• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Deep density estimation via invertible block-triangular mapping

    2020-07-01 05:13:08KejuTngXiolingWnQifengLio

    Keju Tng, Xioling Wn*, Qifeng Lio

    a School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China

    b Department of Mathematics and Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA

    Keywords:Deep learning Density estimation Optimal transport Uncertainty quantification

    ABSTRACT In this work, we develop an invertible transport map, called KRnet, for density estimation by coupling the Knothe–Rosenblatt (KR) rearrangement and the flow-based generative model, which generalizes the real-valued non-volume preserving (real NVP) model (arX-iv:1605.08803v3). The triangular structure of the KR rearrangement breaks the symmetry of the real NVP in terms of the exchange of information between dimensions, which not only accelerates the training process but also improves the accuracy significantly. We have also introduced several new layers into the generative model to improve both robustness and effectiveness, including a reformulated affine coupling layer, a rotation layer and a component-wise nonlinear invertible layer. The KRnet can be used for both density estimation and sample generation especially when the dimensionality is relatively high. Numerical experiments have been presented to demonstrate the performance of KRnet.

    Density estimation is a challenging problem for high-dimensional data [1]. Some techniques or models have recently been developed in the framework of deep learning under the term generative modeling. Generative models are usually with likelihood-based methods, such as the autoregressive models [2–5],variational autoencoders (VAE) [6], and flow-based generative models [7–9]. A particular case is the generative adversarial networks (GANs) [10], which requires finding a Nash equilibrium of a game. All generative models rely on the ability of deep nets for the nonlinear approximation of high-dimensional mapping.

    We pay particular attention to the flow-based generative models for the following several reasons. First, it can be regarded as construction of a transport map instead of a probabilistic model such as the autoregressive model. Second, it does not enforce a dimension reduction step as what the VAE does. Third,it provides an explicit likelihood in contrast to the GAN. Furthermore, the flow-based generative model maintains explicitly the invertibility of the transport map, which cannot be achieved by numerical discretization of the Monge?Ampére flow [11]. In a nutshell, the flow-based generative model is the only model that defines a transport map with explicit invertibility. The potential of flow-based generative modeling is twofold. First, it works for both density generation and sample generation at the same time. This property may bring efficiency to many problems. For example, it can be coupled with the importance sampling technique [12] or used to approximate the a posterior distribution in Bayesian statistics as an alternative of Markov chain Monte Carlo (MCMC) [13]. Second, it can be combined with other techniques such as GAN or VAE to obtain a refined generative model[14, 15].

    The goal of flow-based generative modeling is to seek an invertible mapping Z =f(Y)∈Rn, where f (·) is a bijection, and Y,Z ∈Rnare two random variables. Let pYand pZbe the probability density functions (PDFs) of Y and Z, respectively. We have

    To construct f (·), the main difficulties are twofold: (1) f (·) is highly nonlinear since the prior distribution for Z must be simple enough, and (2) the mapping f (·) is a bijection. Flowbased generative models deal with these difficulties by stacking together a sequence of simple bijections, each of which is a shallow neural network, and the overall mapping is a deep net.Mathematically, the mapping f (·) can be written in a composite form:

    where f[i]indicates a coupling layer at stage i . The mapping f[i](·)is expected to be simple enough such that its inverse and Jacobi matrix can be easily computed. One way to define f[i]is given by the real NVP [8]. Consider a partition y =(y1,y2) with y1∈Rmand y2∈Rn?m. A simple bijection f[i]is defined as

    where s and t stand for scaling and translation depending only on y1, and ⊙ indicates the Hadamard product or componentwise product. When s (y1)=1, the algorithm becomes non-linear independent component estimation (NICE) [7]. Note that y2is updated linearly while the mappings s (y1) and t (y1) can be arbitrarily complicated, which are modeled as a neural network(NN),

    The simple bijection given by Eqs. (3) and (4) is also referred to as an affine coupling layer [8]. The Jacobian matrix induced by one affine coupling layer is lower triangular:

    whose determinant can be easily computed as

    Since an affine coupling layer only modifies a portion of the components of y to some extent, a number of affine coupling layers need to be stacked together to form an evolution such that the desired distribution can be reached.

