• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    One-step Solvothermal Synthesis of Strontium-doped Ultralong Hydroxyapatite Nanowires

    2020-07-04 08:34:22SUNTuanweiZHUYingjie
    無機(jī)材料學(xué)報 2020年6期
    關(guān)鍵詞:熱法英杰磷灰石

    SUN Tuanwei, ZHU Yingjie

    One-step Solvothermal Synthesis of Strontium-doped Ultralong Hydroxyapatite Nanowires

    SUN Tuanwei1,2, ZHU Yingjie1,2

    (1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)

    Ultralong hydroxyapatite nanowires (UHANWs) exhibit great potential in constructing different kinds of biomaterials such as the highly flexible biomedical paper and elastic porous scaffolds for various biomedical applications. Moreover, strontium (Sr), a trace elementin human body, plays an important role in bone metabolism. In this study, Sr-doped UHANWs (Sr-UHANWs) with various Sr/(Sr+Ca) molar ratios have been successfully prepared by the one-step oleate precursor solvothermal method. The effects of the Sr/(Sr+Ca) molar ratio on the morphology and crystal phase of the Sr-UHANWs were investigated. The as-prepared Sr-UHANWs exhibit high flexibility and ultralong 1D nanostructure. Moreover, the energy dispersive spectroscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy of the as-prepared samples reveal that Sr element has been successfully incorporated in UHANWs. The preparation method developed in this work may be suitable for the synthesis of Sr-UHANWs with Sr/(Sr+Ca) molar ratios ranging from 0 to 100 %, which may enlarge the biomedical applications of UHANWs such as bone and teeth defect repair.

    hydroxyapatite; strontium; nanowire; solvothermal; biomaterials

    The synthetic hydroxyapatite (HAP, Ca10(PO4)6(OH)2) is chemically similar to the inorganic component of bone and teeth, which endows it with excellent biocompatibility, good osteoconductivity and osteoinductivity[1-2]. HAP-based biomaterials have been intensively investigated and applied in various biomedical fields, such as bone and teeth defect repair, and drug delivery[3-4]. Strontium (Sr) is an important trace element in human body and essential in bone metabolism by regulating bone formation and resorption[5-6]. It was reported that Sr2+ions could stimulate the differentiation of osteoblasts and inhibit the differentiation of osteoclast[7]. Previous reports indicated that the incorporation of Sr2+ions into HAP could promote bone regeneration and bone defect repair[5,8].

    Compared with other HAP nanostructured materials such as HAP nanoparticles, HAP microspheres, and 1D HAP nanorods[2-3,9-10], ultralong hydroxyapatite nanowires (UHANWs) with lengths of several hundred micrometres have high flexibility and ultralong 1D nanostructure, showing great potential in constructing different types of multifunctional biomaterials such as the highly flexible biomedical paper and elastic porous scaffolds[11-16]. Moreover, the Sr-doped UHANWs (Sr-UHANWs) can combine excellent advantages of both strontium and UHANWs, which will remarkably enhance the bioactivity and enlarge the application potentials of UHANWs- based biomaterials in various biomedical fields.

    Previously, Xu[17]synthesized Sr-doped HAP whiskers using acetamide as a homogeneous precipitation reagent by hydrothermal treatment. Zhang,[18]hydrothermally synthesized Sr and Si co-doped HAP nanowires using Sr-containing calcium silicate as the precursor. However, to the best of our knowledge, the synthesis of Sr-doped ultralong HAP nanowires by the oleate precursor solvothermal method has not been reported in the literature.

    In this study, the Sr-UHANWs with different Sr/(Sr+Ca) molar ratios have been synthesized by the one-step oleate precursor solvothermal method. The as-prepared Sr-UHANWs exhibit ultralong 1D nanostructure and high flexibility. Importantly, the preparation method developed in this work is simple, and may be applicable for the synthesis of other metal ions-doped UHANWs.

    1 Experimental section

    1.1 Materials

    Oleic acid and SrCl2·6H2O were purchased from Aladdin Industrial Co. Ltd., and other chemicals were purchased from Sinopharm Chemical Reagent Co. Ltd. All chemicals were used as received without further purification.

    1.2 Synthesis of Sr-UHANWs

    The strontium-doped ultralong hydroxyapatite nanowires (Sr-UHANWs) with different Sr/(Sr+Ca) molar ratios were prepared by a facile one-step oleate precursor solvothermal method[19-21]. In a typical experiment for the synthesis of Sr-UHANWs with a Sr/(Sr+Ca) molar ratio of 0.4, a mixture of deionized water (135 mL), methanol (60 mL) and oleic acid (105 mL) was prepared under vigorous mechanical stirring in an ice-water bath. Then, 150 mL of NaOH (10.500 g) aqueous solution, 120 mL of aqueous solution containing 1.998 g of CaCl2and 3.199 g of SrCl2·6H2O, and 180 mL of NaH2PO4·2H2O (9.360 g) aqueous solution were separately added into the above mixture. After continuous stirring for 30 min, the resulting suspension was transferred into a Teflon-lined stainless steel autoclave (1000 mL), sealed and heated at 180 ℃ for 24 h. After cooling to room temperature, the product was washed with ethanol and deionized water 3 times, and dried, respectively. The as-prepared Sr-UHANWs with a Sr/(Sr+Ca) molar ratio of 0.4 is labeled as Sr40-UHANWs.

