studied intensively in various disciplines,such as sociology, biology, mathematics, and engineering [1–6]. A complex network is a large set of interconnected nodes, where the nodes and connections can be anything, and a node is a fundamental unit having specific contents and exhibiting dynamical behavior. There are two ways of connection between nodes: directed connection and undirected connection, and the connection relationship can be unweighted and weighted. According to different ways of connection and whether there are weights or not between nodes, we get some different kinds of complex networks, such as undirected unweighted network, directed weighted network, etc.A complex network can exhibit complicated dynamics which may be absolutely different from that of a single node.

    The most well-known examples are electrical power grids, communication networks, internet, World Wide Web, metabolic systems, food webs, and so on. Hence, the investigation of complex dynamical networks is of great importance, and many systems in science and technology can be modeled as complex networks[8–10]. Time delay is encountered in many dynamical systems and often results in poor performance and even instability of control systems [11–13].Because delay is usually time-varying in many practical system, many approaches were developed to investigate the stability of systems with time-varying delay such as descriptor model transformation method; the improved bounding technique; free weighting matrices; and the properly chosen Lyapunov-Krasovskii functional (LKFs) (see [14–16] and references therein).

    Synchronization is a kind of typical collective behaviors and basic motions in nature[17–19].Recently, one of the interesting and significant phenomena in complex dynamical networks is the synchronization of all dynamical nodes in a network. It is well known that there are many useful network synchronization phenomena in our real life, such as the synchronous transfer of digital or analog signals in communication networks [20]. More recently, adaptive synchronization in networks or coupled oscillators has received an increasing attention [21]. In particular,one of the interesting phenomena in complex networks is the synchronization, which is an important research subject with the rapidly increasing research, and there are amounts of results[22]. There are many different kinds of synchronization, such as generalized synchronization,phase synchronization, projective synchronization, cluster synchronization, and so on [23–27].Moreover, synchronization has some potential applications in real-world systems, such as synchronization phenomena on the Internet, synchronization related to biological neural networks.As we know the real-world complex networks normally have a large number of nodes. Therefore, it is usually difficult to control a complex network by adding the controllers to all nodes.To reduce the number of the controllers, a natural approach is to control a complex network by pinning part of nodes. In [28–32], the authors explored the controllability of complex networks via pinning. In [33], authors analyzed the synchronization of general complex dynamical network via pinning control.

    Singular systems describe the physical systems better than the regular (nonsingular) ones.They have variety of physical processes such as power systems and circuit systems. These systems are sometimes called generalized systems, descriptor systems, differential-algebraic systems, or implicit systems. It has been noted that a considerable number of results of regular(nonsingular) systems were extended to singular systems (see references [34–37]). As pointed out in [38], singular systems can be introduced to improve the traditional complex networks to describe the singular dynamic behaviours of nodes.

    Singular systems can be introduced to improve the traditional complex networks to describe the singular dynamic behaviors of nodes. Recently, there has been a growing interest in singular systems for their extensive application in control theory, circuits, economics, mechanical systems, and other areas, inspired by [39–42]. The neutral-type complex dynamic network of coupled identical nodes is described by a group of neutral functional differential equations, in which the derivatives of the past state variables are involved as well in the present state of the system [43]. Synchronization of neutral complex dynamical networks (NCDNs) with coupling time-varying delays is investigated in[44]. Synchronization of neutral complex dynamical networks with Markovian switching based on sampled-data controller is discussed in [45].

    Motivated by the above, we investigate synchronization of Markovian jumping singular neutral complex dynamical network with time- delays via pinning control by utilizing a novel Lyapunov - Krasovskii functional. The novel delay dependent synchronization conditions are derived in terms of linear matrix inequalities, then synchronization problem is studied for the complex networks. By constructing a new Lyapunov-Krasovskii functional containing tripleintegral terms,employing Newton-Leibnitz formulation and linear matrix inequality techniques,and introducing free-weighting matrices,some robust global asymptotic stability criteria are derived in terms of linear matrix inequalities (LMIs). To the best of our knowledge, synchronization of singular neutral complex dynamical network with Markovian jumping and time delays via pinning control have received very little research attention, therefore, the main purpose of this article is to shorten such a gap. By employing some analysis techniques, less conservative sufficient conditions are derived in terms of LMIs. Finally, numerical example are provided to demonstrate the advantage and applicability of the proposed result.