    In the optimal transport theory, a mapping T :Z →Y is called a transport map such that T#μZ=μY, where T#μZis the push-forward of the law μZof Z such that μY(B)=μZ(T?1(B)) for every Borel set B [16]. It is seen that T =f?1, where f (·) is the invertible mapping for the flow-based generative model. In general, we have Yi=T(Z1,Z2,...,Zn) or Zi=f(Y1,Y2,...,Yn), i.e., each component of Y or Z depends on all components of the other random variable. The Knothe–Rosenblatt (KR) rearrangement says that the transport map T may have a lower-triangular structure such that

    It is shown in Ref. [17] that such a mapping can be regarded as a limit of a sequence of optimal transport maps when the quadratic cost degenerates. More specifically, the Rosenblatt transformation is defined as

    where

    which implies that Ziare uniformly and independently distributed on [0 ,1]. Thus the Rosenblatt transformation provides a lower-triangular mapping to map Z , which is uniform on [0,1]nand has i.i.d. components, to an arbitrary random variable Y.

    Motivated by the KR rearrangement, we propose a block-triangular invertible mapping as a generalization of real NVP. Consider a partition of y =(y1,y2,...,y∑K), where yi=(yi,1,yi,2,...,yi,m)with 1 ≤K ≤n and 1 ≤m ≤n , anddim(yi)=n. We define an invertible bijection, called KRnet,

    whose structure is consistent with the KR rearrangement. The flow chart of KRnet is illustrated in Fig. 1. Before a detailed explanation of each layer, we fist look at the main structure of KRnet, which mainly consists of two loops: outer loop and inner loop, where the outer loop has K ?1 stages, corresponding to the K mappingsin Eq. (9), and the inner loop has L stages,corresponding to the number of affine coupling layers.

    ● Inner loop. The inner loop mainly consists of a sequence of general coupling layers, based on whichcan be written as:

    where LRis a rotation layer and LSis a squeezing layer. The general coupling layerincludes a scale and bias layer,which plays a similar role to batch normalization.

    For all general coupling layerswe usually let neural network Eq. (5) have two fully connected hidden layers of the same number of neurons, say l. Since the number of effective dimensions decreases as k increases in the outer loop, we expect that l decreases accordingly. We define a ratio r <1. Ifhas M hidden neurons in total, the number becomes M rk?1for.We now explain each layer in Fig. 1.

    Squeezing layer.In the squeezing layer, we simply deactivate some dimensions using a mask

    which means that only the first k components, i.e., q ⊙y, will be active after the squeezing layer while the other n ?k components will remain unchanged.

    Rotation layer.We define an orthogonal matrix

    where W ∈Rk×kwith k being the number of 1's in q, and I ∈R(n?k)×(n?k)is an identity matrix. Using, we obtainsubject to a rotation of the coordinate system. The Jacobian matrix betweenand y iswhose determinant is needed. For the sake of computation, we consider in reality:

    where W =LU is the L U decomposition of W. More specifically,L is a lower-triangular matrix, whose entries on the diagonal line are 1, and U is a upper-triangular matrix. Then we have

    Fig. 1. Flow chart of KRnet

    One simple choice to initializeis, where the column vectors of V are the eigenvectors of the covariance matrix of the input vector. The eigenvectors are ordered such that the associated eigenvalues decrease since the dimensions to be deactivated are at the end. The entries in L and U are trainable.The orthogonality condition may be imposed through a penalty term, whereindicates the Frobenius norm and α >0 is a penalty parameter. However, numerical experiments show that a direct training of L and U without the orthogonality condition enforced also works well.

    Scale and bias layer.By definition, the KRnet is deep. It is well known that batch normalization can improve the propagation of training signal in a deep net [18]. A simplification of the batch normalization algorithm is

    where a and b are trainable [9]. The parameters a and b will be initialized by the mean and standard deviation associated with the initial data. After the initialization, a and b will be treated as regular trainable parameters that are independent of the data.

    Reformulated affine coupling layer.We redefine the affine coupling layer of the real NVP as follows:

    where α ∈(0,1) and β ∈Rn. First of all, the reformulated affine coupling layer adapts the trick of ResNet, where we separate out the identity mapping. Second, we introduce the constant α ∈(0,1) to improve the conditioning. It is seen from Eq. (7) that |det?yz|∈(0,+∞) for the original real NVP while (1?α)n?m≤|det?yz|≤(1+α)n?min our formulation. Our scaling can alleviate the illnesses when the scaling in the original real NVP occasionally become too large or too small. When α =1,|det?yz|∈(0,2). This case is actually similar to real NVP in the sense that the scaling can be arbitrarily small, and for wellscaled data by the scaling and bias layer, we do not expect a large scaling will be needed. When α =0, the formulation is the same as NICE, where no scaling is included. Third, we also make the shift bounded by letting it pass a hyperbolic tangent function.The reason for such a modification is similar to that for the scaling. The main difference here is the introduction of the trainable factor eβ. Compared to t (y1), eβdepends on the dataset instead of the value of y1, which helps to reduce the number of outliers for sample generation. Numerical experience show that our formulation in general works better than both real NVP and NICE. We usually let α =0.6.

