• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    One-step Solvothermal Synthesis of Strontium-doped Ultralong Hydroxyapatite Nanowires

    2020-07-04 08:34:22SUNTuanweiZHUYingjie
    無機(jī)材料學(xué)報 2020年6期
    關(guān)鍵詞:熱法英杰磷灰石

    SUN Tuanwei, ZHU Yingjie

    One-step Solvothermal Synthesis of Strontium-doped Ultralong Hydroxyapatite Nanowires

    SUN Tuanwei1,2, ZHU Yingjie1,2

    (1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)

    Ultralong hydroxyapatite nanowires (UHANWs) exhibit great potential in constructing different kinds of biomaterials such as the highly flexible biomedical paper and elastic porous scaffolds for various biomedical applications. Moreover, strontium (Sr), a trace elementin human body, plays an important role in bone metabolism. In this study, Sr-doped UHANWs (Sr-UHANWs) with various Sr/(Sr+Ca) molar ratios have been successfully prepared by the one-step oleate precursor solvothermal method. The effects of the Sr/(Sr+Ca) molar ratio on the morphology and crystal phase of the Sr-UHANWs were investigated. The as-prepared Sr-UHANWs exhibit high flexibility and ultralong 1D nanostructure. Moreover, the energy dispersive spectroscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy of the as-prepared samples reveal that Sr element has been successfully incorporated in UHANWs. The preparation method developed in this work may be suitable for the synthesis of Sr-UHANWs with Sr/(Sr+Ca) molar ratios ranging from 0 to 100 %, which may enlarge the biomedical applications of UHANWs such as bone and teeth defect repair.

    hydroxyapatite; strontium; nanowire; solvothermal; biomaterials

    The synthetic hydroxyapatite (HAP, Ca10(PO4)6(OH)2) is chemically similar to the inorganic component of bone and teeth, which endows it with excellent biocompatibility, good osteoconductivity and osteoinductivity[1-2]. HAP-based biomaterials have been intensively investigated and applied in various biomedical fields, such as bone and teeth defect repair, and drug delivery[3-4]. Strontium (Sr) is an important trace element in human body and essential in bone metabolism by regulating bone formation and resorption[5-6]. It was reported that Sr2+ions could stimulate the differentiation of osteoblasts and inhibit the differentiation of osteoclast[7]. Previous reports indicated that the incorporation of Sr2+ions into HAP could promote bone regeneration and bone defect repair[5,8].

    Compared with other HAP nanostructured materials such as HAP nanoparticles, HAP microspheres, and 1D HAP nanorods[2-3,9-10], ultralong hydroxyapatite nanowires (UHANWs) with lengths of several hundred micrometres have high flexibility and ultralong 1D nanostructure, showing great potential in constructing different types of multifunctional biomaterials such as the highly flexible biomedical paper and elastic porous scaffolds[11-16]. Moreover, the Sr-doped UHANWs (Sr-UHANWs) can combine excellent advantages of both strontium and UHANWs, which will remarkably enhance the bioactivity and enlarge the application potentials of UHANWs- based biomaterials in various biomedical fields.

    Previously, Xu[17]synthesized Sr-doped HAP whiskers using acetamide as a homogeneous precipitation reagent by hydrothermal treatment. Zhang,[18]hydrothermally synthesized Sr and Si co-doped HAP nanowires using Sr-containing calcium silicate as the precursor. However, to the best of our knowledge, the synthesis of Sr-doped ultralong HAP nanowires by the oleate precursor solvothermal method has not been reported in the literature.

    In this study, the Sr-UHANWs with different Sr/(Sr+Ca) molar ratios have been synthesized by the one-step oleate precursor solvothermal method. The as-prepared Sr-UHANWs exhibit ultralong 1D nanostructure and high flexibility. Importantly, the preparation method developed in this work is simple, and may be applicable for the synthesis of other metal ions-doped UHANWs.

    1 Experimental section

    1.1 Materials

    Oleic acid and SrCl2·6H2O were purchased from Aladdin Industrial Co. Ltd., and other chemicals were purchased from Sinopharm Chemical Reagent Co. Ltd. All chemicals were used as received without further purification.

    1.2 Synthesis of Sr-UHANWs

    The strontium-doped ultralong hydroxyapatite nanowires (Sr-UHANWs) with different Sr/(Sr+Ca) molar ratios were prepared by a facile one-step oleate precursor solvothermal method[19-21]. In a typical experiment for the synthesis of Sr-UHANWs with a Sr/(Sr+Ca) molar ratio of 0.4, a mixture of deionized water (135 mL), methanol (60 mL) and oleic acid (105 mL) was prepared under vigorous mechanical stirring in an ice-water bath. Then, 150 mL of NaOH (10.500 g) aqueous solution, 120 mL of aqueous solution containing 1.998 g of CaCl2and 3.199 g of SrCl2·6H2O, and 180 mL of NaH2PO4·2H2O (9.360 g) aqueous solution were separately added into the above mixture. After continuous stirring for 30 min, the resulting suspension was transferred into a Teflon-lined stainless steel autoclave (1000 mL), sealed and heated at 180 ℃ for 24 h. After cooling to room temperature, the product was washed with ethanol and deionized water 3 times, and dried, respectively. The as-prepared Sr-UHANWs with a Sr/(Sr+Ca) molar ratio of 0.4 is labeled as Sr40-UHANWs.