    Similarly, the undoped UHANWs and Sr100-UHANWswere prepared under the same conditions but using 3.330 g of CaCl2and 7.999 g of SrCl2·6H2O, respectively. The Sr5-UHANWs, Sr20-UHANWs and Sr90-UHANWs were also prepared using the above method.

    1.3 Characterization

    Scanning electron microscopy (SEM) images and energy-dispersive spectroscopy (EDS) elemental mapping patterns of the as-prepared Sr-UHANWs with different Sr/(Sr+Ca) molar ratios were recorded with a field- emission scanning electron microscope (FEI Magellan 400, USA). The X-ray powder diffraction (XRD) patterns of Sr-UHANWs with different Sr/(Sr+Ca) molar ratios were recorded with an X-ray diffractometer (Rigaku D/max 2550 V, Cu Kαradiation,=0.154178 nm). Fourier transform infrared (FT-IR) spectra of Sr-UHANWs with different Sr/(Sr+Ca) molar ratios were taken using a FT-IR spectrometer (FTIR-7600, Lambda Scientific, Australia).

    2 Results and discussion

    2.1 Crystal phase analysis of Sr-UHANWs

    Fig. 1 shows the XRD patterns of the as-prepared Sr-UHANWs with different Sr/(Ca+Sr) molar ratios. The XRD pattern of the undoped UHANWs can be indexed to a single crystal phase of hydroxyapatite with a hexagonal structure (Ca10(PO4)6(OH)2, JCPDS 09-0432). Moreover, the XRD pattern of Sr100-UHANWs can be indexed to strontium phosphate (Sr3(PO4)2, JCPDS 24-1008) and strontiumapatite (Sr10(PO4)6(OH)2, JCPDS 33-1348) with a hexagonal structure. The XRD patterns of Sr-UHANWs with different Sr/(Sr+Ca) molar ratios can be indexed to a hexagonal apatite crystal phase (Fig. 1(b-e)). Compared with the XRD pattern of the undoped UHANWs, all diffraction peaks of Sr-UHANWs with different Sr/(Sr+Ca) molar ratios shift to a lower diffraction angle, and the shift becomes larger as the Sr2+substitution ratio increases. The diffraction peak shift indicates the crystal lattice expansion in Sr-UHANWs, which is caused by the substitution of smaller Ca2+ions with larger Sr2+ions[22]. These experimental results demonstrate that the as-prepared Sr-UHANWs have a chemical compositions of Ca10–xSr(PO4)6(OH)2(where 0≤≤10).

    2.2 Morphologies of Sr-UHANWs

    As shown in Fig. 2(a-d), the morphology of the undoped UHANWs is similar to that of Sr40-UHANWs. Both undoped UHANWs and Sr40-UHANWs have highly flexible 1D nanostructure and ultrahigh aspect ratios. The energy-dispersive spectroscopy (EDS) elemental mapping patterns of Sr40-UHANWs (Fig. 2(e)) further confirm that the Sr, Ca, P, and O elements are homogeneously distributed in the Sr40-UHANWs, and Sr2+ions have been successfully doped into the UHANWs.

    As shown in Fig. 3, the effect of Sr/(Sr+Ca) molar ratios on the morphology of the as-prepared Sr-UHANWs was further investigated. Interestingly, Sr5-UHANWs, Sr20-UHANWs, Sr90-UHANWs, and Sr100-UHANWs exhibit ultralong 1D nanostructure, which is similar to that of undoped UHANWs and Sr40-UHANWs, indicating that the oleate precursor solvothermal method reported herein may be suitable for the synthesis of Sr-UHANWs with Sr/(Ca+Sr) molar ratios ranging from 0 to 100%. High-magnification SEM images of Sr-UHANWs display that the surface of Sr-UHANWs is smooth, and in many cases Sr-UHANWs can self-assemble into nanowire bundles along the longitudinal direction. SEM images in Figs. 2 and 3, display that many Sr-UHANWs can bend owing to their high flexibility and ultralong nanostructure.

    Fig. 1 XRD patterns of the as-prepared Sr-UHANWs with different Sr/(Sr+Ca) molar ratios

    Fig. 2 SEM images of undoped UHANWs (a, b) and Sr40-UHANWs (c, d), and energy-dispersive spectroscopy (EDS) elemental mapping of Sr, Ca, P and O elements in Sr40-UHANWs (e)

    Fig. 3 SEM images of strontium-doped UHANWs with different Sr/(Sr+Ca) molar ratios(a, b) Sr5-UHANWs; (c, d) Sr20-UHANWs; (e, f) Sr90-UHANWs; (g, h) Sr100-UHANWs

    According to our previously reported formation mechanism of undoped UHANWs[12,14,19], we propose that the formation of Sr-UHANWs is an oleate precursor solvothermal process. The precursors of calcium oleate and strontium oleate are first formed in the reaction system after the addition of oleic acid, NaOH, CaCl2, and SrCl2·6H2O. Then, the precursors of calcium oleate and strontium oleate transform to Sr-UHANWs after the addition of NaH2PO4·2H2O under the solvothermal conditions.

