• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-fidelity Gaussian process based empirical potential development for Si:H nanowires

    2020-07-01 05:13:56MoonseopKimHuyiYinGungLin

    Moonseop Kim, Huyi Yin, Gung Lin,c,*

    a School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906-2045, USA

    b School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China

    c Department of Mathematics, Purdue University, West Lafayette, IN 47906-2045, USA

    Keywords:Multi-fidelity Gaussian process regression Inter-atomic potential and forces Elasticity

    ABSTRACT In material modeling, the calculation speed using the empirical potentials is fast compared to the first principle calculations, but the results are not as accurate as of the first principle calculations.First principle calculations are accurate but slow and very expensive to calculate. In this work, first,the H-H binding energy and H2-H2 interaction energy are calculated using the first principle calculations which can be applied to the Tersoff empirical potential. Second, the H-H parameters are estimated. After fitting H-H parameters, the mechanical properties are obtained. Finally, to integrate both the low-fidelity empirical potential data and the data from the high-fidelity firstprinciple calculations, the multi-fidelity Gaussian process regression is employed to predict the HH binding energy and the H2-H2 interaction energy. Numerical results demonstrate the accuracy of the developed empirical potentials.

    In the last three decades, empirical potentials have been advanced. With the advance of supercomputers, these potentials are anticipated to be widely used for the next three decades [1].Atomistic calculations by empirical potentials can be utilized in understanding the structural aspects of Si or Si-H systems that are found in many important areas such as the surface of nanopatterning Si [2, 3], nano-electro-mechanical systems (NEMS)[4], superconductivity of silane [5], optical modulators [6], and applications of α-Si:H materials [7]. In the past, empirical potentials for Si [8–11] and for Si-H [12–14] have been developed. But the bulk elastic properties of Si cannot be resolved using such empirical potentials. In Ref. [12], it has been shown that at the hydrogen-induced reconstruction of the silicon surface, the distance between hydrogen and hydrogen is 1.64 ? (1 ? = 1×10-10m) and bond angle H-Si-H is 106° using existing empirical potential. However, when H-H distance and the bond angle are compared with the results from the first-principle calculations,H-H distance and the bond angle are 2.1638 ? and 104.805° respectively. In this situation, the bond angle is distinguished from 1.195°, which means that the difference of the bond angles can be ignored, however, the biggest issue is that H-H distance is distinguished from 0.5238 ?. Hence, if the existing empirical potential is used for Si nanowires, the computation speed is fast, but the results obtained from the existing empirical potentials are not accurate compared to the results from the first-principle calculations. It is critical to fix such errors. In this paper, we propose two novel techniques to construct the empirical potentials with an emphasis on parameter fitting and multi-fidelity modeling, in which the relationship between material properties and potential parameters is explained. The input database has been obtained from the density functional theory (DFT) calculations with the Vienna ab initio simulation package (VASP) [15]. This paper is constituted as follows. First, the structure of silicon nanowires passivated hydrogen is introduced with some specific shapes. Second, governing equations of Tersoff empirical potentials are presented to explain which parameters can be obtained from H-H binding energy and H2-H2interaction energy.Third, we give a brief explanation of the multi-fidelity Gaussian process regression for prediction of the results of H-H binding energy and H2-H2interaction energy. Fourth, we represent three optimization methods for H-H parameter fitting. The rootmean-square-error obtained by the Nelder–Mead simplex method is compared with the results from the other two optimization methods. Lastly, we evaluate the mechanical properties (Young's modulus and equilibrium elongation) using the estimated parameters obtained from the H-H parameter fitting.

    In this study, Si nanowires passivated hydrogen model is chosen. If Si nanowires have dangling bonds, it will oxidize in the air circumstance. By passivating hydrogen to the surface of Si nanowires, it can be stabilized from the oxidization. Figure 1 has expressed a cross-section of silicon nanowires passivated hydrogen [16]. Green dots and blue dots represent silicon atoms and hydrogen atoms, respectively. Cross-section of Si nanowires represents by the Wulff structure selected by minimizing the surface energy. It can be stabilized by passivating hydrogen to the surface of Si nanowires. In the mechanical property, Young's modulus is calculated after the H-H parameter fitting by increasing the size of cross-section compared to the results of Young's modulus using the existing empirical potentials and the firstprinciples calculations.