    Similarly, the undoped UHANWs and Sr100-UHANWswere prepared under the same conditions but using 3.330 g of CaCl2and 7.999 g of SrCl2·6H2O, respectively. The Sr5-UHANWs, Sr20-UHANWs and Sr90-UHANWs were also prepared using the above method.

    1.3 Characterization

    Scanning electron microscopy (SEM) images and energy-dispersive spectroscopy (EDS) elemental mapping patterns of the as-prepared Sr-UHANWs with different Sr/(Sr+Ca) molar ratios were recorded with a field- emission scanning electron microscope (FEI Magellan 400, USA). The X-ray powder diffraction (XRD) patterns of Sr-UHANWs with different Sr/(Sr+Ca) molar ratios were recorded with an X-ray diffractometer (Rigaku D/max 2550 V, Cu Kαradiation,=0.154178 nm). Fourier transform infrared (FT-IR) spectra of Sr-UHANWs with different Sr/(Sr+Ca) molar ratios were taken using a FT-IR spectrometer (FTIR-7600, Lambda Scientific, Australia).

    2 Results and discussion

    2.1 Crystal phase analysis of Sr-UHANWs

    Fig. 1 shows the XRD patterns of the as-prepared Sr-UHANWs with different Sr/(Ca+Sr) molar ratios. The XRD pattern of the undoped UHANWs can be indexed to a single crystal phase of hydroxyapatite with a hexagonal structure (Ca10(PO4)6(OH)2, JCPDS 09-0432). Moreover, the XRD pattern of Sr100-UHANWs can be indexed to strontium phosphate (Sr3(PO4)2, JCPDS 24-1008) and strontiumapatite (Sr10(PO4)6(OH)2, JCPDS 33-1348) with a hexagonal structure. The XRD patterns of Sr-UHANWs with different Sr/(Sr+Ca) molar ratios can be indexed to a hexagonal apatite crystal phase (Fig. 1(b-e)). Compared with the XRD pattern of the undoped UHANWs, all diffraction peaks of Sr-UHANWs with different Sr/(Sr+Ca) molar ratios shift to a lower diffraction angle, and the shift becomes larger as the Sr2+substitution ratio increases. The diffraction peak shift indicates the crystal lattice expansion in Sr-UHANWs, which is caused by the substitution of smaller Ca2+ions with larger Sr2+ions[22]. These experimental results demonstrate that the as-prepared Sr-UHANWs have a chemical compositions of Ca10–xSr(PO4)6(OH)2(where 0≤≤10).

    2.2 Morphologies of Sr-UHANWs

    As shown in Fig. 2(a-d), the morphology of the undoped UHANWs is similar to that of Sr40-UHANWs. Both undoped UHANWs and Sr40-UHANWs have highly flexible 1D nanostructure and ultrahigh aspect ratios. The energy-dispersive spectroscopy (EDS) elemental mapping patterns of Sr40-UHANWs (Fig. 2(e)) further confirm that the Sr, Ca, P, and O elements are homogeneously distributed in the Sr40-UHANWs, and Sr2+ions have been successfully doped into the UHANWs.

    As shown in Fig. 3, the effect of Sr/(Sr+Ca) molar ratios on the morphology of the as-prepared Sr-UHANWs was further investigated. Interestingly, Sr5-UHANWs, Sr20-UHANWs, Sr90-UHANWs, and Sr100-UHANWs exhibit ultralong 1D nanostructure, which is similar to that of undoped UHANWs and Sr40-UHANWs, indicating that the oleate precursor solvothermal method reported herein may be suitable for the synthesis of Sr-UHANWs with Sr/(Ca+Sr) molar ratios ranging from 0 to 100%. High-magnification SEM images of Sr-UHANWs display that the surface of Sr-UHANWs is smooth, and in many cases Sr-UHANWs can self-assemble into nanowire bundles along the longitudinal direction. SEM images in Figs. 2 and 3, display that many Sr-UHANWs can bend owing to their high flexibility and ultralong nanostructure.

    Fig. 1 XRD patterns of the as-prepared Sr-UHANWs with different Sr/(Sr+Ca) molar ratios

    Fig. 2 SEM images of undoped UHANWs (a, b) and Sr40-UHANWs (c, d), and energy-dispersive spectroscopy (EDS) elemental mapping of Sr, Ca, P and O elements in Sr40-UHANWs (e)

    Fig. 3 SEM images of strontium-doped UHANWs with different Sr/(Sr+Ca) molar ratios(a, b) Sr5-UHANWs; (c, d) Sr20-UHANWs; (e, f) Sr90-UHANWs; (g, h) Sr100-UHANWs

    According to our previously reported formation mechanism of undoped UHANWs[12,14,19], we propose that the formation of Sr-UHANWs is an oleate precursor solvothermal process. The precursors of calcium oleate and strontium oleate are first formed in the reaction system after the addition of oleic acid, NaOH, CaCl2, and SrCl2·6H2O. Then, the precursors of calcium oleate and strontium oleate transform to Sr-UHANWs after the addition of NaH2PO4·2H2O under the solvothermal conditions.