    NotationThe following notations are used throughout this article. Rndenotes the n dimensional Euclidean space and Rm×nis the set of all m×n real matrices. The superscript′T′denotes matrix transposition, and the notation X ≥Y (respectively, X < Y), where X and Y are symmetric matrices, means that X-Y is positive semidefinite (respectively, positive definite),anddenotes the Euclidean norm in Rn. If A is a square matrix,denote by λmax(A)(respectively, λmin(A)) means the largest(respectively, smallest) eigenvalue of A. Moreover, let(?,F,{Ft}t≥0,P)be a complete probability space with a filtration{Ft}t≥0satisfying the usual conditions (that is, the filtration contains all P-null sets and is right continuous). The asterisb?in a symmetric matrix is used to denote term that is induced by symmetry. Given a complete probability space{?,F,{Ft}t≥0,P},let a natural filtration{Ft}t≥0satisfy the usual conditions,where ? is the sample space, F is the algebra of events, and P is the probability measure defined on F. Let {r(t)(t ≥0)} be a right-continuous Markovian chain on the probability space (?,F,{Ft}t≥0,P) taking values in the finite space S = {1,2,··· ,m} with generator Π={πij}m×m(i,j ∈S) given by

    Here, ?>0 and πij≥0 is the transition rate from i to j ifwhile

    2 Problem Formulation and Preliminaries

    2.1 Problem description

    Consider the following Markovian jumping singular neutral complex dynamical network with time varying distributed delay consisting of N identical nodes, in which each node is an n-dimensional dynamical subsystem:

    where E ∈Rn×nis a singular matrix and rank(E) = r(0 < r < n);xk(t) ∈Rnis the state variable of the node k ∈1,2,··· ,N;{r(t)(t ≥0)} is the continuous-time Markov process which describes the evolution of the mode at time t;A(r(t)),B(r(t)),C(r(t)),D(r(t)),L(r(t)),H(r(t)),and J(r(t))∈Rn×nare parametric matrices with real values in mode r(t);and f1,f2,f3:Rn→Rnare continuously nonlinear vector functions which are,with respect to the current state xk(t),the delayed state xk(t ?d(t,r(t))) and the neutral delay state(t ?τ(t,r(t))).

    The nonlinear functions are globally Lipschitz,

    where lk1,lk2, and lk3are non-negative constants.

    Γ1(r(t)) ∈Rn×n, Γ2(r(t)) ∈Rn×n, and Γ3(r(t)) ∈Rn×nrepresent the inner-coupling matrices linking between the subsystems in mode r(t)., G(2)(r(t)) =andare the coupling configuration matrices of the networks representing the coupling strength and the topological structure of the SNCDN in mode r(t),in whichis defined as follows: if there exists a connection between kthandnodes, then, otherwise,and

    For simplicity of notations,we denote A(r(t)),B(r(t)),C(r(t)),D(r(t)),L(r(t)),H(r(t)),J(r(t)),G(m)(r(t)),Γm(r(t)),(m=1,2,3), by Ai,Bi,Ci,Di,Li,Hi,Ji,,Γmifor r(t)=i ∈s.

    Remark 2.1The synchronization of Markovian jumping SNCDN (2.1) is investigated in this work, which is devoted to revealing the effect of pinning controller over the Markovian switching network topologies. The network topology switching is governed by a time homogenous Markov process, whose state space corresponds to all the possible topologies. However, a general complex network always has a fixed network topology, which can not describe the situation changing, so the research on the complex networks under randomly switching topologies,such as SNCDN (2.1), is very significant and important.

    Assumption 1τ(t,r(t)),h(t,r(t)),and d(t,r(t))denote the mode-dependent time-varying neutral delay, distributed delay, and retarded delay, respectively. They are assumed to satisfy the followings:

    Correspondingly the response complex network with the control inputs uk(t) ∈RN(k =1,2,··· ,N) can be written as

    where uk(t) is defined by

    2.2 Basic ideas and Lemmas

    In this section, we provide some definitions and lemmas which are absolutely necessary to derive the proposed synchronization criterion.

    Definition 2.2([50]) Complex dynamical network (2.1) is said to be global (asymptotically) synchronized by pinning control, if

    Definition 2.3([51]) The pair (E,Ai+b1Γ1iλk?b4σkΓ4) is said to be regular, if the det(aE ?(Ai+b1Γ1iλk?b4σkΓ4)), for some finite complex number a, is not identically zero.

    Definition 2.4([51]) The pair (E,Ai+b1Γ1iλk?b4σkΓ4) is said to be impulse free, if deg(det(aE ?(Ai+b1Γ1iλk?b4σkΓ4)))=rank(E) for some finite complex number ‘a(chǎn)’.

    Lemma 2.5([50]) The eigenvalues of an irreducible matrix G = (gkw) ∈RN×Nwithsatisfy the following properties:

    (i) Real parts of all eigenvalues of G are less than or equal to 0 with multiplicity 1;

    (ii) G has an eigenvalue 0 with multiplicity 1 and the right eigenvector (1,1,··· ,1)T.