    Nonlinear invertible layer.It is seen that the affine coupling layer is linear with respect to the variable to be updated. We introduce component-wise nonlinear invertible mapping to allevimulative distribution function of a random variable defined on ate this limitation. We consider an invertible mapping y=F(x)with x ∈[0,1] and y ∈[0,1], where F (x) can be regarded as the cu-[0,1]. Then we have

    where p(x) is a probability density function. Let 0=x00. On [ ?a,a], we implement y=F[(x+a)/(2a)]followed by an affine mapping 2 ay ?a. In other words, we maps the domain to [0 ,1], and then map the range back to [? a,a]. On(?∞,?a) and ( a,∞), we just let y =x. Since the scaled data will be roughly centered at the origin, we only need to choose a sufficiently large a to cover the data instead of the whole real axis. In summary, we consider a mapping from R to R, where the mapping is nonlinear on [ ?a,a] and an identity mapping on(?∞,a)∪(a,∞).

    We subsequently present some numerical experiments. For clarity we will turn off the rotation layers and the nonlinear invertible layers to focus on the effect of the triangular structure of KRnet, which provides the main improvement of performance.Let Y ∈Rnhave i.i.d. components, where Yi~Logistic(0,s). Let y[i:(i+k)]=[yi,yi+1,...,yi+k]T. We consider the data that satisfy the following criterion:

    where

    which is a product of a scaling matrix and a rotation matrix.Simply speaking, we generate an elliptic hole in the data for any two adjacent dimensions such that Yibecome correlated. Let Θi=π/4, if i is even; 3 π/4, otherwise. Let α =3, s =2, and C =7.6.For the training process we minimize the cross entropy between the model distribution and the data distribution

    where μmodel(dy)=pY(y)dy , N is the size of training dataset and Θ are the parameters to be trained. This is equivalent to minimize the Kullback?Leibler (KL) divergence or to maximize the likelihood. To evaluate the model, we compute the KL divergence

    where μtrueis known. First, we generate a validation dataset from μtruewhich is large enough such that the integration error in terms of μmodelis negligible. Second, we compute an approximation ofin terms of Y, where Y indicates the random variables that correspond to N samples in the training dataset. We take 10 independent training datasets.For each dataset, we train the model for a relatively large number of epochs using the Adam (the name Adam is derived from adaptive moment estimation) method [19]. For each epoch, we compute DKL(μtrue∥μmodel) using the validation dataset.We pick the minimum KL divergence and compute its average for the 10 runs as an approximation ofWe choose 10 runs simply based on the problem complexity and our available computational resources.

    We first consider four-dimensional data and show the capability of the model by investigating the relation between N , i.e.,sample size, and the KL divergence. We let L =12, and K =3, in other words, one dimension will be deactivated every 12 general coupling layers. In, k =1,2,3, the neural network Eq. (5) has two hidden layers each of which has m rk?1neurons with m=24 and r =0.88. The Adam method with 4 mini-batches is used for all the training processes. 8000 epochs are considered for each run and a validation dataset with 1 .6×105samples is used to compute DKL(μtrue∥μmodel). The results are plotted in Fig. 2, where the size of training dataset is up to 8000. Assume that there exist a Θ0such that μmodel(Θ0) is very close to μtrue. We expect to observe the convergence behavior of maximum likelihood estimator, i.e.,~N?1/2, whereis the maximum likelihood estimator. It is seen that the KL divergence between μtrueand μmodel() is indeed dominated by an error of O (N?1/2). This implies that the model is good enough to capture the data distribution for all the sample sizes considered.

    We subsequently investigate the relation between the KL divergence and the complexity of the model. The results are summarized in Fig. 3, where the degrees of freedom (DOFs) indicate the number of unknown parameters in the model. For comparison, we also include the results given by the real NVP. The configuration of the KRnet is the same as before except that we consider L = 2, 4, 6, 8, 10, and 12. The size of the training dataset is 6.4×105and the size of the validation dataset is 3 .2×105. We use a large sample size for training dataset such that the error is dominated by the capability of the model. For each run, 8000 epochs are considered except for the two cases indicated by filled squares where 12000 epochs are used because L is large. It is seen both the KRnet and the real NVP demonstrate an algebraic convergence. By curving fitting, we obtain that the KL divergence decays of O () for the KRnet and of O () for the real NVP, implying the KRnet is much more effective than the real NVP.

