• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temporal and spatial evolution measurement of laser-induced breakdown spectroscopy on hydrogen retention in tantalum

    2020-07-09 04:19:56CongLI李聰JiajiaYOU游加加HuaceWU武華策DingWU吳鼎LiyingSUN孫立影JiaminLIU劉佳敏QianhuiLI李千惠RanHAI海然XingweiWU吳興偉andHongbinDING丁洪斌
    Plasma Science and Technology 2020年7期
    關(guān)鍵詞:吳興

    Cong LI (李聰),Jiajia YOU (游加加),Huace WU (武華策),Ding WU (吳鼎),Liying SUN(孫立影),Jiamin LIU (劉佳敏),Qianhui LI (李千惠),Ran HAI (海然),Xingwei WU (吳興偉) and Hongbin DING (丁洪斌)

    Key Laboratory of Materials Modification by Laser,Ion and Electron Beams (Ministry of Education),School of Physics,Dalian University of Technology,Dalian 116024,People’s Republic of China

    Abstract

    Keywords:temporal and spatial evolution,fuel retention,tokamak,laser-induced breakdown spectroscopy

    1.Introduction

    Plasma-wall interaction (PWI),which can result in fuel retention,wall erosion,and redeposition,is still one of the key issues in the magnetic confinement nuclear fusion devices.In the International Thermonuclear Experimental Reactor [1],the in-vessel tritium inventory must be minimized and limited to <700 g due to the safety requirement [2].Moreover,the fuel retention will change the property of the material surface,influence the recycling of the particles,and even degrade the performance of the fusion plasma.Therefore,elemental diagnosis and monitoring,especially for the fuel elements,on the plasma-facing components (PFCs) are very important to understand the behavior of fuel retention for PWI research.

    Laser-induced breakdown spectroscopy (LIBS) is a valuable and well-established technique to determine the elemental composition for not only solids but also gases and liquids[3–7].Several works with post-mortem LIBS setups in the labs [8–13]have demonstrated that the LIBS technique has an excellent capability to study the fuel retention in PFCs.Since the 2014 campaign,a remote and in situ LIBS system has been installed in the Experimental Advanced Superconducting Tokamak to real-time measure the fuel retention and impurity distributions on the first wall[14,15].However,it is well known that quantitative analysis is one of the most major obstacles to analyzing LIBS data due to the transient process of LIBS plasma.The fuel elements of low-Z(such as H,D,and T)and the wall elements of high-Z(such as W,Mo,Ta etc) expand with various velocities under the vacuum condition.Therefore,temporal and spatial measurements for LIBS plasma are essential to study the evolution of the dynamics of both the elemental emission intensity and plasma condition as well as to further understand the characterization of laser-induced plasma.Tantalum(Ta)is a high-Z metal with high fracture toughness,low neutron activation,and high radiation resistance.Although Ta is a rare commodity and difficult for bulk application on large fusion devices,Ta alloy is a potential candidate for some parts of the PFCs[16].Many works related to the spatial and temporal evolution of LIBS measurement with respect to the efforts in the theoretical,experimental,and background environment have been reported [17–20].In our previous works,the temporal and spatial dynamics of LIBS plasma with respect to H,Li,C,Si,Mo,and W have been investigated to show the different expansion velocities for various species [21,22].However,up to now,no study using the temporal and spatial LIBS measurement on a Ta sample with H retention has been reported.

    In the current study,an upgraded co-axis LIBS system based on a linear fiber bundle collection system has been developed to measure PFCs under the vacuum condition of about 10–7mbar.The spatial resolution measurement of the different positions of the LIBS plasma can be achieved simultaneously for each laser ablation.The temporal and spatial evolution of the H intensity,Ta intensity,and electron excitation temperature are investigated.The results will further improve the understanding of the evolution of the dynamics of LIBS plasma and optimize the current collection system of in situ LIBS in fusion devices.

    2.Experiment

    Figure 1.Schematic of the LIBS experimental system.