    Lemma 2.6([52]) The pair (E,Ai+b1Γ1iλk?b4σkΓ4) is regular and impulse free if and only if there exist matrices Pkisuch that the following inequalities hold for k =2,3,··· ,N :

    Lemma 2.7([53]) If for any constant matrix R ∈Rm×m,R=RT>0, scalar γ >0, and a vector function ? : [0,γ] →Rmsuch that the integrations concerned are well defined, the following inequality holds:

    Let the error be ek(t) = yk(t)?xk(t). So, the error dynamics of Markovian jumping SNCDN(2.1) can be derived as follows:

    Remark 2.8The pinning controllers are applied to achieve synchronization of the Markovian jumping SNCDN (2.1). It can be seen that the synchronization problem of (2.1) is equivalent to the stabilization problem of the error dynamical systems (2.7) at the origin. The controller (2.5) accelerate each node to synchronizing with the target node according to the instantaneous state information, and the similar one also can be found in [28]. We only exert control actions on the pinned nodes to achieve the synchronization and reduce the number of controllers.

    Remark 2.9The novelty of this article can be summarized as follows: (1) Synchronization of Markovian jumping singular neutral complex dynamical networks via pinning control is considered in this article; (2) A new Lyapunov-Krasovskii functional is constructed with triple-integral term.

    3 Main Results

    3.1 Asymptotic stability of complex dynamical systems

    In this section,we derive delay-dependent stability criteria for the error dynamical network system (2.7). We also discuss the impact of additive time-varying delays on the stability of the system.

    Denoting σk=0(k =l+1,l+2,··· ,N),then we may write the error system in its compact form as

    where e(t) = (e1(t),e2(t),··· ,eN(t)), F1(e(t)) = (F11(e1(t)),F21(e2(t)),··· ,FN1(eN(t))),F2(e(t ?di(t))=(F12(e1(t ?di(t)),F22(e2(t ?di(t)),··· ,FN2(eN(t ?di(t))), F3((t ?τi(t)))=(F13((t ?τi(t))),F23((t ?τi(t))),··· ,FN3((t ?τi(t)))), and σ =diag{σ1,σ2,··· ,σN}.

    By the properties of the outer-coupling matrix(a=1,2,3), there exists a unitary matrix U =[U1,U2,··· ,UN]∈RN×Nsuch that UT=ΛiUTwith Λi=diag{λ1i,λ2i,··· ,λNi}(a = 1,2,3) and UUT= I. Using the nonsingular transform e(t)U = z(t) = [z1(t),z2(t),··· ,zN(t)]∈RN×N, from equation (3.1), it follows the matrix equation

    In a similar way, model (3.2) can be written as

    where hk1(t)=F1(e(t))Uk,hk2(t)=F2(e(t ?di(t))Uk, and hk3(t)=F3(˙e(t ?τi(t)))Uk.

    So far, we transformed the synchronization problem of the singular complex dynamical networks (3.1) into the synchronization problem of the N pieces of the corresponding error dynamical network (3.3). From Lemma 2.5, λi1= 0 and z1(t) = e(t)U1= 0. Therefore, if the following (N ?1) pieces of the corresponding error dynamical network,

    are asymptotically stable, which implies that the synchronized states (3.1) are asymptotically stable.

    Let us define

    The inequality(2.2)and the Lipschitz continuity of hk1(t)can be used to make hk1(t)to satisfy

    where ukwis the ω-th element of Ukand=max lk1. Therefore, the following inequality

    holds, if the inequality

    is satisfied. Similarly, the following inequalities holds:

    if the following inequalities are satisfied that

    where

    Theorem 3.1For given scalars,νi,,σi,d1i,d2i,μiand constant scalar dmisatisfying d1i< dmi< d2i, the Markovian jumping singular error dynamical network (3.4) is asymptotically stable if there exist positive constants αk, matrices Pki>0,Qk1i>0,Qk2i>0,Rk1i>0,Rk2i> 0, Tk1i> 0, Qkj> 0,Rkj> 0 (j = 3,4),Tkj> 0 (j = 2,3,4),Ukj> 0 (j = 1,2,3),Wkj> 0, Mkj> 0,Nkj> 0 (j = 1,2,3,4,5), and positive diagonal matrices Skj(j = 1,2,3)such that the following LMIs hold for all i ∈S:

    where

    ProofConstruct the Lyapunov-Krasovskii functional:

    where

    The derivative of Vkr(zk(t),i,t) along the trajectory of (3.4) with respect to t is given by

    Notice (a) of Lemma 2.7, then,

    Notice (b) of Lemma 2.7, then,

    From equations (3.12) and (3.17)–(3.34), we obtain

    By Schur complement Lemma, we get (3.14), and

    As ETPki=PkiE ≥0, the stable result cannot be obtained via the Lyapunov stability theory because the rank of ETPkiin the Lyapunov function Vk1(zk(t),i,t) is r

    By Lemma 2.6,it is clear that the pair(E,Ai+b1Γ1iλk?b4σkΓ4)is regular and impulse free whenever inequalities(3.13)–(3.16)hold. Then,the nonsingular matrices areand. The following decomposition holds:

    where Xk1∈Rr×n, Xk2∈R(n?r)×n, Yk1∈Rn×r,Yk2∈Rn×(n?r), and∈Rr×r, k =2,3,··· ,N.