    The atomistic computer simulations based on the empirical potential is fast for calculation. In this system, the number of atoms is not limited compared to the first principles, however,the accuracy of calculation is not adequate, therefore, reliability of the empirical potential presented so far is needed to verify.Various empirical potentials depend on the material, for instance, Ni and Ti are calculated through embedded atom method (EAM) [17], and Si is calculated through Tersoff empirical potential [9] and Stillinger-Weber empirical potential [8]. In this study, silicon nanowires passivated hydrogen model, and Tersoff empirical potential are used to verify the accuracy of existing Tersoff empirical potentials. Tersoff empirical potential is based on the concept of bond order, the force of bonds between atoms is not consistent and depends on the local environment.The total energy function is given as [12]

    Fig. 1. Cross-section of silicon nanowires passivated hydrogen<0 01> .

    where V is total energy function, fR(r) and fA(r) are repulsive energy and attractive energy respectively. These functions are defined as function of distance between i and j atoms, r is interatomic distance and bijis bond order. In this study, A, B, λ1and λ2are decided as H-H fitting parameters.

    where ζijis the function of effective coordination number, H(N)is the function of bond number, cos θijkis the bond angle, rijand rikare the distance between i and j atoms and between i and k respectively andandare equilibrium distance between i and j atoms and between i and k respectively. Lastly, in this study, α, β, η, δ , and c are determined from H2- H2parameter fitting.

    where fc(n) is a cutoff function determining whether there is coherence or not between the atom and its neighbor atom. r is the interatomic distance, R and D, the influence is 1. If the interatomic distance is larger than R–D, the influence is 0.Finally, if the interatomic distance is between R–D and R+D, it is influenced by Eq. (5).

    Here, we provide the steps for multi-fidelity modeling with Gaussian processes (GP). The steps on multi-fidelity are given as

    where u1(x) and u2(x) are independent. In the Gaussian process regression, it is assumed that the mean of GP is zero and k(x,x′;θ ) is the covariance matrix between all possible pairs ( x,x′) in the set of vectors of hyper-parameters θ. As shown in Ref.[18], the basic idea is that we begin with two independent GP u1(x) and u2(x); then we define the low-fidelity and the highfidelity models [19–24]

    This demonstrates the "relationship" between the low- and highfidelity models since both include the G P u1(x). In particular,setting k1= cov[u1, u1] and k2= cov[u2, u2] we have:

    cov[u1, u2] = 0 and cov[u2, u1] = 0 by independence and to sum up KLL, KLH, KHH:

    This gives us a complete model that incorporates both the lowand high-fidelity. In particular, we model the column vector[ fL(x); fH(x)] using a zero-mean prior and the covariance matrix defined block-wise by [ KLL, KLH; KHL, KHH]. Since the mean and covariance are known, the whole Gaussian process model is specified, and the training can be performed using the standard procedure.

    To represent the uncertainty (or noise) in the observation data,the covariance of the noise for both the low- and high-fidelity data is added on the diagonal of the covariance matrix in Eq.(16). The level of the noise in the observation data will affect the prediction accuracy as shown in Figs. 2 and 3.

    where K is the covariance matrix and the negative log marginal likelihood (NLML) is used as the "cost function" which should be minimized to get the best-fit model by using hyper-parameters θ. In prediction, if we consider a Gaussian likelihood and the posterior distribution is easy to apply and can be used to involve predictive deduction for a new output fH, given a new input x?as

    In numerical results, to reduce the computational cost for expensive calculations (DFT), multi-fidelity Gaussian process regression for prediction [19–24] is used. H-H binding energy and H2-H2interaction energy obtained from the empirical potential are applied to the low-fidelity model. Results of H-H binding energy and H2-H2interaction energy obtained from DFT are implied to the high-fidelity model with a limited number of samples due to high computational cost. In Figs. 2 and 3, the number of high-fidelity samples ( NH= 4) is fixed and we compare the standard deviation of the high-fidelity prediction by increasing the number of low-fidelity samples. As we can see,the standard deviation of the high-fidelity is decreased when the number of low-fidelity samples is increased.