    A schematic of the co-axial LIBS system in the lab is shown in figure 1.A nanosecond pulsed Q-switched Nd:YAG laser(CFR200,Quantel) at a wavelength of 1064 nm and an energy of 120 mJ was used.The laser was focused onto the surface of the sample by using a lens with a focal length of 200 mm to produce the LIBS plasma.The diameter of the laser spot size and the energy density of the laser were 1.5 mm and 6.8 J cm?2,respectively.By using an off-axis parabolic mirror with a through hole in the center,the superposition of the laser beam and the collected signal light were achieved.This kind of design could also be used in the in situ LIBS system in a nuclear fusion device because the optical windows are usually quite limited.The diameter of the mirror,the diameter of the center hole,and the focal length were 50.8,10,and 152.4 mm,respectively.Pure Ta samples were mounted on a two-dimensional XY piezo stage inside a vacuum chamber equipped with quartz windows.The vacuum chamber was pumped down to a pressure of 10–7mbar to avoid the influence of the water vapor from the air.The emission light from the LIBS plasma was reflected by the parabolic mirror which was placed 152.4 mm away from the sample,and then the emission light was collected by a lens with a diameter of 50.8 mm and a focal length of 60.2 mm onto a fiber bundle.This fiber bundle included ten fibers with a core diameter of 300 μm by linear arrangement,so each fiber corresponded to the different collected regions of the LIBS plasma.The magnification of the signal collection system was 3.23,therefore a spatial resolution of 0.97 mm was achieved.The other side of the fiber bundle with a linear arrangement of ten fibers was coupled to a high resolution spectrometer (Shamrock 750,Andor) with a gated intensified charge coupled device (ICCD) camera (iStar 340,Andor).The wavelength range covered 647–665 nm with a full width at half maximum resolution of better than 0.05 nm by a grating of 1200 lines/mm.The response factors of the intensity for each pixel on the ICCD were calibrated using a radiometric calibration source (Labsphere).A digital delay/pulse generator (DG645,Stanford) was used to synchronize the laser and ICCD as well as control the delay time to obtain the time-resolved spectra.The exposure time of the ICCD was set as 200 ns.Thirty LIBS spectra were repeated and calculated the error bars in this work.

    3.Results and discussion

    3.1.Temporal and spatial dynamics of H emission

    Figure 2.LIBS spectra obtained from the different fibers at the delay times of (a) 0 ns and (b) 200 ns of the surface of the H retention Ta sample.The exposure time is 200 ns,and the laser energy density is 6.8 J cm?2.

    Figure 3.LIBS spectra obtained at different delay times from 0–1200 ns from (a) fiber No.6 and (b) fiber No.10 on the surface of the H retention Ta sample.The exposure time is 200 ns,and the laser energy density is 6.8 J cm?2.

    The typical spectra of LIBS on the surface of Ta samples from different fibers are shown in the figure 2.The LIBS spectra from the first laser shot on the surface of the sample show obvious H I (656.28 nm) and C II (657.81 and 658.29 nm)signals.H retention accumulated on the surface of the Ta samples due to the absorption of H2O and other impurities from the air.The C is a trace impurity and mainly exists on the surface of the sample.The very high content of H and other impurities on the surface results in the Ta signal being suppressed in the detected region of 647–665 nm.The ten collected fibers numbered 1–10 correspond to the different radial positions of the LIBS plasma.The collected positions of the No.5 and No.6 fibers are near the center of the plasma.The collected positions of the No.1 and No.10 fibers are about 4.5 mm away from the center.As shown in figure 2(a),the spectra at the delay time of 0 ns from the center of the plasma show very strong continuum spectrum which is produced by the bremsstrahlung and recombination radiation.The intensities of the H signal and continuum background decrease from the center to the edge of the plasma.Figure 2(b)shows the LIBS spectra at a delay time of 200 ns.The intensity of the continuum background decreases dramatically due to the cooling of the plasma.The spatial distribution of the H intensity shows that the size of the H plasma at the delay time of 200 ns is much larger than the plasma size at the delay time of 0 ns due to the plasma expansion under the vacuum condition.

    Figure 3 shows a comparison of LIBS spectra at the delay times of 0,200,400,600,800,1000,and 1200 ns.Fiber No.6 and fiber No.10 correspond to the center of the plasma and the edge of the plasma,respectively.The spectra from the center of the plasma(figure 3(a))show that both the H signal and continuum background intensity decrease with the delay time.However,the spectra from the edge of the plasma(figure 3(b)) show that the intensity of the H signal increases from the delay times of 0–200 ns,and then decreases with the delay time.

    Figure 4.Temporal and spatial dynamics of the H intensity at different(a)radial positions and(b)delay times.The exposure time is 200 ns,and the laser energy density is 6.8 J cm?2.

    Figure 5.(a)LIBS spectra with different depths on the Ta sample,(b)H and Ta depth profiles on the Ta sample.The exposure time is 200 ns,the delay time is 200 ns,the fiber number is 6,and the laser energy density is 6.8 J cm?2.