    The network system (3.4) is equivalent to

    If we choose Wk,such that,which leads

    This completes the proof.

    Remark 3.2In the literature,the authors([2,5,7,13,20,21])investigated the problem of complex dynamical networks with time delay components. It is noted that unfortunately in the existing literature the problem of synchronization criteria for a class of singular neutral complex dynamical networks with distributed delay and Markovian jump parameters via pinning control has not been considered yet. Motivated by this,in this article we provided a sufficient condition to ensure that the SNCDN (3.1) is global (asymptotically) synchronized.

    Remark 3.3Synchronization of the Markovian jumping neutral complex dynamical networks is considered in[45]. In this article,Markovian jumping singular neutral complex dynamical networks with pinning control is employed. Synchronization conditions are established in the form of linear matrix inequalities(LMIs). The solvability of derived conditions depends not only on the pinned nodes but also on the initial values of the Markovian jumping parameter.It is pointed out that there is no useful term is ignored while maintaining our stability results.

    4 Numerical Examples

    In this section, numerical examples are presented to demonstrate the effectiveness of the synchronization for pinning control.

    Example 4.1Consider the following time-varying delayed Markovian jumping SNCDN with 3-node and mode s=2,

    with

    (a = 1,2,3),Ji= Hi= 0,i = {1,2}. Let us consider b1= 1,b2= b3= 0.5,b4= 0.6, σ1= 0.4,σ2= 0.5, σ3= 0.3,== 0.2, ν1= ν2= 0.5,== 0.3, δ1= δ2= 0.6, d11= 0.4,d21= 0.6, dm1= 0.5,μ1= μ2= 0.4, and the eigenvalues ofare found to be λi1= 0,λi2= ?3 and λi3= ?3. By using Matlab LMI Toolbox, we solve the LMIs (3.13)–(3.16) in Theorem 3.1, we obtain the feasible solutions for N =3,k =1,i=1,2 as follows:

    Therefore, by Theorem 3.1, the Markovian jumping SNCDN with time-varying delays (3.1)achieve synchronization through the pinning controller uk(t) with the above mentioned parameters.

    Example 4.2Consider the following time-varying delayed Markovian jumping SNCDN

    with 5-node and mode s=2:

    with

    Ji= Hi= 0,i = {1,2}. Let us consider b1= 0.1,b2= b3= 0.3,b4= 0.2,σ1= 0.4, σ2= 0.5,σ3= 0.3,== 0.2, ν1= ν2= 0.5,== 0.3, δ1= δ2= 0.6, d11= 0.4, d21= 0.6,dm1= 0.5, μ1= μ2= 0.4. The eigenvalues ofandare found to be λ11= 0,λ12=λ13=λ14=?0.5, λ15=2.5, and λ21=0, λ22=λ23=λ24=λ25=?0.5. Using Matlab LMI Toolbox, we solve the LMIs (3.13)–(3.16) in Theorem 3.1, then we obtain the feasible solutions for N =5,k =1,i=1,2 as follows:

    Therefore, by Theorem 3.1, the Markovian jumping SNCDN with time-varying delays (2.1)achieve synchronization through the pinning controller uk(t) with the above mentioned parameters.

    Figure 1 State trajectories of the system in Example 2

    5 Conclusion

    In this article,some new synchronization stability criteria are proposed for a class of Markovian jumping SNCDNs with distributed delay and pinning control. On the basis of appropriate Lyapunov-Krasovskii functional which contains triple integral terms and bounding techniques,the novel delay dependent synchronization condition is derived in terms of linear matrix inequalities. We established some sufficiency conditions for synchronization, and the numerical results can demonstrate the effectiveness of the obtained result. In future,the preosed methods can be further extended to deal with some other problems on pinning control and synchronization for general stochastic dynamical networks, complex systems with impulsive perturbation,etc.