    2.3 FT-IR analysis of Sr-UHANWs

    The FTIR analysis was performed to characterize the Sr-UHANWs samples. As shown in Fig. 4, the broad absorption peak of all the samples at around 3440 cm?1derives from the adsorbed water in the samples. The Sr2+substitution obviously influences the absorption peaks of hydroxyl (?OH) in Sr-UHANWs. As the Sr2+substitution ratio increases, the absorption peaks of the stretching mode (3572 cm?1) and librational mode (633 cm?1) of ?OH in Sr-UHANWs decrease in intensity and broaden, indicating that the Sr2+substitution leads to the loss of ?OH groups and structural disorder[23]. The absorption peaks at around 1097, 1032, 962, 602, and 561 cm?1belong to the PO43?group in the samples[24]. However, the absorption peaks of the PO43?group in the range of 1150–950 cm?1slightly shift to lower wave numbers as the Sr2+substitution ratio of Sr-UHANWs increases, which also demonstrates the increase of disorder around phosphate sites caused by the Sr incorporation[23]. The above experimental results are consistent with the XRD results, and further confirm that the Sr2+ions have been successfully incorporated into the HAP crystal structure.

    Fig. 4 FT-IR spectra of the as-prepared Sr-UHANWs with different Sr/(Sr+Ca) molar ratios

    3 Conclusions

    In summary, the strontium-doped ultralong hydroxyapatite nanowires (Sr-UHANWs) with different Sr/(Sr+Ca) molar ratios have been successfully synthesized using the one-step oleate precursor solvothermal method. The as-prepared Sr-UHANWs exhibit the ultralong 1D nanostructure and high flexibility. In addition, the EDS elemental mapping, XRD and FT-IR analyses confirm the successful incorporation of Sr2+ions into the crystal structure of UHANWs. Thus, the one-step oleate precursor solvothermal method developed in this study may be suitable for the synthesis of Sr-UHANWs with Sr/(Sr+Ca) molar ratios ranging from 0 to 100%, which may broaden the biomedical applications of UHANWs such as bone and teeth defect repair.

    [1] QI C, ZHU Y J, LU B Q,. Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption., 2013, 19(17): 5332–5341.

    [2] YU W L, SUN T W, DING Z Y,. Copper-doped mesoporous hydroxyapatite microspheres synthesized by a microwave-hydrothermal method using creatine phosphate as an organic phosphorus source: application in drug delivery and enhanced bone regeneration., 2017, 5(5): 1039–1052.

    [3] LU B Q, ZHU Y J. One-dimensional hydroxyapatite materials: preparation and applications., 2017, 95(11): 1091–1102.

    [4] YU W L, SUN T W, QI C,. Enhanced osteogenesis and angiogenesis by mesoporous hydroxyapatite microspheres-derived simvastatin sustained release system for superior bone regeneration., 2017, 7: 44129.

    [5] YANG F, YANG D Z, TU J,. Strontium enhances osteogenic differentiation of mesenchymal stem cells andbone formation by activating Wnt/catenin signaling., 2011, 29(6): 981–991.

    [6] LIN K L, XIA L G, LI H Y,. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics., 2013, 34(38): 10028–10042.

    [7] BONNELYE E, CHABADEL A, SALTEL F,. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption., 2008, 42(1): 129–138.

    [8] HABIBOVIC P, BARRALET J E. Bioinorganics and biomaterials: bone repair., 2011, 7(8): 3013–3026.

    [9] KANE R J, WEISS-BILKA H E, MEAGHER M J,. Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties., 2015, 17: 16–25.

    [10] ZHENG X Y, HUI J F, LI H,. Fabrication of novel biodegradable porous bone scaffolds based on amphiphilic hydroxyapatite nanorods., 2017, 75: 699–705.

    [11] SUN T W, YU W L, ZHU Y J,. Hydroxyapatite nanowire@magnesium silicate core-shell hierarchical nanocomposite: synthesis and application in bone regeneration., 2017, 9(19): 16435–16447.

    [12] SUN T W, ZHU Y J, CHEN F. Highly flexible multifunctional biopaper comprising chitosan reinforced by ultralong hydroxyapatite nanowires., 2017, 23(16): 3850–3862.

    [13] SUN T W, ZHU Y J, CHEN F,. Ultralong hydroxyapatite nanowires/collagen scaffolds with hierarchical porous structure, enhanced mechanical properties and excellent cellular attachment., 2017, 43(17): 15747–15754.

    [14] SUN T W, ZHU Y J, CHEN F,. Ultralong hydroxyapatite nanowire/collagen biopaper with high flexibility, improved mechanical properties and excellent cellular attachment., 2017, 12(6): 655–664.

    [15] SUN T W, YU W L, ZHU Y J,. Porous nanocomposite comprising ultralong hydroxyapatite nanowires decorated with zinc-containing nanoparticles and chitosan: synthesis and application in bone defect repair., 2018, 24(35): 8809–8821.