    Figure 4 summarizes the temporal and spatial dynamics of the H intensity in the LIBS plasma.Fiber Nos.1–10 are converted to the radial positions of the LIBS plasma from–4.5 to+4.5 mm by considering the diameter of the fiber core and the magnification of the signal collecting system.Figure 4(a)shows the H intensity with different delay times at different radial positions.At the very early times of 0–200 ns,the diameter size of the H plasma is only about 6 mm and this results in the H intensity dramatically decreasing from the center to the edge of the plasma.After 200 ns,the H intensity distributions at different radial positions are more and more homogeneous because the plasma has expanded larger than 9 mm.Figure 4(b) shows that only the H intensities from the center of the plasma decrease monotonously with the delay time.The H intensities from the other positions have the maximum values at the delay time of 200 ns due to the dynamic expansion of the plasma.

    3.2.Depth profiles of H and Ta

    The LIBS spectra with successive laser shots at the same position on the surface of the sample are shown in figure 5(a).An intense H peak is found on the surface of the sample by the first laser shot.From the second laser shot,the H intensity decreases dramatically.Meanwhile,several Ta peaks(648.54,651.44,651.61,661.20,and 662.13 nm)are well defined.The depth profiles of the H and Ta intensities are shown in figure 5(b),and most of the H exists on the surface of the sample.Ta intensities slightly decrease with depth from the second laser shot.This may be due to the effect of the crater created by the laser ablation.

    3.3.Temporal and spatial dynamics of the Ta emission

    Figure 6.Temporal and spatial dynamics of the Ta intensity (648.54 nm) at different (a) radial positions and (b) delay times.The exposure time is 200 ns,and the laser energy density is 6.8 J cm?2.

    Table 1.Spectroscopic parameters of the Ta.

    Figure 6(a)shows the Ta intensity(648.54 nm)at the different radial positions with different delay times.In the very early times from 0–200 ns,strong continuum emission but no Ta atomic emission is obtained.During this time,strong bremsstrahlung and recombination radiations by the interaction between the electrons and the charged ions are achieved.Compared to the H emission result shown in figure 4(a),the time of the Ta emission is about 200 ns later than that of the H.The intensity of Ta has the maximum value at the delay time of 200 ns and then decreases with delay time.The radial distribution shows that the diameter of the Ta plasma is always less than 6 mm.Because the mass of the Ta atom is much larger than that of the H atom,the H plasma expands faster than the Ta plasma.This results in the size of the Ta plasma being less than that of the H plasma.Figure 6(b)shows that the Ta intensities from the center of plasma are much higher than those from other positions at the delay time of 200 ns.This means that the emission of the Ta plasma is spatially nonuniform.

    In order to further explain the temporal and spatial behaviors of the Ta plasma emission.The electron excited temperature of the LIBS plasma is determined by the Boltzmann method using the following equation [23]:

    where I is the light intensity of emission,λ is the wavelength,gkis the statistical weight of the k state,Akiis the transition probability,Ekis the excitation energy of the upper state,kTeis the electron excited temperature,and C is a constant.The spectroscopic parameters of the selected Ta I lines (648.54,651.44,651.61,661.20,and 662.13 nm) are taken from the atomic database of NIST [24]and shown in the table 1.

    Figure 7.Temporal and spatial dynamics of the electron excited temperature at different radial positions and delay time.The exposure time is 200 ns,and the laser energy density is 6.8 J cm?2.

    The temporal and spatial dynamics of the electron excited temperature at the different radial positions and delay times are shown in figure 7.Because some Ta signal intensities are so weak at the edge of the plasma and after a delay time of 800 ns,only electron excited temperatures between the radial position of –3 and 3 mm at delay times of 200,400,and 600 ns are presented.The electron excited temperatures have the maximum values at the center of the plasma and decrease to the edge of the plasma.Because of the low collision probability and large mean free path of the particles under the vacuum condition of 10–7mbar,the maximum electron excited temperature is only about 0.6 eV at the delay time of 200 ns.With the increase of the delay time,the electron excited temperatures decrease during the cooling of the plasma cooling.The behavior of the electron excited temperature is consistent with the temporal and spatial evolution of the Ta emission.

    4.Conclusions

    An upgraded co-axis LIBS system based on a linear fiber bundle collection system has been developed.The temporal and spatial behaviors of H and Ta plasma emissions are investigated simultaneously under the vacuum condition of 10–7mbar.The spatial resolution and the maximum detected size are about 0.97 and 9 mm,respectively.The delay times are from 0–1200 ns.The depth profiles of H retention on the Ta sample show that H mainly exists on the surface of the sample.The temporal and spatial evolution results of the LIBS plasma emission show that the H plasma observably expands from a diameter of 6 mm to more than 9 mm during the delay times of 0–200 ns.The diameter of the Ta plasma is about 6 mm which is much less than the size of the H plasma after the delay time of 200 ns.The difference in the temporal and spatial evolution behaviors between the H and Ta plasma emissions is due to the great difference in the mass between the H atom and Ta atom.The electron excited temperatures of the Ta plasma are about 0.35–0.60 eV at the delay times of 200,400,and 600 ns.The behavior of the electron excited temperature is consistent with the temporal and spatial evolution of the Ta plasma emission.The electron density of the Ta plasma will be measured and considered to further improve the understanding of the evolution of the dynamics of LIBS plasma in the near future.