    We finally test the dependence of the convergence behavior of the KRnet on the dimensionality by considering an eight-dimensional problem. We let K =7, i.e., the random dimensions are deactivated one by one. In, k =1,2,...,7, the neural network Eq. (5) has two hidden layers each of which has mrk?1neurons with m =32 and r =0.9. For each run, 12000 epochs are considered. All other configurations are the same as the four-dimensional case. The results are plotted in Fig. 4, where we obtain an overall algebraic convergence of O (N) in terms of DOF for L = 2, 4, 6, 8, and 10. It appears that the rate is not sensitive to the number of dimensions.

    Fig. 2. KL divergence in terms of sample size for the four-dimensional case

    Fig. 3. KL divergence in terms of DOFs of the model for the four-dimensional case

    Fig. 4. KL divergence in terms of DOFs of the model for the eightdimensional case

    In this work, we have developed a generalization of the real NVP as a technique for density estimation of high-dimensional data. The results are very promising and many questions remain open. For example, the algebraic convergence with respect to the DOFs is only observed numerically. The dependence of accuracy on the sample size is not clear although the convergence rate seems not sensitive to the dimensionality. These questions are being investigated and the results will be reported elsewhere.

    Acknowledgement

    X.L. Wan's work was supported by the National Natural Science Foundation of Unite States (Grants DMS-1620026 and DMS-1913163). Q.F. Liao's work is supported by the National Natural Science Foundation of China (Grant 11601329).