    [16] SUN T W, ZHU Y J, CHEN F. Hydroxyapatite nanowire/collagen elastic porous nanocomposite and its enhanced performance in bone defect repair., 2018, 8(46): 26133–26144.

    [17] XU J Q, YANG Y Q, WAN R,. Hydrothermal preparation and characterization of ultralong strontium-substituted hydroxyapatite whiskers using acetamide as homogeneous precipitation reagent., 2014, 2014: 863137.

    [18] ZHANG N, ZHAI D, CHEN L,. Hydrothermal synthesis and characterization of Si and Sr co-substituted hydroxyapatite nanowires using strontium containing calcium silicate as precursors., 2014, 37: 286–291.

    [19] LU B Q, ZHU Y J, CHEN F. Highly flexible and nonflammable inorganic hydroxyapatite paper., 2014, 20(5): 1242–1246.

    [20] ZHANG Y G, ZHU Y J, CHEN F,. Ultralong hydroxyapatite nanowires synthesized by solvothermal treatment using a series of phosphate sodium salts., 2015, 144: 135–137.

    [21] JIANG Y Y, ZHU Y J, CHEN F,. Solvothermal synthesis of submillimeter ultralong hydroxyapatite nanowires using calcium oleate precursor in a series of monohydroxy alcohols., 2015, 41(4): 6098–6102.

    [22] KAVITHA M, SUBRAMANIAN R, NARAYANAN R,. Solution combustion synthesis and characterization of strontium substituted hydroxyapatite nanocrystals., 2014, 253: 129–137.

    [23] TERRA J, DOURADO E R, EON J G,. The structure of strontium-doped hydroxyapatite: an experimental and theoretical study., 2009, 11(3): 568–577.

    [24] QI C, ZHU Y J, LU B Q,. Hydroxyapatite nanosheet-assembled porous hollow microspheres: DNA-templated hydrothermal synthesis, drug delivery and protein adsorption., 2012, 22(42): 22642–22650.

    一步溶劑熱法合成鍶摻雜羥基磷灰石超長納米線

    孫團(tuán)偉1,2, 朱英杰1,2

    (1. 中國科學(xué)院 上海硅酸鹽研究所, 上海 200050; 2. 中國科學(xué)院大學(xué)材料與光電研究中心, 北京 100049)

    羥基磷灰石超長納米線可用于構(gòu)建不同種類的生物材料, 如高柔性生物醫(yī)用紙和彈性多孔骨缺損修復(fù)支架, 在生物醫(yī)學(xué)領(lǐng)域具有良好的應(yīng)用前景。鍶元素作為一種微量元素, 在骨代謝過程中起著重要作用。本研究通過一步溶劑熱法合成了具有不同鍶摻雜量的羥基磷灰石超長納米線; 研究了不同鍶摻雜量對羥基磷灰石超長納米線的形貌和物相的影響。所制備的鍶摻雜羥基磷灰石超長納米線具有高柔韌性和超長一維納米結(jié)構(gòu)。能量色散譜、X射線粉末衍射和傅里葉變換紅外光譜分析表明, 鍶元素成功地?fù)诫s到了羥基磷灰石超長納米線中。本研究發(fā)展的制備方法可以制備鍶/(鍶+鈣)摩爾比從0到100%任一比例的鍶摻雜羥基磷灰石超長納米線, 大幅拓展了羥基磷灰石超長納米線在骨缺損修復(fù)和牙科修復(fù)等生物醫(yī)學(xué)領(lǐng)域中的應(yīng)用。

    羥基磷灰石; 鍶; 納米線; 溶劑熱; 生物材料

    TQ174

    A

    date:2019-08-04;

    date: 2019-09-23

    National Natural Science Foundation of China (21875277)