    Acknowledgments

    This work was supported by National Key R&D Program of China (No.2017TFE0301300),the National Natural Science Foundation of China (Nos.11605023,11805028,11861131010),and the China Postdoctoral Science Foundation (Nos.2017T100172,2016M591423).

    ORCID iDs

    猜你喜歡
    吳興
    南太湖吳興生態(tài)農(nóng)業(yè)科技園訪問(wèn)記
    逃離地球
    沖擊波聯(lián)合中藥蠟療治療骨折術(shù)后延遲愈合的臨床效果觀察
    浙江省湖杭高速公路吳興至德清段工程全線啟動(dòng)建設(shè)
    石油瀝青(2021年1期)2021-01-11 05:41:31
    浙江吳興:四好農(nóng)村路為鄉(xiāng)村振興架起“最美走廊”
    4名未成年人開(kāi)始新生活
    方圓(2020年19期)2020-10-21 09:26:28
    趙孟頫《吳興賦》(局部)
    關(guān)于吳興姚氏源流的新發(fā)現(xiàn)
    漫畫(huà)五幅
    前線(2015年3期)2015-05-14 19:51:00
    清官真有那么清?
    高清在线国产一区| 日本a在线网址| 好男人在线观看高清免费视频 | 狂野欧美激情性xxxx| 国产久久久一区二区三区| 热99re8久久精品国产| 两人在一起打扑克的视频| av福利片在线| 国产熟女午夜一区二区三区| 国产97色在线日韩免费| 黑人欧美特级aaaaaa片| 岛国在线观看网站| 欧美av亚洲av综合av国产av| 亚洲欧美一区二区三区黑人| 久久久久国产一级毛片高清牌| 免费观看精品视频网站| 亚洲精品中文字幕在线视频| 久久久水蜜桃国产精品网| 99久久精品国产亚洲精品| 黄色丝袜av网址大全| 婷婷亚洲欧美| 少妇被粗大的猛进出69影院| 丝袜人妻中文字幕| 黑人欧美特级aaaaaa片| 老熟妇仑乱视频hdxx| 一进一出好大好爽视频| 最近最新免费中文字幕在线| 最新美女视频免费是黄的| 美国免费a级毛片| 嫩草影视91久久| 在线天堂中文资源库| 久久久久国内视频| 成人亚洲精品av一区二区| 欧美 亚洲 国产 日韩一| 99国产极品粉嫩在线观看| 国产午夜精品久久久久久| 亚洲色图 男人天堂 中文字幕| xxx96com| 精品国产亚洲在线| 国产精品日韩av在线免费观看| 久9热在线精品视频| 黑人欧美特级aaaaaa片| 成人特级黄色片久久久久久久| 日韩欧美一区视频在线观看| 久久精品成人免费网站| 亚洲天堂国产精品一区在线| 色哟哟哟哟哟哟| 88av欧美| 午夜激情福利司机影院| 成人永久免费在线观看视频| 日韩精品免费视频一区二区三区| 日日干狠狠操夜夜爽| 精品久久蜜臀av无| 国产精品一区二区精品视频观看| 欧美黄色片欧美黄色片| 亚洲成人久久爱视频| 可以在线观看毛片的网站| 老汉色∧v一级毛片| 亚洲av成人av| 欧美日韩一级在线毛片| 美国免费a级毛片| 午夜福利18| 叶爱在线成人免费视频播放| 欧美另类亚洲清纯唯美| av免费在线观看网站| 国产av一区二区精品久久| 亚洲五月天丁香| 色综合欧美亚洲国产小说| 成人18禁在线播放| 日本黄色视频三级网站网址| 精品国产一区二区三区四区第35| 欧美日韩乱码在线| 欧洲精品卡2卡3卡4卡5卡区| 亚洲一区二区三区色噜噜| 亚洲第一青青草原| 国产国语露脸激情在线看| 一级毛片高清免费大全| 一级a爱片免费观看的视频| 亚洲av第一区精品v没综合| 亚洲欧美精品综合久久99| 