    2.3 FT-IR analysis of Sr-UHANWs

    The FTIR analysis was performed to characterize the Sr-UHANWs samples. As shown in Fig. 4, the broad absorption peak of all the samples at around 3440 cm?1derives from the adsorbed water in the samples. The Sr2+substitution obviously influences the absorption peaks of hydroxyl (?OH) in Sr-UHANWs. As the Sr2+substitution ratio increases, the absorption peaks of the stretching mode (3572 cm?1) and librational mode (633 cm?1) of ?OH in Sr-UHANWs decrease in intensity and broaden, indicating that the Sr2+substitution leads to the loss of ?OH groups and structural disorder[23]. The absorption peaks at around 1097, 1032, 962, 602, and 561 cm?1belong to the PO43?group in the samples[24]. However, the absorption peaks of the PO43?group in the range of 1150–950 cm?1slightly shift to lower wave numbers as the Sr2+substitution ratio of Sr-UHANWs increases, which also demonstrates the increase of disorder around phosphate sites caused by the Sr incorporation[23]. The above experimental results are consistent with the XRD results, and further confirm that the Sr2+ions have been successfully incorporated into the HAP crystal structure.

    Fig. 4 FT-IR spectra of the as-prepared Sr-UHANWs with different Sr/(Sr+Ca) molar ratios

    3 Conclusions

    In summary, the strontium-doped ultralong hydroxyapatite nanowires (Sr-UHANWs) with different Sr/(Sr+Ca) molar ratios have been successfully synthesized using the one-step oleate precursor solvothermal method. The as-prepared Sr-UHANWs exhibit the ultralong 1D nanostructure and high flexibility. In addition, the EDS elemental mapping, XRD and FT-IR analyses confirm the successful incorporation of Sr2+ions into the crystal structure of UHANWs. Thus, the one-step oleate precursor solvothermal method developed in this study may be suitable for the synthesis of Sr-UHANWs with Sr/(Sr+Ca) molar ratios ranging from 0 to 100%, which may broaden the biomedical applications of UHANWs such as bone and teeth defect repair.

    [1] QI C, ZHU Y J, LU B Q,. Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption., 2013, 19(17): 5332–5341.

    [2] YU W L, SUN T W, DING Z Y,. Copper-doped mesoporous hydroxyapatite microspheres synthesized by a microwave-hydrothermal method using creatine phosphate as an organic phosphorus source: application in drug delivery and enhanced bone regeneration., 2017, 5(5): 1039–1052.

    [3] LU B Q, ZHU Y J. One-dimensional hydroxyapatite materials: preparation and applications., 2017, 95(11): 1091–1102.

    [4] YU W L, SUN T W, QI C,. Enhanced osteogenesis and angiogenesis by mesoporous hydroxyapatite microspheres-derived simvastatin sustained release system for superior bone regeneration., 2017, 7: 44129.

    [5] YANG F, YANG D Z, TU J,. Strontium enhances osteogenic differentiation of mesenchymal stem cells andbone formation by activating Wnt/catenin signaling., 2011, 29(6): 981–991.

    [6] LIN K L, XIA L G, LI H Y,. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics., 2013, 34(38): 10028–10042.

    [7] BONNELYE E, CHABADEL A, SALTEL F,. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption., 2008, 42(1): 129–138.

    [8] HABIBOVIC P, BARRALET J E. Bioinorganics and biomaterials: bone repair., 2011, 7(8): 3013–3026.

    [9] KANE R J, WEISS-BILKA H E, MEAGHER M J,. Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties., 2015, 17: 16–25.

    [10] ZHENG X Y, HUI J F, LI H,. Fabrication of novel biodegradable porous bone scaffolds based on amphiphilic hydroxyapatite nanorods., 2017, 75: 699–705.

    [11] SUN T W, YU W L, ZHU Y J,. Hydroxyapatite nanowire@magnesium silicate core-shell hierarchical nanocomposite: synthesis and application in bone regeneration., 2017, 9(19): 16435–16447.

    [12] SUN T W, ZHU Y J, CHEN F. Highly flexible multifunctional biopaper comprising chitosan reinforced by ultralong hydroxyapatite nanowires., 2017, 23(16): 3850–3862.

    [13] SUN T W, ZHU Y J, CHEN F,. Ultralong hydroxyapatite nanowires/collagen scaffolds with hierarchical porous structure, enhanced mechanical properties and excellent cellular attachment., 2017, 43(17): 15747–15754.

    [14] SUN T W, ZHU Y J, CHEN F,. Ultralong hydroxyapatite nanowire/collagen biopaper with high flexibility, improved mechanical properties and excellent cellular attachment., 2017, 12(6): 655–664.

    [15] SUN T W, YU W L, ZHU Y J,. Porous nanocomposite comprising ultralong hydroxyapatite nanowires decorated with zinc-containing nanoparticles and chitosan: synthesis and application in bone defect repair., 2018, 24(35): 8809–8821.

    [16] SUN T W, ZHU Y J, CHEN F. Hydroxyapatite nanowire/collagen elastic porous nanocomposite and its enhanced performance in bone defect repair., 2018, 8(46): 26133–26144.