    中文字幕免费在线视频6| 汤姆久久久久久久影院中文字幕| 精品人妻熟女毛片av久久网站| 老女人水多毛片| 老熟女久久久| 免费黄网站久久成人精品| 久久精品久久久久久久性| 亚洲精品第二区| 啦啦啦啦在线视频资源| 狠狠精品人妻久久久久久综合| 如何舔出高潮| 五月玫瑰六月丁香| .国产精品久久| 熟女电影av网| 久久热精品热| 精华霜和精华液先用哪个| www.色视频.com| 国产一区亚洲一区在线观看| 国产亚洲最大av| 一级毛片久久久久久久久女| av在线播放精品| 久久国内精品自在自线图片| 久久久久精品性色| 国产乱来视频区| 欧美成人精品欧美一级黄| 中文字幕人妻熟人妻熟丝袜美| 久久久欧美国产精品| 久久久久国产网址| av.在线天堂| 亚洲精品亚洲一区二区| 欧美精品一区二区免费开放| 久久国产乱子免费精品| av免费在线看不卡| 又粗又硬又长又爽又黄的视频| 男女国产视频网站| 亚洲,一卡二卡三卡| 亚洲精品国产av成人精品| 久久精品夜色国产| 亚洲精品国产av蜜桃| 国产高清三级在线| 午夜视频国产福利| www.av在线官网国产| 欧美三级亚洲精品| a级毛片在线看网站| 亚洲精品日韩av片在线观看| 99久久中文字幕三级久久日本| 有码 亚洲区| 国产av国产精品国产| 久久国内精品自在自线图片| 建设人人有责人人尽责人人享有的| 纯流量卡能插随身wifi吗| 乱人伦中国视频| 精品一品国产午夜福利视频| 伊人久久精品亚洲午夜| 亚洲电影在线观看av| 男人舔奶头视频| 成人国产麻豆网| 国产精品免费大片| 一二三四中文在线观看免费高清| 热99国产精品久久久久久7| 国产69精品久久久久777片| 久久久国产欧美日韩av| 日日摸夜夜添夜夜添av毛片| 夫妻性生交免费视频一级片| 男女啪啪激烈高潮av片| 成人国产麻豆网| 国产精品欧美亚洲77777| av在线播放精品| 国产精品嫩草影院av在线观看| a 毛片基地| 亚洲不卡免费看| 国产欧美日韩精品一区二区| 国产欧美亚洲国产| 欧美精品一区二区大全| 日本午夜av视频| 久久人人爽人人爽人人片va| 久久99热这里只频精品6学生| 久久国内精品自在自线图片| 成人二区视频| 丝袜喷水一区| 国产探花极品一区二区| 在线看a的网站| 99热国产这里只有精品6| 欧美少妇被猛烈插入视频| 99九九在线精品视频 | 男人添女人高潮全过程视频| 人人妻人人爽人人添夜夜欢视频 | 777米奇影视久久| 久久久久久久精品精品| 国产精品一区www在线观看| 熟妇人妻不卡中文字幕| 少妇被粗大的猛进出69影院 | 久久精品久久精品一区二区三区| 欧美 亚洲 国产 日韩一| 美女视频免费永久观看网站| 亚洲三级黄色毛片| 国产精品.久久久| 久久久亚洲精品成人影院| 视频区图区小说| 成人特级av手机在线观看| 亚洲婷婷狠狠爱综合网| 三级国产精品片| 99热这里只有是精品50| 久久久久国产网址| 久久免费观看电影| 少妇人妻久久综合中文| 我要看日韩黄色一级片| 亚洲va在线va天堂va国产| 欧美3d第一页| 大又大粗又爽又黄少妇毛片口| 精品人妻熟女毛片av久久网站| 人妻夜夜爽99麻豆av| 免费播放大片免费观看视频在线观看| 丰满乱子伦码专区| 精品久久久精品久久久| 国产精品伦人一区二区| 人妻 亚洲 视频| 熟女电影av网| 26uuu在线亚洲综合色| 黑人猛操日本美女一级片| 热re99久久精品国产66热6| 国产91av在线免费观看| 日韩精品免费视频一区二区三区 | 亚洲色图综合在线观看| 亚洲经典国产精华液单| 欧美亚洲 丝袜 人妻 在线| 亚洲精品色激情综合| av在线播放精品| 亚洲精品第二区| 在线观看一区二区三区激情| www.av在线官网国产| 久久久午夜欧美精品| 国产一区亚洲一区在线观看| 久久韩国三级中文字幕| 51国产日韩欧美| 精品人妻一区二区三区麻豆| 亚洲精品国产av蜜桃| av专区在线播放| 美女中出高潮动态图| 成年人免费黄色播放视频 | 青春草亚洲视频在线观看| 高清欧美精品videossex| 亚洲美女搞黄在线观看| 高清视频免费观看一区二区| 久久热精品热| 五月玫瑰六月丁香| 亚洲综合精品二区| 成年av动漫网址| 99国产精品免费福利视频| 纵有疾风起免费观看全集完整版| 亚洲av成人精品一二三区| 9色porny在线观看| 下体分泌物呈黄色| 国产成人精品一,二区| h日本视频在线播放| 