又黄又爽又免费观看的视频| 亚洲av美国av| 99热6这里只有精品| 午夜日韩欧美国产| 国产不卡一卡二| 69av精品久久久久久| 午夜久久久在线观看| 亚洲欧美精品综合一区二区三区| 长腿黑丝高跟| 亚洲成国产人片在线观看| 中文字幕精品免费在线观看视频| 色综合亚洲欧美另类图片| 日韩高清综合在线| 啦啦啦观看免费观看视频高清| 每晚都被弄得嗷嗷叫到高潮| 国产伦人伦偷精品视频| 一本精品99久久精品77| 成人国产一区最新在线观看| 久久人妻福利社区极品人妻图片| 丰满人妻熟妇乱又伦精品不卡| 一级黄色大片毛片| 久久香蕉国产精品| 欧美成人免费av一区二区三区| 日韩精品中文字幕看吧| 亚洲成av片中文字幕在线观看| 欧美人与性动交α欧美精品济南到| 丁香六月欧美| 国产av在哪里看| 日韩欧美免费精品| 欧美日韩亚洲国产一区二区在线观看| 久久国产精品影院| 女性生殖器流出的白浆| 人妻久久中文字幕网| 国产精品99久久99久久久不卡| 久久天堂一区二区三区四区| 国产成人一区二区三区免费视频网站| 午夜激情av网站| 国产精品久久久久久精品电影 | 欧美一区二区精品小视频在线| 欧美性猛交黑人性爽| 桃色一区二区三区在线观看| 亚洲五月色婷婷综合| 精品乱码久久久久久99久播| 老司机午夜十八禁免费视频| 一二三四在线观看免费中文在| 黄片小视频在线播放| 久9热在线精品视频| 中文字幕高清在线视频| 91成人精品电影| 成人午夜高清在线视频 | 成人免费观看视频高清| 成人国语在线视频| 动漫黄色视频在线观看| 久久久久久久午夜电影| 国产成人啪精品午夜网站| 亚洲中文字幕日韩| 叶爱在线成人免费视频播放| xxx96com| 精华霜和精华液先用哪个| 一级片免费观看大全| 最新美女视频免费是黄的| 日韩免费av在线播放| 俄罗斯特黄特色一大片| 久久午夜综合久久蜜桃| 天天躁夜夜躁狠狠躁躁| 日韩欧美免费精品| 日韩欧美国产在线观看| 人人妻,人人澡人人爽秒播| 一夜夜www| 在线播放国产精品三级| 神马国产精品三级电影在线观看 | 欧美一级毛片孕妇| 亚洲精品中文字幕在线视频| 国产高清有码在线观看视频 | 成人一区二区视频在线观看| 男女下面进入的视频免费午夜 | 亚洲三区欧美一区| 亚洲精品美女久久av网站| 国产视频内射| 日本黄色视频三级网站网址| 欧美日韩乱码在线| 精品国产乱子伦一区二区三区| 欧美又色又爽又黄视频| 又大又爽又粗| 在线观看舔阴道视频| av天堂在线播放| cao死你这个sao货| 国产激情欧美一区二区| 国产主播在线观看一区二区| x7x7x7水蜜桃| 午夜激情av网站| 长腿黑丝高跟| 精品久久久久久成人av| 一区二区三区激情视频| av在线天堂中文字幕| 国产精品 欧美亚洲| 麻豆久久精品国产亚洲av| 国产精品av久久久久免费| 亚洲国产中文字幕在线视频| 波多野结衣高清无吗| 欧美在线一区亚洲| 国产亚洲精品综合一区在线观看 | 18禁美女被吸乳视频| 成人18禁高潮啪啪吃奶动态图| 久久婷婷成人综合色麻豆| 叶爱在线成人免费视频播放| 两个人看的免费小视频| 免费看a级黄色片| 久久亚洲真实| 中文资源天堂在线| 亚洲av成人av| 亚洲第一电影网av| 国产男靠女视频免费网站| 一边摸一边抽搐一进一小说| 久久久久免费精品人妻一区二区 | 国产区一区二久久| 国产午夜福利久久久久久| 久久人妻福利社区极品人妻图片| 免费在线观看日本一区| 国产高清激情床上av| 99精品久久久久人妻精品| 在线十欧美十亚洲十日本专区| 黄片小视频在线播放| 亚洲欧美激情综合另类| 午夜两性在线视频| 亚洲七黄色美女视频| 观看免费一级毛片| 国产精品久久久av美女十八| 黄色片一级片一级黄色片| 手机成人av网站| 中文字幕人妻丝袜一区二区| 国产成人啪精品午夜网站| 18禁观看日本| 日韩大码丰满熟妇| 国产免费男女视频| 国产三级黄色录像| 久久午夜综合久久蜜桃| 