    [17] XU J Q, YANG Y Q, WAN R,. Hydrothermal preparation and characterization of ultralong strontium-substituted hydroxyapatite whiskers using acetamide as homogeneous precipitation reagent., 2014, 2014: 863137.

    [18] ZHANG N, ZHAI D, CHEN L,. Hydrothermal synthesis and characterization of Si and Sr co-substituted hydroxyapatite nanowires using strontium containing calcium silicate as precursors., 2014, 37: 286–291.

    [19] LU B Q, ZHU Y J, CHEN F. Highly flexible and nonflammable inorganic hydroxyapatite paper., 2014, 20(5): 1242–1246.

    [20] ZHANG Y G, ZHU Y J, CHEN F,. Ultralong hydroxyapatite nanowires synthesized by solvothermal treatment using a series of phosphate sodium salts., 2015, 144: 135–137.

    [21] JIANG Y Y, ZHU Y J, CHEN F,. Solvothermal synthesis of submillimeter ultralong hydroxyapatite nanowires using calcium oleate precursor in a series of monohydroxy alcohols., 2015, 41(4): 6098–6102.

    [22] KAVITHA M, SUBRAMANIAN R, NARAYANAN R,. Solution combustion synthesis and characterization of strontium substituted hydroxyapatite nanocrystals., 2014, 253: 129–137.

    [23] TERRA J, DOURADO E R, EON J G,. The structure of strontium-doped hydroxyapatite: an experimental and theoretical study., 2009, 11(3): 568–577.

    [24] QI C, ZHU Y J, LU B Q,. Hydroxyapatite nanosheet-assembled porous hollow microspheres: DNA-templated hydrothermal synthesis, drug delivery and protein adsorption., 2012, 22(42): 22642–22650.

    一步溶劑熱法合成鍶摻雜羥基磷灰石超長納米線

    孫團(tuán)偉1,2, 朱英杰1,2

    (1. 中國科學(xué)院 上海硅酸鹽研究所, 上海 200050; 2. 中國科學(xué)院大學(xué)材料與光電研究中心, 北京 100049)

    羥基磷灰石超長納米線可用于構(gòu)建不同種類的生物材料, 如高柔性生物醫(yī)用紙和彈性多孔骨缺損修復(fù)支架, 在生物醫(yī)學(xué)領(lǐng)域具有良好的應(yīng)用前景。鍶元素作為一種微量元素, 在骨代謝過程中起著重要作用。本研究通過一步溶劑熱法合成了具有不同鍶摻雜量的羥基磷灰石超長納米線; 研究了不同鍶摻雜量對羥基磷灰石超長納米線的形貌和物相的影響。所制備的鍶摻雜羥基磷灰石超長納米線具有高柔韌性和超長一維納米結(jié)構(gòu)。能量色散譜、X射線粉末衍射和傅里葉變換紅外光譜分析表明, 鍶元素成功地?fù)诫s到了羥基磷灰石超長納米線中。本研究發(fā)展的制備方法可以制備鍶/(鍶+鈣)摩爾比從0到100%任一比例的鍶摻雜羥基磷灰石超長納米線, 大幅拓展了羥基磷灰石超長納米線在骨缺損修復(fù)和牙科修復(fù)等生物醫(yī)學(xué)領(lǐng)域中的應(yīng)用。

    羥基磷灰石; 鍶; 納米線; 溶劑熱; 生物材料

    TQ174

    A

    date:2019-08-04;

    date: 2019-09-23

    National Natural Science Foundation of China (21875277)