    SUN Tuanwei (1989–), male, PhD. E-mail: stwcsu@163.com

    孫團(tuán)偉(1989–), 男, 博士. E-mail: stwcsu@163.com

    Corresponding author:ZHU Yingjie, professor. E-mail: y.j.zhu@mail.sic.ac.cn

    朱英杰, 研究員. E-mail: y.j.zhu@mail.sic.ac.cn

    1000-324X(2020)06-0724-05

    10.15541/jim20190398

    猜你喜歡
    熱法英杰磷灰石
    Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature*
    李東垣“甘溫除熱法”的現(xiàn)代臨床應(yīng)用
    Observe modern design works and taste traditional Chinese culture
    羥基磷灰石在鈾富集成礦中的作用
    濕法冶金(2019年5期)2019-10-18 09:00:00
    Special Property of Group Velocity for Temporal Dark Soliton?
    燕趙英杰
    軍工文化(2017年12期)2017-07-17 06:07:56
    PHBV膜與珊瑚羥基磷灰石聯(lián)合修復(fù)頜骨缺損的研究
    濕化學(xué)法合成羥基磷灰石晶體及其表征
    溶劑熱法可控合成納米氯化亞銅
    低溫溶劑熱法制備5V級性能優(yōu)異的LiCr0.2Ni0.4Mn1.4O4正極材料
    亚洲真实伦在线观看| 国产爱豆传媒在线观看| 老汉色∧v一级毛片| 美女免费视频网站| 国产高清有码在线观看视频| 校园春色视频在线观看| 好看av亚洲va欧美ⅴa在| 成年女人看的毛片在线观看| 国产伦精品一区二区三区视频9 | 国产综合懂色| 久久精品91蜜桃| 久久精品国产亚洲av香蕉五月| 午夜亚洲福利在线播放| 两人在一起打扑克的视频| 一级毛片女人18水好多| 一区二区三区激情视频| 亚洲av免费在线观看| 亚洲精华国产精华精| 无人区码免费观看不卡| 最近在线观看免费完整版| 村上凉子中文字幕在线| 精品人妻偷拍中文字幕| 全区人妻精品视频| 免费在线观看影片大全网站| 国产精品影院久久| 亚洲成人中文字幕在线播放| 美女大奶头视频| 久久国产乱子伦精品免费另类| 91字幕亚洲| 久久欧美精品欧美久久欧美| 欧美+亚洲+日韩+国产| 成人av一区二区三区在线看| 日本黄大片高清| 国产爱豆传媒在线观看| 日本五十路高清| 免费人成在线观看视频色| svipshipincom国产片| 亚洲不卡免费看| 国产精品 欧美亚洲| 精品日产1卡2卡| 欧美一级毛片孕妇| 久久久国产成人精品二区| 桃色一区二区三区在线观看| 欧美丝袜亚洲另类 | 无限看片的www在线观看| 中文字幕高清在线视频| netflix在线观看网站| 看片在线看免费视频| av专区在线播放| 夜夜躁狠狠躁天天躁| 国产探花在线观看一区二区| 啦啦啦韩国在线观看视频| 精品久久久久久久人妻蜜臀av| 中文字幕av在线有码专区| 亚洲无线观看免费| 99久久99久久久精品蜜桃| 91在线观看av| 亚洲无线观看免费| 国产探花极品一区二区| 老熟妇乱子伦视频在线观看| 国产黄片美女视频| 亚洲一区二区三区色噜噜| 我的老师免费观看完整版| 麻豆久久精品国产亚洲av| 国产爱豆传媒在线观看| 亚洲av成人不卡在线观看播放网| 最好的美女福利视频网| 欧美在线黄色| 国产蜜桃级精品一区二区三区| 亚洲av美国av| 免费大片18禁| 精品免费久久久久久久清纯| 色播亚洲综合网| 俺也久久电影网| 成年人黄色毛片网站| 一进一出抽搐动态| 在线看三级毛片| 少妇的丰满在线观看| 亚洲久久久久久中文字幕| 久久久久精品国产欧美久久久| 黑人欧美特级aaaaaa片| 夜夜躁狠狠躁天天躁| 国产亚洲精品av在线| 亚洲精品一卡2卡三卡4卡5卡| av天堂中文字幕网| 99久久久亚洲精品蜜臀av| 人人妻,人人澡人人爽秒播| 精华霜和精华液先用哪个| 男女下面进入的视频免费午夜| 亚洲av日韩精品久久久久久密| 给我免费播放毛片高清在线观看| 欧美丝袜亚洲另类 | 午夜a级毛片| 国产成人福利小说| 九色成人免费人妻av| 久久久久久国产a免费观看| 一个人观看的视频www高清免费观看| 国产日本99.