一a级毛片在线观看| www.www免费av| 国产亚洲精品综合一区在线观看 | 男人的好看免费观看在线视频 | 亚洲国产精品999在线| 亚洲五月婷婷丁香| 亚洲av五月六月丁香网| 久久中文字幕一级| 亚洲精品av麻豆狂野| 午夜a级毛片| 可以在线观看的亚洲视频| 成年版毛片免费区| 日本免费a在线| 国产在线精品亚洲第一网站| 日本 av在线| 人人妻人人澡人人看| 在线观看66精品国产| 亚洲狠狠婷婷综合久久图片| 可以在线观看毛片的网站| 亚洲片人在线观看| 狂野欧美激情性xxxx| 国产精品综合久久久久久久免费| 大香蕉久久成人网| 亚洲午夜精品一区,二区,三区| 国产一区二区激情短视频| 国产久久久一区二区三区| 99国产极品粉嫩在线观看| 禁无遮挡网站| 精品不卡国产一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 村上凉子中文字幕在线| 国产麻豆成人av免费视频| 亚洲欧美精品综合一区二区三区| 欧美成人性av电影在线观看| 国产成+人综合+亚洲专区| 国产欧美日韩精品亚洲av| 欧洲精品卡2卡3卡4卡5卡区| www日本黄色视频网| 免费在线观看黄色视频的| 婷婷精品国产亚洲av| 国产精品av久久久久免费| 亚洲欧美日韩高清在线视频| 丰满的人妻完整版| 成熟少妇高潮喷水视频| 此物有八面人人有两片| 在线观看日韩欧美| 国产一级毛片七仙女欲春2 | 亚洲精品中文字幕在线视频| 国产成人影院久久av| 国产高清videossex| 老司机深夜福利视频在线观看| 90打野战视频偷拍视频| 好男人在线观看高清免费视频 | 亚洲国产欧洲综合997久久, | 男人舔女人的私密视频| 亚洲av第一区精品v没综合| 日本一本二区三区精品| 日韩中文字幕欧美一区二区| 女生性感内裤真人,穿戴方法视频| 国内精品久久久久久久电影| 色播在线永久视频| 男女下面进入的视频免费午夜 | 国产亚洲精品av在线| 午夜福利一区二区在线看| 国产av又大| 国产精品亚洲美女久久久| 国产一区在线观看成人免费| 制服诱惑二区| 国产伦在线观看视频一区| 久久中文看片网| 国产国语露脸激情在线看| 国产精品1区2区在线观看.| 久久狼人影院| 久久久国产成人免费| 欧美精品啪啪一区二区三区| 国产精品一区二区三区四区久久 | 少妇 在线观看| 久久久精品欧美日韩精品| 91大片在线观看| 999久久久国产精品视频| 国产高清有码在线观看视频 | xxx96com| 日韩成人在线观看一区二区三区| 欧美成人一区二区免费高清观看 | tocl精华| 国产成+人综合+亚洲专区| 亚洲,欧美精品.| 国产单亲对白刺激| 丝袜在线中文字幕| 日日干狠狠操夜夜爽| 午夜久久久久精精品| 日本免费一区二区三区高清不卡| 成在线人永久免费视频| 国产久久久一区二区三区| 亚洲一区中文字幕在线| 一区福利在线观看| 非洲黑人性xxxx精品又粗又长| 在线观看66精品国产| 在线观看一区二区三区| 最近在线观看免费完整版| 色老头精品视频在线观看| 久久天堂一区二区三区四区| 97超级碰碰碰精品色视频在线观看| av电影中文网址| 香蕉av资源在线| 日本一区二区免费在线视频| 国语自产精品视频在线第100页| 19禁男女啪啪无遮挡网站| 特大巨黑吊av在线直播 | 日本a在线网址| 黑人欧美特级aaaaaa片| 亚洲欧美日韩无卡精品| 午夜免费激情av| 亚洲国产精品合色在线| 久久久久久久久久黄片| 国产成人av教育| 国产乱人伦免费视频| 一个人免费在线观看的高清视频| 国产又黄又爽又无遮挡在线| 亚洲欧美日韩无卡精品| 亚洲人成电影免费在线| 精品少妇一区二区三区视频日本电影| 国产一区二区激情短视频| 亚洲欧洲精品一区二区精品久久久| 黄网站色视频无遮挡免费观看| 日日干狠狠操夜夜爽| 99精品在免费线老司机午夜| 草草在线视频免费看| 黄色片一级片一级黄色片| 少妇 在线观看| 