    SUN Tuanwei (1989–), male, PhD. E-mail: stwcsu@163.com

    孫團(tuán)偉(1989–), 男, 博士. E-mail: stwcsu@163.com

    Corresponding author:ZHU Yingjie, professor. E-mail: y.j.zhu@mail.sic.ac.cn

    朱英杰, 研究員. E-mail: y.j.zhu@mail.sic.ac.cn

    1000-324X(2020)06-0724-05

    10.15541/jim20190398

    猜你喜歡
    熱法英杰磷灰石
    Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature*
    李東垣“甘溫除熱法”的現(xiàn)代臨床應(yīng)用
    Observe modern design works and taste traditional Chinese culture
    羥基磷灰石在鈾富集成礦中的作用
    濕法冶金(2019年5期)2019-10-18 09:00:00
    Special Property of Group Velocity for Temporal Dark Soliton?
    燕趙英杰
    軍工文化(2017年12期)2017-07-17 06:07:56
    PHBV膜與珊瑚羥基磷灰石聯(lián)合修復(fù)頜骨缺損的研究
    濕化學(xué)法合成羥基磷灰石晶體及其表征
    溶劑熱法可控合成納米氯化亞銅
    低溫溶劑熱法制備5V級性能優(yōu)異的LiCr0.2Ni0.4Mn1.4O4正極材料
    手机成人av网站| 18禁美女被吸乳视频| 黄片小视频在线播放| 啦啦啦免费观看视频1| 在线视频色国产色| 999久久久国产精品视频| 国产高潮美女av| 国产精品99久久99久久久不卡| 免费看光身美女| 亚洲中文日韩欧美视频| www.www免费av| 毛片女人毛片| 午夜福利在线观看吧| 99在线人妻在线中文字幕| 亚洲一区高清亚洲精品| 老鸭窝网址在线观看| 俄罗斯特黄特色一大片| 最近视频中文字幕2019在线8| 亚洲无线在线观看| 久久久久久国产a免费观看| 美女午夜性视频免费| 日韩欧美国产一区二区入口| 国产一区二区三区视频了| 黄色日韩在线| 九九在线视频观看精品| 一个人看的www免费观看视频| 老司机深夜福利视频在线观看| 91老司机精品| 婷婷丁香在线五月| 国产日本99.免费观看| 久久九九热精品免费| 国产伦人伦偷精品视频| 90打野战视频偷拍视频| 97超视频在线观看视频| 亚洲无线在线观看| 美女被艹到高潮喷水动态| 亚洲国产精品久久男人天堂| 又爽又黄无遮挡网站| 婷婷丁香在线五月| 日本在线视频免费播放| 夜夜夜夜夜久久久久| 国产精华一区二区三区| 狠狠狠狠99中文字幕| 男女视频在线观看网站免费| 成年女人永久免费观看视频| 日本 av在线| 婷婷六月久久综合丁香| 最新中文字幕久久久久 | 国产精品久久久久久久电影 | 午夜日韩欧美国产| 久久久久久久久免费视频了| 国产综合懂色| 高潮久久久久久久久久久不卡| 人妻丰满熟妇av一区二区三区| 精品久久久久久成人av| 夜夜夜夜夜久久久久| 国产精品女同一区二区软件 | 亚洲中文字幕一区二区三区有码在线看 | 国产激情偷乱视频一区二区| 真实男女啪啪啪动态图| 亚洲天堂国产精品一区在线| 怎么达到女性高潮| 91在线观看av| 亚洲无线观看免费| 又黄又爽又免费观看的视频| 女同久久另类99精品国产91| 在线a可以看的网站| 亚洲中文字幕一区二区三区有码在线看 | 97碰自拍视频| 国产野战对白在线观看| 男人舔女人下体高潮全视频| 色吧在线观看| 精品乱码久久久久久99久播| 日本精品一区二区三区蜜桃| 99在线人妻在线中文字幕| 国产亚洲欧美在线一区二区| 淫秽高清视频在线观看| 日本免费a在线| 亚洲九九香蕉| 久久中文字幕人妻熟女| 久久久精品欧美日韩精品| 国产精品精品国产色婷婷| 在线观看美女被高潮喷水网站 | 久久精品国产99精品国产亚洲性色| 久久久久国产一级毛片高清牌| 欧美大码av| 99国产精品99久久久久| 搡老熟女国产l中国老女人| 亚洲人成网站在线播放欧美日韩| 日韩精品青青久久久久久| 88av欧美| 亚洲五月天丁香| 亚洲欧美激情综合另类| 国产激情欧美一区二区| 一二三四在线观看免费中文在| 亚洲乱码一区二区免费版| 99精品欧美一区二区三区四区| 国产蜜桃级精品一区二区三区| 美女午夜性视频免费| 男女床上黄色一级片免费看| 国产精品九九99| 黄频高清免费视频| a在线观看视频网站| 日韩有码中文字幕| 国产视频内射| 国产高清videossex| 成人欧美大片| 