    Fig. 2. Multi-fidelity prediction results of H-H binding energy with high-fidelity samples ( NH = 4) and three different numbers of low-fidelity samples ( NL = 3, 5, 7). If we increase N L, the accuracy is increased (the standard deviation of the high-fidelity decreases).

    Fig. 3. Multi-fidelity prediction results of H 2- H2 interaction energy with high-fidelity samples ( NH = 4) and three different numbers of low-fidelity samples ( NL = 3, 5, 7). If we increase N L, the accuracy is increased (the standard deviation of the high-fidelity decreases).

    The structure of Si nanowires is passivated by hydrogen to prevent oxidation. We divide the Si nanowires into three parts for parameter fitting. First, Si-Si parameter fitting is needed for the internal structure of Si nanowires, Second, H-H parameter fitting is required for the surface computation. Lastly, Si-H parameters for the interface calculation are needed. In this study, the H-H parameters fitting is focused on using H-H binding energy and H2-H2interaction energy for surface computation. In the surface of Si nanowires, there are two forces for hydrogen relations that are attractive and repulsive forces. This H-H parameter fitting is complicated so we have to design systematically.When we fit H-H parameters using H-H binding energy, we only use Eqs. (1)–(3) except for Eqs. (4) and (5). This is because H-H binding energy is calculated by two hydrogen atoms which can be neglected ζijterm that needs more than three atoms,however, H2-H2parameter fitting by using interaction energy is applied to more than three hydrogen atoms so it should be applied to ζijterm. In Table. 1, three methods of optimization were used for H-H parameters fitting. Finally, we investigate the error of each method between DFT results and the fitting line through the root-mean-square-error in Table 1. The Nelder–Mead simplex method is the best compared to the other two optimization methods. The parameters using the Nelder–Mead simplex method were chosen, which are listed in Table 1.

    In the study, we compute the binding energy using DFT for reference results that are adjusted to the results of the empiricalpotentials objective function. Parameters can be obtained after fitting between hydrogen and hydrogen. In Fig. 4, black dots represent DFT results for H-H binding energy and the red line is the fitting line. A, B, λ1, λ2, and R(e)values are listed on Table 1.

    Table 1 To fit H-H parameters for molecular hydrogen, three optimization methods are compared which are Nelder–Mead simplex method (N-M) [25], Broyden–Fletcher–Goldfarb–Shanno quasi–Newton method (BFGS) [26–29], trust-region method (T-R)[30, 31].

    We compute the interaction energy using DFT for reference results that are adjusted to the results of the empirical potentials objective function and we obtained parameters after fitting hydrogen inter-molecular. We use the Nelder–Mead simplex methods of optimization for the H-H parameter fitting using the interaction energy. In Fig. 5, the black dots represent the DFT results for H2-H2interaction energy, and the red line is the fitting line. In this H-H fitting, A, B, λ1, λ2, and R(e)are obtained from H-H parameter fitting using the binding energy applied to H2-H2parameter fitting and α, β, η, δ, and c values are presented in Table 1.

    Figures 6 and 7 represent the H-H binding energy and H2- H2interaction energy compared to DFT, empirical potential (this work), and existing empirical potential. In Fig. 6 and 7, crossdata represents the H-H binding energy and H2- H2interaction energy using the existing Tersoff empirical potential parameters.It is critical to note that these data's curve shape is not smooth because, in existing classical molecular dynamics (MD), the cutoff range is too short to calculation, so it does not calculate for the long-range interaction. In this study, we fixed cut off range much longer and calculate the long-range of hydrogen molecules. As we can see, DFT and empirical potential (this work)result matches each other after H-H parameters fitting. We have developed a systematic process to construct empirical potential for Si nanowires' passivated hydrogen.

    In Figs. 8 and 9, mechanical properties were performed using H-H parameters which are obtained after H-H part parameter fitting. To evaluate the new fit of the H-H part, Young's modulus and equilibrium elongation of Si nanowires are calculated by increasing the wire width of Si nanowires. We compared the numerical results with the DFT results and existing empirical results in Figs. 8 and 9. The size reliance of Young's modulus and equilibrium elongation shows critical improvement compared to the DFT results and the existing potential results. Until now,the surface part of Si nanowires is fitted using our systematic fitting method and shows mechanical properties to prove enhancement. However, the improvement of the irregular mechanical properties can be observed by the H-H parameter fitting of the surface. But the perfect result of matching could not be observed. The reason for this is that not only the surface but also the silicon-hydrogen parameter fitting between the silicon and the surface must be performed. In addition, the hydrogen parameters obtained so far are limited to the calculation of the mechanical properties of nanowires with hydrogen and silicon. Furthermore, it is necessary to derive parameter fitting that can be applied to various types of materials, and potential errors of existing empirical potentials must be corrected for calculations using various materials as well as silicon nanowires.