    91麻豆精品激情在线观看国产| 亚洲七黄色美女视频| 嫩草影院精品99| 久久久久国内视频| 人妻久久中文字幕网| 韩国av一区二区三区四区| 两个人的视频大全免费| 少妇的逼好多水| 日韩欧美免费精品| 久久久久性生活片| 91九色精品人成在线观看| 欧美一区二区精品小视频在线| 亚洲av美国av| 亚洲国产欧洲综合997久久,| 嫩草影院入口| 国产aⅴ精品一区二区三区波| 久久久久久久久久成人| 午夜福利在线在线| 久久婷婷人人爽人人干人人爱| 精品久久久久久久久av| 国产精品自产拍在线观看55亚洲| 乱人视频在线观看| 欧美成人性av电影在线观看| 黄色视频,在线免费观看| 最近中文字幕高清免费大全6 | 18禁黄网站禁片免费观看直播| 欧美bdsm另类| 日本精品一区二区三区蜜桃| 偷拍熟女少妇极品色| 国模一区二区三区四区视频| 久久九九热精品免费| 热99re8久久精品国产| 欧美极品一区二区三区四区| 校园春色视频在线观看| 怎么达到女性高潮| 亚洲中文日韩欧美视频| 9191精品国产免费久久| 欧美成人免费av一区二区三区| 一级av片app| 免费观看的影片在线观看| 亚洲avbb在线观看| 一级黄色大片毛片| 亚洲精品色激情综合| 国产成人影院久久av| 国产精品永久免费网站| 国产午夜福利久久久久久| 国产欧美日韩一区二区三| 国产精品久久久久久人妻精品电影| 别揉我奶头~嗯~啊~动态视频| 热99re8久久精品国产| 亚洲av二区三区四区| 日本免费一区二区三区高清不卡| 久久精品国产亚洲av香蕉五月| 亚洲18禁久久av| 91久久精品国产一区二区成人| bbb黄色大片| 精品久久久久久久久久久久久| 精品久久久久久久久久免费视频| 在线国产一区二区在线| 日韩中文字幕欧美一区二区| 欧美+亚洲+日韩+国产| 3wmmmm亚洲av在线观看| 国产一区二区在线av高清观看| 亚洲国产欧洲综合997久久,| 狠狠狠狠99中文字幕| 久久九九热精品免费| 国产麻豆成人av免费视频| 国产精品伦人一区二区| 久久久久免费精品人妻一区二区| 久久国产精品影院| 日韩欧美 国产精品| 黄色女人牲交| av在线天堂中文字幕| 亚洲aⅴ乱码一区二区在线播放| 亚洲人与动物交配视频| 亚洲avbb在线观看| 日日摸夜夜添夜夜添av毛片 | 一本综合久久免费| 午夜福利欧美成人| av在线蜜桃| 在线免费观看的www视频| 五月玫瑰六月丁香| 97热精品久久久久久| 国产单亲对白刺激| 怎么达到女性高潮| 成人高潮视频无遮挡免费网站| 亚洲人成网站在线播放欧美日韩| 国产爱豆传媒在线观看| 日韩中字成人| 亚洲内射少妇av| 免费大片18禁| 日本一二三区视频观看| 亚洲人成电影免费在线| 成年免费大片在线观看| 欧美日韩亚洲国产一区二区在线观看| 欧美3d第一页| 中文字幕人妻熟人妻熟丝袜美| 美女被艹到高潮喷水动态| 又黄又爽又免费观看的视频| 不卡一级毛片| 俄罗斯特黄特色一大片| 在线播放国产精品三级| 精品一区二区三区视频在线观看免费| 成年女人永久免费观看视频| 欧美色视频一区免费| 欧美中文日本在线观看视频| 日日夜夜操网爽| 又紧又爽又黄一区二区| 精品人妻1区二区| 亚洲欧美日韩无卡精品| 18禁黄网站禁片免费观看直播| 51午夜福利影视在线观看| 高清毛片免费观看视频网站| 久久草成人影院| 亚洲av不卡在线观看| 久久久久免费精品人妻一区二区| 国产午夜福利久久久久久| 久久人人精品亚洲av| 久久婷婷人人爽人人干人人爱| 天堂√8在线中文| 一级毛片久久久久久久久女| 麻豆国产av国片精品| 别揉我奶头 嗯啊视频| 在线观看舔阴道视频| ponron亚洲| 精品一区二区免费观看| 日韩欧美免费精品| 精品无人区乱码1区二区| 亚洲久久久久久中文字幕| 国产欧美日韩精品一区二区| 国产毛片a区久久久久| av在线蜜桃| 美女高潮喷水抽搐中文字幕| 日本黄色片子视频| 久久香蕉精品热| 亚洲熟妇熟女久久| 亚洲第一欧美日韩一区二区三区| 亚洲中文字幕日韩| 免费大片18禁| 久久久精品大字幕| 美女大奶头视频| 久久午夜福利片| 精品国内亚洲2022精品成人| 亚洲精品成人久久久久久| 中国美女看黄片| 成人一区二区视频在线观看| 中文字幕人成人乱码亚洲影| 成年人黄色毛片网站| 午夜免费男女啪啪视频观看 | 99久久九九国产精品国产免费| 美女黄网站色视频| 欧美3d第一页| 色哟哟哟哟哟哟| 极品教师在线免费播放| 