免费观看| 成人鲁丝片一二三区免费| svipshipincom国产片| 国产精品99久久久久久久久| 特级一级黄色大片| 老汉色∧v一级毛片| 国产真实伦视频高清在线观看 | 一级黄片播放器| 国产成人啪精品午夜网站| 国产亚洲精品av在线| 好男人电影高清在线观看| 欧美午夜高清在线| 色播亚洲综合网| 色视频www国产| 欧美日韩国产亚洲二区| netflix在线观看网站| 精品国产亚洲在线| 免费av毛片视频| 成人特级av手机在线观看| 午夜免费激情av| 亚洲欧美精品综合久久99| 日日摸夜夜添夜夜添小说| 国产精品98久久久久久宅男小说| 亚洲乱码一区二区免费版| 国产欧美日韩精品亚洲av| 嫁个100分男人电影在线观看| 内地一区二区视频在线| 日韩大尺度精品在线看网址| 久久精品国产亚洲av涩爱 | 禁无遮挡网站| 日本撒尿小便嘘嘘汇集6| 亚洲欧美精品综合久久99| a级一级毛片免费在线观看| 老熟妇乱子伦视频在线观看| 人人妻人人澡欧美一区二区| 深夜精品福利| 久久6这里有精品| 国产日本99.免费观看| 国产精品电影一区二区三区| 人人妻人人看人人澡| 国内精品一区二区在线观看| 日本五十路高清| 国产av不卡久久| 国产成人影院久久av| 亚洲av不卡在线观看| 啦啦啦观看免费观看视频高清| 免费无遮挡裸体视频| 亚洲真实伦在线观看| 19禁男女啪啪无遮挡网站| 久久久久久久精品吃奶| 国产69精品久久久久777片| a级一级毛片免费在线观看| 亚洲国产高清在线一区二区三| 一a级毛片在线观看| 18禁在线播放成人免费| 1024手机看黄色片| svipshipincom国产片| 亚洲午夜理论影院| 日本成人三级电影网站| 在线视频色国产色| 久久久久久国产a免费观看| 高清毛片免费观看视频网站| 熟女少妇亚洲综合色aaa.| 在线观看舔阴道视频| 午夜免费成人在线视频| 国产私拍福利视频在线观看| 久久久精品欧美日韩精品| 国产精品久久视频播放| 国产日本99.免费观看| 男女那种视频在线观看| 少妇熟女aⅴ在线视频| 日韩精品中文字幕看吧| 日韩免费av在线播放| 国产成人系列免费观看| 免费高清视频大片| 最近最新免费中文字幕在线| 欧美中文日本在线观看视频| 中文字幕久久专区| 亚洲欧美日韩东京热| 国产高清视频在线播放一区| 美女黄网站色视频| 欧美日韩乱码在线| 午夜激情福利司机影院| 99热这里只有精品一区| 亚洲一区二区三区不卡视频| 大型黄色视频在线免费观看| 美女高潮喷水抽搐中文字幕| 亚洲精品影视一区二区三区av| 亚洲欧美精品综合久久99| 在线观看舔阴道视频| 嫩草影视91久久| 十八禁网站免费在线| 一边摸一边抽搐一进一小说| 亚洲欧美精品综合久久99| 国内精品一区二区在线观看| 午夜a级毛片| 99在线视频只有这里精品首页| 欧美+日韩+精品| 久久99热这里只有精品18| 成人性生交大片免费视频hd| 老司机深夜福利视频在线观看| 国产精品久久久人人做人人爽| 麻豆成人午夜福利视频| 日韩精品中文字幕看吧| 亚洲性夜色夜夜综合| 精品人妻一区二区三区麻豆 | 岛国在线免费视频观看| 欧美高清成人免费视频www| 久久婷婷人人爽人人干人人爱| 精品熟女少妇八av免费久了| 激情在线观看视频在线高清| 18禁在线播放成人免费| 国产精品野战在线观看| 婷婷六月久久综合丁香| aaaaa片日本免费| 一级黄色大片毛片| 少妇裸体淫交视频免费看高清| 国产精品一区二区免费欧美| 亚洲真实伦在线观看| 十八禁人妻一区二区| 久久久久免费精品人妻一区二区| 国产精品av视频在线免费观看| 岛国在线免费视频观看| 老司机福利观看| 欧美绝顶高潮抽搐喷水| 国产野战对白在线观看| 露出奶头的视频| e午夜精品久久久久久久| 午夜福利成人在线免费观看| 老司机深夜福利视频在线观看| 午夜福利欧美成人| 一本一本综合久久| 亚洲国产精品合色在线| 亚洲狠狠婷婷综合久久图片| 午夜精品一区二区三区免费看| 搡老岳熟女国产| 国产精品嫩草影院av在线观看 | 久久精品国产99精品国产亚洲性色| 久久精品91蜜桃| 一夜夜www| 国产激情欧美一区二区| 亚洲精品色激情综合| 婷婷丁香在线五月| 久久人人精品亚洲av| 亚洲五月婷婷丁香| 在线十欧美十亚洲十日本专区| 床上黄色一级片| 亚洲不卡免费看| 日本五十路高清| 欧美乱妇无乱码| 欧美激情久久久久久爽电影| 天天添夜夜摸| 小蜜桃在线观看免费完整版高清| 亚洲国产欧洲综合997久久,| 日韩欧美在线二视频| 亚洲精品在线观看二区| 国产精品美女特级片免费视频播放器| 国产极品精品免费视频能看的| 搡老妇女老女人老熟妇| 亚洲成av人片在线播放无| 亚洲av美国av| 精品久久久久久久久久久久久| 亚洲自拍偷在线| 1024手机看黄色片| 成年女人看的毛片在线观看| 性色avwww在线观看| 国产探花极品一区二区| 深爱激情五月婷婷| 9191精品国产免费久久| 九色成人免费人妻av| 99久久成人亚洲精品观看| 国产男靠女视频免费网站| 青草久久国产| 日韩中文字幕欧美一区二区| 亚洲精品影视一区二区三区av| 亚洲无线观看免费| 