最新的欧美精品一区二区| 啦啦啦在线观看免费高清www| 精品卡一卡二卡四卡免费| 青春草国产在线视频| av在线老鸭窝| 大香蕉久久网| 国产午夜精品久久久久久一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 啦啦啦视频在线资源免费观看| 日韩一区二区三区影片| 日韩电影二区| 日本免费在线观看一区| 亚洲av成人精品一二三区| 欧美日韩视频高清一区二区三区二| 精品人妻熟女av久视频| 亚洲av成人精品一区久久| 久久女婷五月综合色啪小说| 欧美日韩在线观看h| 91久久精品国产一区二区三区| 亚洲四区av| 涩涩av久久男人的天堂| av有码第一页| 69精品国产乱码久久久| 久久午夜综合久久蜜桃| 日韩 亚洲 欧美在线| 亚洲国产毛片av蜜桃av| 夫妻性生交免费视频一级片| 精品国产乱码久久久久久小说| 色视频在线一区二区三区| 麻豆精品久久久久久蜜桃| h视频一区二区三区| 制服丝袜香蕉在线| 亚洲国产精品专区欧美| 高清不卡的av网站| 亚洲国产欧美日韩在线播放 | 狂野欧美激情性xxxx在线观看| 国产精品嫩草影院av在线观看| 丁香六月天网| 欧美日韩综合久久久久久| 国产极品粉嫩免费观看在线 | 精品久久国产蜜桃| 在现免费观看毛片| 精品人妻一区二区三区麻豆| 国产精品一区二区在线观看99| 3wmmmm亚洲av在线观看| 一级二级三级毛片免费看| 亚洲精品第二区| 少妇被粗大的猛进出69影院 | 男人和女人高潮做爰伦理| 97在线人人人人妻| 成人亚洲欧美一区二区av| 亚洲国产av新网站| 99久久综合免费| 伊人久久国产一区二区| 亚洲久久久国产精品| freevideosex欧美| 噜噜噜噜噜久久久久久91| 国产老妇伦熟女老妇高清| 在线亚洲精品国产二区图片欧美 | 欧美区成人在线视频| 亚洲伊人久久精品综合| 精品国产国语对白av| 内地一区二区视频在线| 国产精品一区二区三区四区免费观看| 国产精品福利在线免费观看| 成人漫画全彩无遮挡| 国产视频内射| 欧美人与善性xxx| 国产真实伦视频高清在线观看| 人人妻人人添人人爽欧美一区卜| 熟女人妻精品中文字幕| 欧美精品高潮呻吟av久久| 亚洲电影在线观看av| 亚洲精品乱久久久久久| 美女cb高潮喷水在线观看| 观看免费一级毛片| 午夜福利在线观看免费完整高清在| 99久久中文字幕三级久久日本| 午夜福利影视在线免费观看| 欧美激情极品国产一区二区三区 | 国产免费又黄又爽又色| 天堂中文最新版在线下载| 在线观看三级黄色| av不卡在线播放| 久久国产精品男人的天堂亚洲 | 久久人人爽人人片av| 一级爰片在线观看| 寂寞人妻少妇视频99o| 啦啦啦在线观看免费高清www| 亚洲国产精品成人久久小说| 国产午夜精品一二区理论片| 亚洲精品视频女| 中国国产av一级| 一级爰片在线观看| 亚洲av.av天堂| 热re99久久精品国产66热6| 寂寞人妻少妇视频99o| 亚洲欧美日韩卡通动漫| 人妻一区二区av| 国产亚洲91精品色在线| av在线app专区| 黄片无遮挡物在线观看| 曰老女人黄片| 免费看不卡的av| 国产一区二区在线观看日韩| 欧美日韩国产mv在线观看视频| 少妇的逼水好多| 少妇人妻一区二区三区视频| 日韩免费高清中文字幕av| 精品久久久噜噜| 国产精品成人在线| 久久韩国三级中文字幕| 成年av动漫网址| 精品国产一区二区三区久久久樱花| 国产精品人妻久久久影院| 简卡轻食公司| kizo精华| 看非洲黑人一级黄片| av不卡在线播放| 国产精品不卡视频一区二区| 亚洲av中文av极速乱| 成人影院久久| 嘟嘟电影网在线观看| 伦理电影大哥的女人| 日本vs欧美在线观看视频 | h日本视频在线播放| 七月丁香在线播放| 国产精品一区www在线观看| 99国产精品免费福利视频| 色哟哟·www| 中文在线观看免费www的网站| 一区在线观看完整版| 少妇 在线观看| 精品熟女少妇av免费看| 好男人视频免费观看在线| 99久久精品一区二区三区| 最黄视频免费看| 国产免费一区二区三区四区乱码| 亚洲国产毛片av蜜桃av| 日韩人妻高清精品专区| 亚洲欧洲精品一区二区精品久久久 | 3wmmmm亚洲av在线观看| 午夜91福利影院| 午夜免费观看性视频| 亚洲美女黄色视频免费看| 美女福利国产在线| 99热这里只有是精品50| 亚洲精品自拍成人| 黄色怎么调成土黄色| 