亚洲精品国产精品久久久不卡| 欧美另类亚洲清纯唯美| 在线观看免费视频日本深夜| 精品久久久久久久毛片微露脸| 美女扒开内裤让男人捅视频| 亚洲成人久久性| 亚洲男人天堂网一区| 久9热在线精品视频| 国产1区2区3区精品| 亚洲成人精品中文字幕电影| 久久人妻福利社区极品人妻图片| 怎么达到女性高潮| 国产一区在线观看成人免费| 国产精品美女特级片免费视频播放器 | 成人18禁在线播放| 亚洲国产精品合色在线| 精品久久久久久,| 日本一区二区免费在线视频| 成人特级黄色片久久久久久久| 亚洲av熟女| 亚洲国产日韩欧美精品在线观看 | 99精品久久久久人妻精品| 一级a爱视频在线免费观看| 欧美性猛交╳xxx乱大交人| 久久久久久久久免费视频了| 美女免费视频网站| 精品欧美国产一区二区三| 亚洲自偷自拍图片 自拍| 久久久久久久久久黄片| 久久草成人影院| 老司机靠b影院| 日韩av在线大香蕉| 精品一区二区三区av网在线观看| 一级a爱片免费观看的视频| 成年人黄色毛片网站| 免费在线观看视频国产中文字幕亚洲| 欧美激情 高清一区二区三区| 亚洲一区高清亚洲精品| 日本成人三级电影网站| 久久中文字幕一级| 亚洲欧美日韩高清在线视频| 搡老岳熟女国产| 亚洲成人久久爱视频| 又紧又爽又黄一区二区| 黄频高清免费视频| 人人妻人人看人人澡| 久久久久久久久久黄片| 啦啦啦韩国在线观看视频| 国产三级黄色录像| 美国免费a级毛片| 国产黄色小视频在线观看| 欧美性长视频在线观看| 中亚洲国语对白在线视频| 国产精品亚洲一级av第二区| 欧美色视频一区免费| 一进一出抽搐gif免费好疼| 在线观看免费午夜福利视频| 国产精品影院久久| 精品日产1卡2卡| av在线播放免费不卡| 久久伊人香网站| 宅男免费午夜| 丁香六月欧美| 少妇裸体淫交视频免费看高清 | 国产精品免费视频内射| 男女之事视频高清在线观看| 亚洲av成人一区二区三| 日韩三级视频一区二区三区| 国内久久婷婷六月综合欲色啪| 国产男靠女视频免费网站| 99在线视频只有这里精品首页| 777久久人妻少妇嫩草av网站| 成在线人永久免费视频| 一级毛片女人18水好多| 国产av一区二区精品久久| 欧美中文日本在线观看视频| 12—13女人毛片做爰片一| 禁无遮挡网站| 亚洲熟女毛片儿| 1024视频免费在线观看| 国产免费男女视频| 久久久国产精品麻豆| 亚洲欧美日韩高清在线视频| 国内精品久久久久久久电影| 12—13女人毛片做爰片一| av福利片在线| 午夜福利18| 国产亚洲欧美精品永久| 国产一卡二卡三卡精品| 黄色毛片三级朝国网站| 欧美日韩乱码在线| 亚洲精品一卡2卡三卡4卡5卡| 男人的好看免费观看在线视频 | 啦啦啦 在线观看视频| 免费在线观看日本一区| 欧美日韩亚洲综合一区二区三区_| 久久久久国产精品人妻aⅴ院| 久久精品91无色码中文字幕| 美女免费视频网站| 国产片内射在线| 岛国视频午夜一区免费看| 国产激情偷乱视频一区二区| 精品免费久久久久久久清纯| 国产亚洲精品久久久久久毛片| 久9热在线精品视频| 亚洲精品在线观看二区| 人妻久久中文字幕网| 18禁国产床啪视频网站| 男男h啪啪无遮挡| 欧美激情高清一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 成人手机av| 伊人久久大香线蕉亚洲五| 少妇的丰满在线观看| 国产免费av片在线观看野外av| 亚洲欧美日韩高清在线视频| 久久中文字幕人妻熟女| 亚洲va日本ⅴa欧美va伊人久久| 亚洲一码二码三码区别大吗| 精品国产亚洲在线| 国产日本99.