噜噜噜噜噜久久久久久91| 男插女下体视频免费在线播放| 国产精品野战在线观看| АⅤ资源中文在线天堂| 两个人看的免费小视频| 国产私拍福利视频在线观看| 在线播放国产精品三级| 国产精品香港三级国产av潘金莲| 99久久综合精品五月天人人| 国产乱人视频| 久99久视频精品免费| 女同久久另类99精品国产91| 精品免费久久久久久久清纯| 天堂av国产一区二区熟女人妻| 2021天堂中文幕一二区在线观| 久久久久久久久久黄片| avwww免费| 欧美成人a在线观看| a级一级毛片免费在线观看| 亚洲真实伦在线观看| 亚洲七黄色美女视频| 夜夜躁狠狠躁天天躁| 村上凉子中文字幕在线| 亚洲七黄色美女视频| 制服人妻中文乱码| 日韩精品青青久久久久久| 91在线精品国自产拍蜜月 | 麻豆成人av在线观看| 男女床上黄色一级片免费看| aaaaa片日本免费| 国产乱人伦免费视频| 丰满乱子伦码专区| 老司机福利观看| 成人特级黄色片久久久久久久| 国产国拍精品亚洲av在线观看 | 一级毛片女人18水好多| 久久欧美精品欧美久久欧美| 深爱激情五月婷婷| 欧美国产日韩亚洲一区| 久久香蕉精品热| 亚洲内射少妇av| 成人鲁丝片一二三区免费| 老熟妇乱子伦视频在线观看| 99热只有精品国产| 操出白浆在线播放| 熟妇人妻久久中文字幕3abv| 中文字幕人成人乱码亚洲影| 十八禁人妻一区二区| 精品久久久久久久人妻蜜臀av| 午夜福利18| 99riav亚洲国产免费| www日本在线高清视频| 舔av片在线| 一区二区三区国产精品乱码| 久久久国产精品麻豆| 免费人成在线观看视频色| 久久久久久久久久黄片| 夜夜躁狠狠躁天天躁| 色吧在线观看| 真实男女啪啪啪动态图| 久久久久久久久久黄片| 天堂网av新在线| 色吧在线观看| 欧美大码av| 他把我摸到了高潮在线观看| 最新美女视频免费是黄的| 国产蜜桃级精品一区二区三区| 亚洲国产中文字幕在线视频| 精品国产三级普通话版| 亚洲第一电影网av| 色吧在线观看| 亚洲在线观看片| 国产91精品成人一区二区三区| 久久伊人香网站| 3wmmmm亚洲av在线观看| 内地一区二区视频在线| 国产精品久久久久久精品电影| 内地一区二区视频在线| 一进一出好大好爽视频| 久久国产精品人妻蜜桃| 一二三四社区在线视频社区8| 精品久久久久久久久久免费视频| 亚洲国产欧洲综合997久久,| 国产欧美日韩精品一区二区| 久久久久久大精品| 国产亚洲精品一区二区www| 国产精品自产拍在线观看55亚洲| 亚洲一区二区三区不卡视频| 亚洲七黄色美女视频| 亚洲欧美日韩东京热| 精品免费久久久久久久清纯| 婷婷亚洲欧美| 国模一区二区三区四区视频| 99视频精品全部免费 在线| 午夜老司机福利剧场| 免费av不卡在线播放| а√天堂www在线а√下载| 伊人久久精品亚洲午夜| 69av精品久久久久久| 欧美绝顶高潮抽搐喷水| 色播亚洲综合网| 国产乱人伦免费视频| 日本 欧美在线| 麻豆成人av在线观看| 俺也久久电影网| 久久精品91蜜桃| 午夜精品在线福利| 大型黄色视频在线免费观看| 两人在一起打扑克的视频| 久久人人精品亚洲av| 性欧美人与动物交配| 色在线成人网| 91麻豆av在线| 日本 av在线| 99久久成人亚洲精品观看| 一级a爱片免费观看的视频| 国产美女午夜福利| 99精品在免费线老司机午夜| 九色国产91popny在线| 成人国产一区最新在线观看| 国产精品女同一区二区软件 | 他把我摸到了高潮在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲中文字幕日韩| 极品教师在线免费播放| 中文字幕av在线有码专区| 波多野结衣高清作品| 日韩欧美在线二视频| 国产高潮美女av| 99久久无色码亚洲精品果冻| 国产伦精品一区二区三区四那| 国产主播在线观看一区二区| 亚洲人成伊人成综合网2020| 国产精品99久久99久久久不卡| 日本免费a在线| 国产成人a区在线观看| 欧美在线黄色| 无人区码免费观看不卡| 精品国产超薄肉色丝袜足j| 国产高清有码在线观看视频| 午夜视频国产福利| 国产精品,欧美在线| 成人亚洲精品av一区二区| 99国产极品粉嫩在线观看| 91麻豆精品激情在线观看国产| 国产黄色小视频在线观看| 久久久精品大字幕| 搡老岳熟女国产| 亚洲成人久久爱视频| 国产精品1区2区在线观看.