老女人水多毛片| 国内少妇人妻偷人精品xxx网站| 制服丝袜大香蕉在线| 国产av一区在线观看免费| 身体一侧抽搐| 一区二区三区四区激情视频 | 色综合站精品国产| 欧美国产日韩亚洲一区| av中文乱码字幕在线| 欧美zozozo另类| 真实男女啪啪啪动态图| 精品人妻视频免费看| 亚洲精品影视一区二区三区av| 精品一区二区三区av网在线观看| 亚洲国产精品sss在线观看| 最近最新免费中文字幕在线| 在线播放无遮挡| 久久精品国产亚洲av香蕉五月| 别揉我奶头~嗯~啊~动态视频| 国产精品99久久久久久久久| 国产高清视频在线观看网站| 色综合欧美亚洲国产小说| 熟女电影av网| 少妇裸体淫交视频免费看高清| 久久精品国产亚洲av天美| 三级国产精品欧美在线观看| 亚洲欧美日韩卡通动漫| 99久久精品一区二区三区| 精品人妻视频免费看| 嫁个100分男人电影在线观看| 亚洲av中文字字幕乱码综合| 国产不卡一卡二| 毛片女人毛片| 搞女人的毛片| 欧美一区二区国产精品久久精品| 99热这里只有精品一区| 国产男靠女视频免费网站| 欧美激情在线99| 成人美女网站在线观看视频| 美女免费视频网站| 十八禁人妻一区二区| 午夜视频国产福利| 国产精品免费一区二区三区在线| 人妻久久中文字幕网| 国产精品一区二区性色av| 一级毛片久久久久久久久女| 又黄又爽又刺激的免费视频.| 最好的美女福利视频网| 亚洲成av人片免费观看| 老熟妇乱子伦视频在线观看| 黄色视频,在线免费观看| av黄色大香蕉| 亚洲 国产 在线| 丝袜美腿在线中文| 免费av观看视频| 香蕉av资源在线| 午夜激情福利司机影院| 国内精品美女久久久久久| 少妇丰满av| 成人av在线播放网站| 婷婷亚洲欧美| 18禁在线播放成人免费| 国产色婷婷99| 丰满的人妻完整版| 特大巨黑吊av在线直播| ponron亚洲| 99久久无色码亚洲精品果冻| 国产精品99久久久久久久久| 九九热线精品视视频播放| 黄色丝袜av网址大全| 亚洲av成人不卡在线观看播放网| 午夜精品在线福利| 婷婷精品国产亚洲av| 亚洲av日韩精品久久久久久密| www.熟女人妻精品国产| 美女大奶头视频| 一级作爱视频免费观看| 久久香蕉精品热| 观看美女的网站| 99热这里只有是精品50| 久久久成人免费电影| 精品人妻熟女av久视频| 黄色日韩在线| 一夜夜www| 99精品在免费线老司机午夜| 久久久久久久久大av| 桃色一区二区三区在线观看| 91字幕亚洲| 日韩欧美精品免费久久 | 老鸭窝网址在线观看| 国产精品人妻久久久久久| 亚洲综合色惰| x7x7x7水蜜桃| 午夜福利高清视频| 亚洲五月婷婷丁香| 一级黄色大片毛片| 男女视频在线观看网站免费| 亚洲欧美日韩东京热| 国产三级黄色录像| 欧美一级a爱片免费观看看| 中文字幕人成人乱码亚洲影| 国产成人欧美在线观看| 男人舔奶头视频| 高清毛片免费观看视频网站| .国产精品久久| 国内毛片毛片毛片毛片毛片| 免费一级毛片在线播放高清视频| 88av欧美| 国产aⅴ精品一区二区三区波| 91av网一区二区| 亚洲人与动物交配视频| 国产高潮美女av| 欧美成人一区二区免费高清观看| 国产精品国产高清国产av| 久久久久久久午夜电影| 午夜精品一区二区三区免费看| 男女下面进入的视频免费午夜| 在线看三级毛片| 色哟哟哟哟哟哟| 男女视频在线观看网站免费| 黄色一级大片看看| 日本免费a在线| 丁香六月欧美| 免费电影在线观看免费观看| 日本在线视频免费播放| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成a人片在线一区二区| 1000部很黄的大片| 97热精品久久久久久| 日韩国内少妇激情av| 综合色av麻豆| 日日摸夜夜添夜夜添小说| www.