久久久久国产精品人妻aⅴ院| 免费无遮挡裸体视频| 国产一级毛片七仙女欲春2| 色在线成人网| 国产精品av视频在线免费观看| 国产精品一区二区三区四区久久| 国产成人福利小说| 亚洲性夜色夜夜综合| 最近最新免费中文字幕在线| 18禁黄网站禁片午夜丰满| 两人在一起打扑克的视频| 制服人妻中文乱码| 波多野结衣巨乳人妻| 国产免费男女视频| 国产精品99久久99久久久不卡| 男女午夜视频在线观看| 日韩三级视频一区二区三区| 亚洲精品中文字幕一二三四区| 俺也久久电影网| 免费在线观看成人毛片| 国产精品 欧美亚洲| 久久久久性生活片| 国产精品 欧美亚洲| 成人精品一区二区免费| 99国产精品一区二区三区| 亚洲熟女毛片儿| 日本五十路高清| 最新中文字幕久久久久 | 亚洲七黄色美女视频| 国产精品久久视频播放| 桃红色精品国产亚洲av| 女人被狂操c到高潮| 99热这里只有是精品50| 久久久久免费精品人妻一区二区| 夜夜看夜夜爽夜夜摸| 免费看a级黄色片| 久久久成人免费电影| 久久久久久大精品| 一边摸一边抽搐一进一小说| 色视频www国产| 精品无人区乱码1区二区| 国产高清videossex| 亚洲国产欧美网| 白带黄色成豆腐渣| 成人特级黄色片久久久久久久| 欧美av亚洲av综合av国产av| 丰满人妻一区二区三区视频av | 999久久久国产精品视频| 欧美在线黄色| 亚洲av免费在线观看| 老鸭窝网址在线观看| 老司机午夜十八禁免费视频| 中文字幕最新亚洲高清| 国产亚洲精品一区二区www| 国产精品久久久久久久电影 | 欧美+亚洲+日韩+国产| 国产伦精品一区二区三区视频9 | avwww免费| 亚洲精品国产精品久久久不卡| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成电影免费在线| 欧美大码av| 欧美日韩国产亚洲二区| 女同久久另类99精品国产91| 亚洲美女黄片视频| 国产成年人精品一区二区| 亚洲欧美一区二区三区黑人| 亚洲五月婷婷丁香| 久久久久国产一级毛片高清牌| 美女被艹到高潮喷水动态| 黑人巨大精品欧美一区二区mp4| 国内少妇人妻偷人精品xxx网站 | 成年免费大片在线观看| 国产在线精品亚洲第一网站| 国产熟女xx| 91字幕亚洲| 1024香蕉在线观看| 欧美性猛交╳xxx乱大交人| a级毛片在线看网站| 国产成人一区二区三区免费视频网站| 天堂影院成人在线观看| 无限看片的www在线观看| 每晚都被弄得嗷嗷叫到高潮| 欧美午夜高清在线| 成人午夜高清在线视频| 精品一区二区三区四区五区乱码| 高清在线国产一区| 久久久久久久久中文| 熟女电影av网| 男女做爰动态图高潮gif福利片| 久久中文字幕人妻熟女| 国产真实乱freesex| 亚洲第一电影网av| 国产伦一二天堂av在线观看| 人妻夜夜爽99麻豆av| 草草在线视频免费看| 制服丝袜大香蕉在线| 国产真实乱freesex| 观看免费一级毛片| 成人国产综合亚洲| 国产三级中文精品| 国产av不卡久久| 麻豆av在线久日| 在线播放国产精品三级| 色老头精品视频在线观看| av国产免费在线观看| 欧美zozozo另类| www.精华液| 国产毛片a区久久久久| 巨乳人妻的诱惑在线观看| 亚洲七黄色美女视频| 好男人在线观看高清免费视频| bbb黄色大片| 高潮久久久久久久久久久不卡| 日本成人三级电影网站| 国产不卡一卡二| 我要搜黄色片| 亚洲人成伊人成综合网2020| 国产精品野战在线观看| 久久久久久九九精品二区国产| 久久婷婷人人爽人人干人人爱| 日日干狠狠操夜夜爽| www国产在线视频色| 亚洲成av人片在线播放无| 午夜免费成人在线视频| 国产精品爽爽va在线观看网站| 精品欧美国产一区二区三| 老司机福利观看| 国产精品亚洲美女久久久| 99久久久亚洲精品蜜臀av| 丰满人妻一区二区三区视频av | 午夜福利免费观看在线| 日日干狠狠操夜夜爽| 日韩有码中文字幕| 脱女人内裤的视频| 日本黄色视频三级网站网址| 在线永久观看黄色视频| 老鸭窝网址在线观看| 桃色一区二区三区在线观看| 日韩欧美在线乱码| 欧美又色又爽又黄视频| 亚洲av免费在线观看| 国产成人影院久久av| 久久午夜综合久久蜜桃| 网址你懂的国产日韩在线| 久久亚洲精品不卡| 成在线人永久免费视频| bbb黄色大片| 波多野结衣巨乳人妻| 老汉色∧v一级毛片| 国产精品久久久久久精品电影| 色播亚洲综合网| 成人亚洲精品av一区二区| 免费看光身美女| 国产三级在线视频| 亚洲狠狠婷婷综合久久图片| 国内精品久久久久久久电影| 麻豆一二三区av精品| 999久久久国产精品视频| 十八禁网站免费在线| 欧美成人一区二区免费高清观看 | 99久久久亚洲精品蜜臀av| 亚洲精品色激情综合| www.www免费av| 久久久久精品国产欧美久久久| 一二三四在线观看免费中文在| 美女大奶头视频| 男女之事视频高清在线观看| 最新在线观看一区二区三区| 真人做人爱边吃奶动态| 伊人久久大香线蕉亚洲五| 一个人免费在线观看的高清视频| 99热6这里只有精品| 国产成人精品久久二区二区免费| 男人舔奶头视频| 国产精品九九99| 给我免费播放毛片高清在线观看| 精品一区二区三区av网在线观看| 午夜福利在线观看免费完整高清在 | av在线蜜桃| 亚洲,欧美精品.