免费观看| 国产又色又爽无遮挡免费看| 我的亚洲天堂| 久久人妻福利社区极品人妻图片| 在线观看66精品国产| 日韩高清综合在线| 嫩草影视91久久| 精品午夜福利视频在线观看一区| 国产一卡二卡三卡精品| 中文字幕高清在线视频| 成人午夜高清在线视频 | 很黄的视频免费| 啦啦啦免费观看视频1| 久久午夜综合久久蜜桃| 欧美性猛交黑人性爽| 女性被躁到高潮视频| 黄片大片在线免费观看| 国产精品影院久久| 日韩欧美在线二视频| 亚洲熟妇中文字幕五十中出| 国产免费男女视频| 在线观看免费日韩欧美大片| av天堂在线播放| 亚洲国产精品久久男人天堂| 国产午夜精品久久久久久| 欧美 亚洲 国产 日韩一| 十八禁人妻一区二区| 大型黄色视频在线免费观看| 精品午夜福利视频在线观看一区| 中文字幕人妻丝袜一区二区| 亚洲专区字幕在线| 俺也久久电影网| 成人国产一区最新在线观看| 法律面前人人平等表现在哪些方面| 日本精品一区二区三区蜜桃| 国产免费男女视频| 给我免费播放毛片高清在线观看| 日本五十路高清| 国产精品 欧美亚洲| 欧美激情极品国产一区二区三区| 欧美激情久久久久久爽电影| 欧美色视频一区免费| 日韩成人在线观看一区二区三区| 久久热在线av| 免费看美女性在线毛片视频| 久久香蕉精品热| 黄色片一级片一级黄色片| 国产精品香港三级国产av潘金莲| 99精品在免费线老司机午夜| 欧美zozozo另类| 欧美日韩黄片免| 国产亚洲欧美98| 久久天堂一区二区三区四区| 国产亚洲精品av在线| 视频在线观看一区二区三区| 韩国精品一区二区三区| 国产久久久一区二区三区| 美女高潮到喷水免费观看| 亚洲午夜精品一区,二区,三区| 久久香蕉激情| av欧美777| 免费一级毛片在线播放高清视频| 夜夜爽天天搞| 91字幕亚洲| 国产成人啪精品午夜网站| 女生性感内裤真人,穿戴方法视频| 色婷婷久久久亚洲欧美| 后天国语完整版免费观看| 国产精品久久久av美女十八| 怎么达到女性高潮| 亚洲一码二码三码区别大吗| 国产精品综合久久久久久久免费| 亚洲男人的天堂狠狠| 黄色视频不卡| 精品福利观看| 国内精品久久久久久久电影| 亚洲成人国产一区在线观看| 精品国产国语对白av| 18禁裸乳无遮挡免费网站照片 | 亚洲人成电影免费在线| 日本 av在线| 波多野结衣巨乳人妻| 国产精品 国内视频| 波多野结衣高清无吗| 级片在线观看| 叶爱在线成人免费视频播放| 亚洲熟女毛片儿| 性欧美人与动物交配| 欧美黄色片欧美黄色片| 不卡av一区二区三区| 欧美人与性动交α欧美精品济南到| 国产不卡一卡二| 精品久久久久久久人妻蜜臀av| 精品久久久久久久末码| 婷婷精品国产亚洲av在线| 国产高清videossex| 俄罗斯特黄特色一大片| 不卡一级毛片| 精品日产1卡2卡| 国产精品九九99| 国语自产精品视频在线第100页| 中文字幕精品亚洲无线码一区 | 婷婷丁香在线五月| 黄色视频不卡| 少妇 在线观看| 久久久久久亚洲精品国产蜜桃av| www.999成人在线观看| 天天一区二区日本电影三级| av福利片在线| 他把我摸到了高潮在线观看| 好看av亚洲va欧美ⅴa在| 一区二区三区精品91| 美女免费视频网站| 国产1区2区3区精品| 又大又爽又粗| 97人妻精品一区二区三区麻豆 | 免费电影在线观看免费观看| 欧美乱色亚洲激情| 别揉我奶头~嗯~啊~动态视频| 日本 av在线| 在线观看舔阴道视频| 一本一本综合久久| 国内揄拍国产精品人妻在线 | 国产黄a三级三级三级人| 亚洲精品一卡2卡三卡4卡5卡| 两人在一起打扑克的视频| 亚洲国产欧洲综合997久久, | 久99久视频精品免费| 精品国产美女av久久久久小说| 亚洲一区二区三区不卡视频| 欧美人与性动交α欧美精品济南到| 日韩欧美一区视频在线观看| netflix在线观看网站| 成年人黄色毛片网站| 国内揄拍国产精品人妻在线 | 国产三级黄色录像| 熟女电影av网| 人妻久久中文字幕网| 亚洲狠狠婷婷综合久久图片| 久久久久久免费高清国产稀缺| 亚洲国产中文字幕在线视频| 黄色视频,在线免费观看| 免费在线观看影片大全网站| 国产av一区在线观看免费| 黄频高清免费视频| 久久精品人妻少妇| 亚洲人成网站高清观看| 欧美zozozo另类|