| 国产精品女同一区二区软件 | 国产午夜精品久久久久久一区二区三区 | 亚洲中文日韩欧美视频| 黄色女人牲交| 性欧美人与动物交配| 小说图片视频综合网站| 淫秽高清视频在线观看| 最近最新中文字幕大全电影3| 黄色女人牲交| 日本黄色片子视频| 日韩欧美 国产精品| 99热6这里只有精品| 亚洲电影在线观看av| 久久6这里有精品| 国产欧美日韩精品一区二区| 国产私拍福利视频在线观看| 特大巨黑吊av在线直播| 婷婷精品国产亚洲av在线| 久久九九热精品免费| 在线a可以看的网站| 最近最新中文字幕大全免费视频| 国产精品一区二区免费欧美| 男女下面进入的视频免费午夜| 一级黄色大片毛片| 又黄又粗又硬又大视频| 亚洲内射少妇av| 国产高清三级在线| 国产不卡一卡二| 精品午夜福利视频在线观看一区| 99久久久亚洲精品蜜臀av| 亚洲av免费高清在线观看| 在线天堂最新版资源| 99riav亚洲国产免费| h日本视频在线播放| 日日干狠狠操夜夜爽| 又黄又粗又硬又大视频| 欧美性猛交黑人性爽| 怎么达到女性高潮| 99热只有精品国产| www.熟女人妻精品国产| 少妇丰满av| 欧美丝袜亚洲另类 | 在线观看午夜福利视频| 小说图片视频综合网站| 亚洲成人久久爱视频| 欧美av亚洲av综合av国产av| 欧美大码av| 国产精品日韩av在线免费观看| 内射极品少妇av片p| 免费看十八禁软件| 大型黄色视频在线免费观看| 精品日产1卡2卡| 99热只有精品国产| 欧美乱码精品一区二区三区| 久久亚洲真实| 91久久精品电影网| 99久久综合精品五月天人人| 亚洲精品色激情综合| 日韩欧美在线乱码| 亚洲精品影视一区二区三区av| 麻豆久久精品国产亚洲av| 夜夜夜夜夜久久久久| 欧美bdsm另类| 免费在线观看日本一区| 我要搜黄色片| 亚洲成人免费电影在线观看| 国产日本99.免费观看| 久久亚洲精品不卡| av专区在线播放| 噜噜噜噜噜久久久久久91| 在线观看舔阴道视频| 最近视频中文字幕2019在线8| 亚洲成av人片在线播放无| 偷拍熟女少妇极品色| 无限看片的www在线观看| 一夜夜www| 两性午夜刺激爽爽歪歪视频在线观看| 免费看十八禁软件| 国产精品影院久久| 高清在线国产一区| 有码 亚洲区| 少妇的逼水好多| 精品国产美女av久久久久小说| 免费大片18禁| 内地一区二区视频在线| 国产三级在线视频| 日本黄色片子视频| 在线天堂最新版资源| 日韩欧美精品免费久久 | 亚洲国产日韩欧美精品在线观看 | 天堂影院成人在线观看| 国产精品香港三级国产av潘金莲| 免费看日本二区| 五月伊人婷婷丁香| 日韩欧美在线二视频| 久久这里只有精品中国| 亚洲av不卡在线观看| 日本 av在线| 热99re8久久精品国产| 欧美又色又爽又黄视频| 欧美日韩一级在线毛片| 午夜免费成人在线视频| 一本久久中文字幕| av在线蜜桃| 毛片女人毛片| 日本免费一区二区三区高清不卡| 亚洲五月婷婷丁香| 日本免费一区二区三区高清不卡| 在线观看日韩欧美| 在线a可以看的网站| 嫩草影院精品99| 精品久久久久久久久久久久久| 宅男免费午夜| 国产在视频线在精品| 久久久久久久久久黄片| 日日摸夜夜添夜夜添小说| 美女黄网站色视频| 成人性生交大片免费视频hd| 日韩欧美 国产精品| 男插女下体视频免费在线播放| 国产伦一二天堂av在线观看| 最近视频中文字幕2019在线8| 特级一级黄色大片| 欧美激情在线99| 黄色成人免费大全| 俺也久久电影网| 不卡一级毛片| 成人av在线播放网站| 久久久久久九九精品二区国产| 99精品久久久久人妻精品| 久久精品91蜜桃| 精品一区二区三区视频在线 | 午夜老司机福利剧场| 一区二区三区激情视频| 国产淫片久久久久久久久 | 欧美日韩精品网址| 日本一二三区视频观看| 少妇人妻一区二区三区视频| 免费在线观看日本一区| 免费搜索国产男女视频| 国产精品久久久久久亚洲av鲁大| 国产又黄又爽又无遮挡在线| 国产黄色小视频在线观看| 12—13女人毛片做爰片一| 欧美中文综合在线视频| 嫩草影院精品99| 久久精品91蜜桃| 91麻豆av在线| 久久精品综合一区二区三区| 欧美日韩综合久久久久久 | 最近最新中文字幕大全免费视频| 国产爱豆传媒在线观看| 在线播放国产精品三级| 我要搜黄色片| 国产高潮美女av| 久久伊人香网站| av在线天堂中文字幕| 国产午夜福利久久久久久| 亚洲av不卡在线观看| 欧美日韩中文字幕国产精品一区二区三区| 精品福利观看| e午夜精品久久久久久久| 国产高清视频在线观看网站| 白带黄色成豆腐渣| 在线看三级毛片| 波多野结衣高清作品| 精品福利观看| 日本黄色片子视频| 哪里可以看免费的av片| 少妇熟女aⅴ在线视频| 国产成人av教育| 99热只有精品国产| 国产精品一区二区三区四区免费观看 | 欧美最黄视频在线播放免费| 男女视频在线观看网站免费| 人人妻人人澡欧美一区二区| 日韩大尺度精品在线看网址| 亚洲五月天丁香| 国产野战对白在线观看| 99热精品在线国产| 成人无遮挡网站| 亚洲欧美日韩无卡精品| 99久久精品一区二区三区| 国模一区二区三区四区视频| 少妇人妻一区二区三区视频| a级一级毛片免费在线观看| 俺也久久电影网| 欧美bdsm另类| 在线播放无遮挡| 真人一进一出gif抽搐免费| 九九久久精品国产亚洲av麻豆| 又黄又粗又硬又大视频|