| 日本一二三区视频观看| 国产精品一区二区免费欧美| 中文亚洲av片在线观看爽| 97超视频在线观看视频| 免费观看的影片在线观看| 欧美一级a爱片免费观看看| 国产午夜福利久久久久久| 亚洲av免费在线观看| 精品欧美国产一区二区三| 窝窝影院91人妻| 日韩欧美 国产精品| 久久久水蜜桃国产精品网| 香蕉国产在线看| 国内精品久久久久精免费| 99久久久亚洲精品蜜臀av| 色综合站精品国产| 成年免费大片在线观看| 亚洲av成人一区二区三| av天堂在线播放| 国产精品自产拍在线观看55亚洲| 欧美一级毛片孕妇| 一二三四在线观看免费中文在| 久久精品国产清高在天天线| 欧美乱妇无乱码| 精品国产乱子伦一区二区三区| 伊人久久大香线蕉亚洲五| 中文字幕熟女人妻在线| 久久精品国产99精品国产亚洲性色| 国产免费男女视频| 欧美在线黄色| 国模一区二区三区四区视频 | 草草在线视频免费看| 91久久精品国产一区二区成人 | 制服丝袜大香蕉在线| 最新在线观看一区二区三区| 欧美绝顶高潮抽搐喷水| 久久亚洲精品不卡| 啪啪无遮挡十八禁网站| 国产高清videossex| 我的老师免费观看完整版| 国产成人福利小说| 99热6这里只有精品| 老司机深夜福利视频在线观看| 国产精品香港三级国产av潘金莲| 99国产精品一区二区蜜桃av| 国产精品久久电影中文字幕| 九九在线视频观看精品| 男女床上黄色一级片免费看| 日韩有码中文字幕| 亚洲午夜理论影院| 99re在线观看精品视频| 欧美黑人巨大hd| 中文在线观看免费www的网站| 成人av一区二区三区在线看| 成人特级av手机在线观看| 国产成人av教育| 无限看片的www在线观看| 国产又色又爽无遮挡免费看| 亚洲黑人精品在线| 精品久久久久久成人av| 亚洲 欧美 日韩 在线 免费| 成人特级av手机在线观看| 中出人妻视频一区二区| 亚洲最大成人中文| 97超视频在线观看视频| 国产成人一区二区三区免费视频网站| 韩国av一区二区三区四区| 国产不卡一卡二| 精品欧美国产一区二区三| 在线国产一区二区在线| 99re在线观看精品视频| 男女视频在线观看网站免费| 亚洲天堂国产精品一区在线| 嫩草影视91久久| 色精品久久人妻99蜜桃| 看免费av毛片| 日本与韩国留学比较| 日韩高清综合在线| 精品国产超薄肉色丝袜足j| 久久久久久大精品| 欧美另类亚洲清纯唯美| 欧美三级亚洲精品| 听说在线观看完整版免费高清| 午夜福利成人在线免费观看| 成年女人看的毛片在线观看| 综合色av麻豆| 精品久久久久久成人av| 国产精品综合久久久久久久免费| 日本a在线网址| 黄色丝袜av网址大全| 一区二区三区高清视频在线| 听说在线观看完整版免费高清| 老司机福利观看| 我的老师免费观看完整版| 久久精品综合一区二区三区| 亚洲欧美精品综合久久99| 老汉色∧v一级毛片| 日韩欧美免费精品| 久久久久精品国产欧美久久久| 亚洲专区中文字幕在线| 观看美女的网站| 男女那种视频在线观看| 99国产极品粉嫩在线观看| 夜夜爽天天搞| 成人一区二区视频在线观看| 日本五十路高清| 午夜福利在线观看吧| 看黄色毛片网站| 丰满的人妻完整版| 97超级碰碰碰精品色视频在线观看| 757午夜福利合集在线观看| 国产成年人精品一区二区| av片东京热男人的天堂| 国产精品1区2区在线观看.| 变态另类丝袜制服| 精品99又大又爽又粗少妇毛片 | 日本黄大片高清| 极品教师在线免费播放| av黄色大香蕉| 女人高潮潮喷娇喘18禁视频| 桃红色精品国产亚洲av| 日韩欧美在线乱码| 九九久久精品国产亚洲av麻豆 | 亚洲在线自拍视频| 久久久国产欧美日韩av| 亚洲av熟女| 高潮久久久久久久久久久不卡| 亚洲成人中文字幕在线播放| 俺也久久电影网| 亚洲自偷自拍图片 自拍| 深夜精品福利| 亚洲精品456在线播放app | 国产精品亚洲一级av第二区| 久久久国产精品麻豆| 伦理电影免费视频| 国产野战对白在线观看| 久久午夜亚洲精品久久| 超碰成人久久| 99在线人妻在线中文字幕| 色尼玛亚洲综合影院| 99国产极品粉嫩在线观看| 久久久久九九精品影院| 少妇熟女aⅴ在线视频| 变态另类丝袜制服| 亚洲精品乱码久久久v下载方式 | 神马国产精品三级电影在线观看| 亚洲五月婷婷丁香| 亚洲国产精品合色在线| 国产黄a三级三级三级人| 午夜成年电影在线免费观看| 亚洲 国产 在线| 黄片大片在线免费观看| 日本熟妇午夜| 床上黄色一级片| www.