色视频.com| 如何舔出高潮| 波多野结衣高清无吗| 国产亚洲精品久久久com| 亚洲va日本ⅴa欧美va伊人久久| 九九热线精品视视频播放| 亚洲在线自拍视频| 国产精品免费一区二区三区在线| 尤物成人国产欧美一区二区三区| av欧美777| 久久99热6这里只有精品| ponron亚洲| 青草久久国产| 日韩中文字幕欧美一区二区| 俺也久久电影网| h日本视频在线播放| 日本免费a在线| 日韩欧美在线乱码| 一个人免费在线观看的高清视频| 美女被艹到高潮喷水动态| 深夜精品福利| 99久久成人亚洲精品观看| 丁香欧美五月| 欧美中文日本在线观看视频| 深夜a级毛片| 老司机午夜十八禁免费视频| 久久精品人妻少妇| 欧美日韩福利视频一区二区| 成人av一区二区三区在线看| 好男人在线观看高清免费视频| 欧美日韩综合久久久久久 | 一级作爱视频免费观看| 1000部很黄的大片| 精品欧美国产一区二区三| 九九在线视频观看精品| 亚洲国产精品成人综合色| 一本综合久久免费| 一个人免费在线观看电影| 人人妻人人看人人澡| АⅤ资源中文在线天堂| 免费在线观看日本一区| 有码 亚洲区| 高潮久久久久久久久久久不卡| 国产精品免费一区二区三区在线| av在线老鸭窝| 88av欧美| 中文字幕久久专区| 国产黄a三级三级三级人| 亚洲人成网站高清观看| 男女床上黄色一级片免费看| 怎么达到女性高潮| 亚洲熟妇熟女久久| 看片在线看免费视频| 精品午夜福利在线看| av黄色大香蕉| 日韩欧美三级三区| 国内精品久久久久精免费| 丰满人妻一区二区三区视频av| 黄色丝袜av网址大全| 国产精品av视频在线免费观看| 成人亚洲精品av一区二区| 美女免费视频网站| 亚洲久久久久久中文字幕| 精品久久久久久久久亚洲 | 欧美精品啪啪一区二区三区| 69av精品久久久久久| 欧美日韩国产亚洲二区| 嫩草影院新地址| 国产精品99久久久久久久久| 91在线精品国自产拍蜜月| 成人永久免费在线观看视频| 天美传媒精品一区二区| 婷婷亚洲欧美| 国产精品久久视频播放| 欧美最新免费一区二区三区 | 色5月婷婷丁香| 18禁在线播放成人免费| 亚洲最大成人中文| 岛国在线免费视频观看| 亚洲av二区三区四区| 老鸭窝网址在线观看| 一个人看的www免费观看视频| 性插视频无遮挡在线免费观看| 亚洲国产精品合色在线| 嫩草影院入口| 成人特级黄色片久久久久久久| 久久久久国内视频| 999久久久精品免费观看国产| 久久九九热精品免费| 日本黄大片高清| 日韩亚洲欧美综合| 国产精品综合久久久久久久免费| 久99久视频精品免费| 成人毛片a级毛片在线播放| 成人av在线播放网站| 国内少妇人妻偷人精品xxx网站| 久99久视频精品免费| 亚洲专区中文字幕在线| 夜夜夜夜夜久久久久| 人人妻人人澡欧美一区二区| 女人被狂操c到高潮| 午夜福利18| 最新在线观看一区二区三区| 五月伊人婷婷丁香| 日本在线视频免费播放| 欧美黄色片欧美黄色片| 国产av麻豆久久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 欧美成人性av电影在线观看| av黄色大香蕉| 男女下面进入的视频免费午夜| 免费黄网站久久成人精品 | 国产综合懂色| 少妇的逼好多水| 成人精品一区二区免费| 免费看美女性在线毛片视频| 又黄又爽又免费观看的视频| 日本a在线网址| 成人高潮视频无遮挡免费网站| 欧美激情在线99| 亚洲精品一卡2卡三卡4卡5卡| 毛片一级片免费看久久久久 | 国产三级中文精品| 成人鲁丝片一二三区免费| 亚洲精品成人久久久久久| 亚洲男人的天堂狠狠| 一进一出好大好爽视频| 精品国内亚洲2022精品成人| 我要看日韩黄色一级片| 亚洲一区二区三区不卡视频| 亚洲aⅴ乱码一区二区在线播放| 国产精品1区2区在线观看.| 精品久久久久久久末码| 精品一区二区三区视频在线观看免费| 亚洲人与动物交配视频| 久久国产乱子免费精品| 亚洲第一电影网av| 精品午夜福利在线看| 亚洲av中文字字幕乱码综合| 日本免费a在线| 伦理电影大哥的女人| 97热精品久久久久久| 国产一区二区三区视频了| 国产成人aa在线观看| 国产男靠女视频免费网站| 中出人妻视频一区二区| 久久精品国产清高在天天线| 国产精品野战在线观看| 性色av乱码一区二区三区2| 网址你懂的国产日韩在线| 一边摸一边抽搐一进一小说| 国产高清视频在线播放一区| 成人鲁丝片一二三区免费| 午夜a级毛片| 欧美成人免费av一区二区三区| 欧美又色又爽又黄视频| 国产视频内射| 在线观看一区二区三区| 极品教师在线视频| 国产三级中文精品| 麻豆av噜噜一区二区三区| 中文字幕人成人乱码亚洲影| 国产色爽女视频免费观看| 精品久久国产蜜桃| 99国产精品一区二区三区| 一区二区三区免费毛片| 久久久久久九九精品二区国产| 久久99热6这里只有精品| 在线观看一区二区三区| 久久久精品大字幕| 欧美性感艳星| 国语自产精品视频在线第100页| a在线观看视频网站| 国产免费一级a男人的天堂| 老司机午夜十八禁免费视频| 