十八禁高潮呻吟视频 | 丝袜脚勾引网站| 免费看不卡的av| 少妇被粗大猛烈的视频| 夜夜骑夜夜射夜夜干| 80岁老熟妇乱子伦牲交| 免费观看a级毛片全部| 99九九在线精品视频 | 免费av中文字幕在线| 纯流量卡能插随身wifi吗| 国产有黄有色有爽视频| 国国产精品蜜臀av免费| 欧美成人精品欧美一级黄| 国产精品久久久久久久电影| 久久久精品94久久精品| 欧美成人精品欧美一级黄| 国产熟女欧美一区二区| 日本猛色少妇xxxxx猛交久久| 啦啦啦啦在线视频资源| 亚洲成人av在线免费| 黑人猛操日本美女一级片| 午夜精品国产一区二区电影| 在线天堂最新版资源| av一本久久久久| 国产爽快片一区二区三区| 男女免费视频国产| 丰满乱子伦码专区| 内地一区二区视频在线| 亚洲国产精品一区二区三区在线| av天堂久久9| 黑人巨大精品欧美一区二区蜜桃 | 亚洲国产毛片av蜜桃av| 国产精品成人在线| 精品国产国语对白av| 熟女av电影| 街头女战士在线观看网站| 午夜91福利影院| 久久毛片免费看一区二区三区| 精品国产乱码久久久久久小说| 热99国产精品久久久久久7| 人妻一区二区av| 桃花免费在线播放| 少妇熟女欧美另类| 成人亚洲精品一区在线观看| 亚洲欧洲日产国产| 青春草国产在线视频| 国产高清不卡午夜福利| 男女国产视频网站| 亚洲不卡免费看| 日韩一本色道免费dvd| 久久国产亚洲av麻豆专区| 精品一品国产午夜福利视频| 99热国产这里只有精品6| 麻豆成人午夜福利视频| 一本一本综合久久| 久久亚洲国产成人精品v| 亚洲美女视频黄频| 欧美精品亚洲一区二区| 少妇高潮的动态图| 久久久国产一区二区| 国产精品伦人一区二区| 天堂中文最新版在线下载| 国产综合精华液| 国产成人精品一,二区| 成人黄色视频免费在线看| 女性被躁到高潮视频| 国产欧美亚洲国产| 少妇的逼好多水| 九九爱精品视频在线观看| 22中文网久久字幕| 91久久精品国产一区二区成人| 男人添女人高潮全过程视频| 看非洲黑人一级黄片| 人妻少妇偷人精品九色| 精品酒店卫生间| 欧美少妇被猛烈插入视频| 伊人久久国产一区二区| 亚洲精品,欧美精品| 亚洲四区av| 成年人免费黄色播放视频 | 国产黄色视频一区二区在线观看| 人人妻人人澡人人爽人人夜夜| 国产视频首页在线观看| 91成人精品电影| 如日韩欧美国产精品一区二区三区 | av播播在线观看一区| 日本欧美国产在线视频| 成年人免费黄色播放视频 | 亚洲国产欧美日韩在线播放 | 午夜激情福利司机影院| 国产精品偷伦视频观看了| 亚洲欧美清纯卡通| 国产成人freesex在线| 特大巨黑吊av在线直播| 国产精品久久久久成人av| 久久精品久久久久久久性| 精品亚洲乱码少妇综合久久| 三级国产精品欧美在线观看| 午夜免费鲁丝| 国产在线男女| 我的女老师完整版在线观看| 天堂俺去俺来也www色官网| 亚洲第一区二区三区不卡| 日韩三级伦理在线观看| 亚洲av不卡在线观看| 日韩人妻高清精品专区| 亚洲欧洲国产日韩| 人妻系列 视频| 高清黄色对白视频在线免费看 | 亚洲三级黄色毛片| 日韩不卡一区二区三区视频在线| 人妻系列 视频| 永久免费av网站大全| 精品少妇内射三级| 欧美+日韩+精品| 97在线视频观看| 99热这里只有是精品50| 成人国产麻豆网| 免费看av在线观看网站| 91午夜精品亚洲一区二区三区| 99久久精品国产国产毛片| 少妇高潮的动态图| 国产精品女同一区二区软件| 久久婷婷青草| 亚洲精品乱久久久久久| 免费黄网站久久成人精品| 在线观看免费日韩欧美大片 | 亚洲av不卡在线观看| 汤姆久久久久久久影院中文字幕| 亚洲四区av| 波野结衣二区三区在线| 午夜免费鲁丝| kizo精华| 有码 亚洲区| 国产一区有黄有色的免费视频| 国产一区二区在线观看日韩| 三级国产精品片| 欧美精品人与动牲交sv欧美| 美女cb高潮喷水在线观看| 久久久久久久久久久免费av| 视频中文字幕在线观看| 少妇的逼水好多| 大片电影免费在线观看免费| 涩涩av久久男人的天堂| 99热国产这里只有精品6| 在线观看www视频免费| av网站免费在线观看视频| 18禁在线播放成人免费| 成人午夜精彩视频在线观看| 亚洲av福利一区| 午夜福利在线观看免费完整高清在| 美女xxoo啪啪120秒动态图| 精品视频人人做人人爽| 色吧在线观看| 伊人久久国产一区二区| 26uuu在线亚洲综合色| 