熟女人妻精品国产| 国产三级在线视频| 在线观看免费午夜福利视频| 在线观看免费视频日本深夜| 午夜亚洲福利在线播放| 99热精品在线国产| 最新中文字幕久久久久 | 国产av麻豆久久久久久久| 亚洲美女视频黄频| 久久这里只有精品19| 国产亚洲精品久久久久久毛片| 听说在线观看完整版免费高清| 国产人伦9x9x在线观看| 亚洲真实伦在线观看| 男人和女人高潮做爰伦理| 日本 av在线| 男女视频在线观看网站免费| 成人永久免费在线观看视频| 19禁男女啪啪无遮挡网站| 久久久久精品国产欧美久久久| 国产三级在线视频| 午夜精品久久久久久毛片777| 成年版毛片免费区| 俄罗斯特黄特色一大片| 怎么达到女性高潮| 丰满的人妻完整版| 婷婷丁香在线五月| 精品人妻1区二区| 麻豆成人午夜福利视频| 日本成人三级电影网站| 两个人视频免费观看高清| 一区二区三区国产精品乱码| 99热只有精品国产| 日韩欧美在线二视频| 精品久久久久久,| 18禁黄网站禁片午夜丰满| 国产午夜福利久久久久久| 免费大片18禁| 一卡2卡三卡四卡精品乱码亚洲| 黄色 视频免费看| 亚洲七黄色美女视频| 欧洲精品卡2卡3卡4卡5卡区| 99国产极品粉嫩在线观看| 国产真实乱freesex| 精品一区二区三区视频在线观看免费| 69av精品久久久久久| 欧美绝顶高潮抽搐喷水| 日韩欧美免费精品| 91老司机精品| 国产精品影院久久| av在线天堂中文字幕| 午夜福利在线在线| 一个人免费在线观看的高清视频| 一本一本综合久久| 99热这里只有精品一区 | 91老司机精品| 男人舔奶头视频| 老鸭窝网址在线观看| 久久精品国产综合久久久| 波多野结衣高清作品| 精品久久久久久久久久久久久| 国产精品久久久av美女十八| 国产单亲对白刺激| 神马国产精品三级电影在线观看| 久久久国产成人免费| 精品不卡国产一区二区三区| 国产高清有码在线观看视频| 久久精品国产综合久久久| 国产精品九九99| 国产探花在线观看一区二区| 日韩欧美三级三区| 精品久久久久久久久久久久久| 日本 av在线| 亚洲av电影不卡..在线观看| 91av网一区二区| 99热6这里只有精品| 亚洲中文字幕一区二区三区有码在线看 | 国产美女午夜福利| 亚洲 欧美 日韩 在线 免费| 久久久久国内视频| 国产精品亚洲一级av第二区| 麻豆av在线久日| 亚洲精品一卡2卡三卡4卡5卡| 亚洲欧美日韩卡通动漫| 超碰成人久久| 一夜夜www| 99国产精品一区二区三区| 欧美日韩乱码在线| 国产伦一二天堂av在线观看| 亚洲av电影在线进入| 99国产精品99久久久久| 女生性感内裤真人,穿戴方法视频| 精品国内亚洲2022精品成人| 亚洲国产欧洲综合997久久,| 观看免费一级毛片| 亚洲av美国av| 久久久久久久久免费视频了| 亚洲av美国av| 亚洲欧美日韩高清在线视频| 国产精品久久久久久精品电影| 日本三级黄在线观看| 草草在线视频免费看| 日本撒尿小便嘘嘘汇集6| 亚洲精品一区av在线观看| 国产亚洲欧美98| 亚洲乱码一区二区免费版| 色视频www国产| 欧美av亚洲av综合av国产av| 成人鲁丝片一二三区免费| 97人妻精品一区二区三区麻豆| 首页视频小说图片口味搜索| 久久久国产欧美日韩av| 久久久国产成人精品二区| 精品人妻1区二区| 最新在线观看一区二区三区| 亚洲美女黄片视频| 99久久精品国产亚洲精品| 久久久久亚洲av毛片大全| 国产日本99.免费观看| 亚洲精品在线观看二区| 99热6这里只有精品| 2021天堂中文幕一二区在线观| e午夜精品久久久久久久| 波多野结衣高清无吗| 国产成人aa在线观看| 精品人妻1区二区| 久久久国产成人精品二区| 五月伊人婷婷丁香| 亚洲国产中文字幕在线视频| 久久这里只有精品中国| 午夜久久久久精精品| 亚洲国产欧洲综合997久久,| 日韩大尺度精品在线看网址| 成年女人永久免费观看视频| 午夜日韩欧美国产| 免费大片18禁| 老熟妇乱子伦视频在线观看| 免费搜索国产男女视频| 国产视频一区二区在线看| 久久性视频一级片| 亚洲成人久久性| 国产日本99.免费观看| 亚洲国产精品sss在线观看| www.精华液| 久久中文看片网| 啦啦啦韩国在线观看视频| 淫秽高清视频在线观看| 欧美日韩国产亚洲二区| 国产成人精品无人区| av福利片在线观看| 丝袜人妻中文字幕| 国产一级毛片七仙女欲春2| 欧美日韩一级在线毛片| 男人舔奶头视频| 欧美成人免费av一区二区三区| 日本 av在线| 两个人看的免费小视频| 亚洲精品粉嫩美女一区| 国产亚洲精品综合一区在线观看| 国产精品av久久久久免费| 老熟妇乱子伦视频在线观看| 嫁个100分男人电影在线观看| 免费在线观看影片大全网站| 99久久精品国产亚洲精品| 午夜福利欧美成人| 久久国产精品人妻蜜桃| 天堂√8在线中文| 韩国av一区二区三区四区| 久久久久久久精品吃奶| 国产精品久久久久久久电影 | 午夜精品久久久久久毛片777| 国产精品久久久久久亚洲av鲁大| 国产成人欧美在线观看|