精品国产三级普通话版| 免费在线观看日本一区| 午夜亚洲福利在线播放| 中文亚洲av片在线观看爽| 精品熟女少妇八av免费久了| 97人妻精品一区二区三区麻豆| 亚洲人与动物交配视频| 婷婷亚洲欧美| 观看美女的网站| 久久久久免费精品人妻一区二区| 有码 亚洲区| 国产色婷婷99| 国产成年人精品一区二区| 国产av一区在线观看免费| 国产主播在线观看一区二区| 国产单亲对白刺激| 国产野战对白在线观看| 51国产日韩欧美| 成人av一区二区三区在线看| 欧美乱妇无乱码| 亚洲人成网站在线播放欧美日韩| 97热精品久久久久久| av天堂中文字幕网| 日韩av在线大香蕉| 欧美不卡视频在线免费观看| 两个人视频免费观看高清| 亚洲人成网站在线播放欧美日韩| 精品无人区乱码1区二区| 男人舔女人下体高潮全视频| 免费观看精品视频网站| 日本a在线网址| 一区二区三区激情视频| 成年免费大片在线观看| 国产91精品成人一区二区三区| 少妇的逼水好多| 欧美激情在线99| 国内精品美女久久久久久| 最新在线观看一区二区三区| 宅男免费午夜| 亚洲无线观看免费| 中国美女看黄片| 中文字幕av成人在线电影| 人妻久久中文字幕网| 天堂动漫精品| 亚洲va日本ⅴa欧美va伊人久久| 午夜免费激情av| 欧美一区二区精品小视频在线| 如何舔出高潮| 国产av不卡久久| 天天一区二区日本电影三级| 一本一本综合久久| 亚洲精品日韩av片在线观看| 国产精品一区二区免费欧美| 嫩草影院精品99| 又紧又爽又黄一区二区| 国产中年淑女户外野战色| 久久精品久久久久久噜噜老黄 | 国产精品综合久久久久久久免费| 老司机福利观看| 宅男免费午夜| 一本综合久久免费| 国产精华一区二区三区| 人人妻人人澡欧美一区二区| 成年女人毛片免费观看观看9| 一区福利在线观看| 国产精品永久免费网站| 日韩欧美三级三区| 久久人妻av系列| 国产精品一区二区三区四区久久| 欧美最黄视频在线播放免费| 日本精品一区二区三区蜜桃| 无人区码免费观看不卡| 亚洲成人久久性| 久99久视频精品免费| 又紧又爽又黄一区二区| 观看美女的网站| 人妻制服诱惑在线中文字幕| 久久久久久久精品吃奶| 麻豆成人av在线观看| 久久久久九九精品影院| 亚洲 欧美 日韩 在线 免费| 国产淫片久久久久久久久 | 午夜亚洲福利在线播放| 日本熟妇午夜| 男人和女人高潮做爰伦理| 91av网一区二区| 免费观看精品视频网站| 亚洲国产精品成人综合色| 在线观看av片永久免费下载| 国产精品永久免费网站| 国产精品自产拍在线观看55亚洲| 中文亚洲av片在线观看爽| 欧美黄色淫秽网站| 亚洲国产欧洲综合997久久,| 亚洲国产精品合色在线| 国产美女午夜福利| www.色视频.com| 韩国av一区二区三区四区| 亚洲五月婷婷丁香| 亚洲国产精品999在线| 免费观看精品视频网站| 色播亚洲综合网| 成人国产一区最新在线观看| 欧美国产日韩亚洲一区| 国产精品自产拍在线观看55亚洲| 精品国产亚洲在线| 老司机福利观看| 久久久久久国产a免费观看| 亚洲专区国产一区二区| 国产中年淑女户外野战色| 国产私拍福利视频在线观看| 久久久久久久久中文| 十八禁人妻一区二区| 少妇人妻一区二区三区视频| 亚洲天堂国产精品一区在线| 欧美一区二区亚洲| 国产免费一级a男人的天堂| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩中文字幕国产精品一区二区三区| 麻豆成人av在线观看| 性欧美人与动物交配| 我的女老师完整版在线观看| 窝窝影院91人妻| 免费观看人在逋| av天堂中文字幕网| 久久九九热精品免费| 久久精品人妻少妇| 久久草成人影院| 色综合亚洲欧美另类图片| 亚洲三级黄色毛片| 国产精品精品国产色婷婷| 成人高潮视频无遮挡免费网站| 国模一区二区三区四区视频| 免费在线观看影片大全网站| 免费在线观看亚洲国产| 亚洲美女黄片视频| 久久伊人香网站| 国产精品久久久久久久电影| 国产欧美日韩一区二区精品| 国产三级中文精品| 99久国产av精品| 国产欧美日韩一区二区三| 美女被艹到高潮喷水动态| 在线观看美女被高潮喷水网站 | 亚洲av.av天堂| 丁香六月欧美| 天天躁日日操中文字幕| 婷婷精品国产亚洲av在线| 国产色爽女视频免费观看| 久久久久久久精品吃奶| 日本五十路高清| 高潮久久久久久久久久久不卡| 最近最新免费中文字幕在线| 深夜a级毛片|