啦啦啦啦在线视频资源| 午夜日本视频在线| 国产精品一区www在线观看| 日本黄大片高清| 我要看黄色一级片免费的| 欧美最新免费一区二区三区| 啦啦啦中文免费视频观看日本| 欧美高清成人免费视频www| 精品久久久久久久久av| 国产精品麻豆人妻色哟哟久久| 草草在线视频免费看| 国产精品蜜桃在线观看| 亚洲激情五月婷婷啪啪| 精品一区二区三区视频在线| 肉色欧美久久久久久久蜜桃| 99久久综合免费| 欧美激情极品国产一区二区三区 | 国产精品一区二区在线观看99| 亚洲欧美日韩卡通动漫| 亚洲精华国产精华液的使用体验| 在线观看三级黄色| 久久精品熟女亚洲av麻豆精品| 久久久久久伊人网av| av线在线观看网站| 成人黄色视频免费在线看| 国产亚洲一区二区精品| 日产精品乱码卡一卡2卡三| 另类精品久久| 亚洲av.av天堂| 人妻 亚洲 视频| 啦啦啦中文免费视频观看日本| 高清午夜精品一区二区三区| 麻豆乱淫一区二区| 99久久精品热视频| a级一级毛片免费在线观看| 久久青草综合色| 在线天堂最新版资源| 秋霞在线观看毛片| 日韩制服骚丝袜av| 国产在线男女| 久久 成人 亚洲| 男女免费视频国产| 国产一级毛片在线| 精品午夜福利在线看| 国产伦理片在线播放av一区| 精品国产国语对白av| 久久久亚洲精品成人影院| 国产欧美日韩一区二区三区在线 | av不卡在线播放| 国产精品福利在线免费观看| videos熟女内射| 激情五月婷婷亚洲| 国产精品一区二区在线观看99| 亚洲国产精品成人久久小说| 欧美日韩视频精品一区| 在线观看一区二区三区激情| 欧美日韩视频高清一区二区三区二| 人妻一区二区av| 在线观看美女被高潮喷水网站| 成人免费观看视频高清| 曰老女人黄片| 2022亚洲国产成人精品| 国产69精品久久久久777片| 免费观看a级毛片全部| 国产日韩欧美在线精品| 日本爱情动作片www.在线观看| 天堂中文最新版在线下载| 国产69精品久久久久777片| 色吧在线观看| 伦精品一区二区三区| 免费观看的影片在线观看| 久久99蜜桃精品久久| 日本91视频免费播放| 成人影院久久| 国产av码专区亚洲av| 韩国av在线不卡| 亚洲av.av天堂| 国产伦理片在线播放av一区| 我要看黄色一级片免费的| 国产精品成人在线| 国产精品麻豆人妻色哟哟久久| 免费大片18禁| 亚洲欧美一区二区三区黑人 | 啦啦啦中文免费视频观看日本| 亚洲性久久影院| 99九九线精品视频在线观看视频| 人妻一区二区av| 免费观看性生交大片5| 国产成人精品福利久久| 少妇猛男粗大的猛烈进出视频| 人人妻人人澡人人爽人人夜夜| 丰满少妇做爰视频| 天堂中文最新版在线下载| 男人爽女人下面视频在线观看| 欧美日韩在线观看h| 免费少妇av软件| 亚洲,一卡二卡三卡| 国内少妇人妻偷人精品xxx网站| 内地一区二区视频在线| 伦理电影免费视频| 熟女电影av网| 丝袜在线中文字幕| 午夜久久久在线观看| 亚洲av二区三区四区| 久久精品国产亚洲网站| 亚洲一级一片aⅴ在线观看| 亚洲久久久国产精品| 五月天丁香电影| 最新中文字幕久久久久| 午夜免费男女啪啪视频观看| 日韩欧美精品免费久久| 黄片无遮挡物在线观看| 精品一区二区三卡| 国产免费视频播放在线视频| 午夜日本视频在线| 精品人妻偷拍中文字幕| 97在线人人人人妻| 视频中文字幕在线观看| 欧美精品一区二区大全| 亚洲国产色片| 亚洲国产av新网站| 人人妻人人爽人人添夜夜欢视频 | h日本视频在线播放| 久久精品国产亚洲网站| 日韩中文字幕视频在线看片| 黄色一级大片看看| 少妇 在线观看| 丰满人妻一区二区三区视频av| 国产一区二区三区综合在线观看 | 老司机亚洲免费影院| 99热国产这里只有精品6| 久久久欧美国产精品| 99久久精品国产国产毛片| 欧美bdsm另类| 国产又色又爽无遮挡免| 高清欧美精品videossex| 国产一区二区在线观看日韩| 欧美变态另类bdsm刘玥| 国语对白做爰xxxⅹ性视频网站| 国产一区二区三区av在线| h视频一区二区三区| 最后的刺客免费高清国语| 午夜av观看不卡| 国产av一区二区精品久久| 一本久久精品| 观看av在线不卡| 成人午夜精彩视频在线观看| av在线播放精品| 欧美三级亚洲精品| 久久精品国产亚洲网站| 一区在线观看完整版| 极品少妇高潮喷水抽搐| 国产精品三级大全| 亚洲国产精品999| 亚洲婷婷狠狠爱综合网|