    Fig. 4. H-H parameter fitting using the Nelder-Mead simplex method.

    Fig. 5. H2-H2 parameter fitting using the Nelder-Mead simplex method.

    Fig. 6. Binding energy after H-H parameter fitting.

    Fig. 7. Interaction energy after H-H parameter fitting.

    Fig. 8. Young's modulus increasing as wire width of Si nanowires increasing.

    Fig. 9. Equilibrium elongation increasing as wire width of Si nanowires increasing.

    Acknowledgement

    We gratefully acknowledge the support from the National Science Foundation of USA (Grants DMS-1555072 and DMS-1736364).

    亚洲色图av天堂| 午夜精品在线福利| 欧美成人性av电影在线观看| 亚洲色图 男人天堂 中文字幕| 一级作爱视频免费观看| 成年女人毛片免费观看观看9| 女人被狂操c到高潮| 校园春色视频在线观看| 窝窝影院91人妻| 午夜日韩欧美国产| 国产亚洲精品av在线| 亚洲自偷自拍图片 自拍| 校园春色视频在线观看| 国产精品电影一区二区三区| 女性被躁到高潮视频| 亚洲中文字幕一区二区三区有码在线看 | 制服丝袜大香蕉在线| 国产欧美日韩一区二区三| 国产午夜精品久久久久久| 国产亚洲精品久久久久5区| 久久久久久久久久久久大奶| 国产97色在线日韩免费| 国产99久久九九免费精品| 美国免费a级毛片| 国产在线精品亚洲第一网站| 最新美女视频免费是黄的| 亚洲av成人一区二区三| 亚洲精品中文字幕在线视频| avwww免费| 日本免费一区二区三区高清不卡 | 在线观看免费日韩欧美大片| 欧美色欧美亚洲另类二区 | 麻豆国产av国片精品| 大陆偷拍与自拍| 亚洲精品中文字幕在线视频| 波多野结衣高清无吗| 日韩中文字幕欧美一区二区| 天天躁夜夜躁狠狠躁躁| 搡老岳熟女国产| 99国产精品免费福利视频| 俄罗斯特黄特色一大片| 久久久久国内视频| 操出白浆在线播放| 免费久久久久久久精品成人欧美视频| 50天的宝宝边吃奶边哭怎么回事| 日本在线视频免费播放| 国产精品久久久久久精品电影 | ponron亚洲| 麻豆久久精品国产亚洲av| 99re在线观看精品视频| 免费高清在线观看日韩| 成年人黄色毛片网站| 性少妇av在线| 窝窝影院91人妻| 色老头精品视频在线观看| 老司机深夜福利视频在线观看| 香蕉久久夜色| 欧美乱色亚洲激情| 成人特级黄色片久久久久久久| 亚洲电影在线观看av| 神马国产精品三级电影在线观看 | 久久精品成人免费网站| 99riav亚洲国产免费| 在线永久观看黄色视频| 一级毛片高清免费大全| 多毛熟女@视频| 日韩欧美国产在线观看| 真人做人爱边吃奶动态| 午夜久久久在线观看| 国产成人啪精品午夜网站| 色尼玛亚洲综合影院| 99riav亚洲国产免费| 给我免费播放毛片高清在线观看| 国产精品 国内视频| 国产欧美日韩综合在线一区二区| 国产精品 欧美亚洲| 欧美大码av| 精品久久久久久久人妻蜜臀av | 韩国精品一区二区三区| 91精品国产国语对白视频| 色尼玛亚洲综合影院| 丰满人妻熟妇乱又伦精品不卡| 性欧美人与动物交配| 国产高清有码在线观看视频 | 熟女少妇亚洲综合色aaa.| aaaaa片日本免费| 久久久国产成人精品二区| 午夜久久久在线观看| 在线播放国产精品三级| 久久久久久久久免费视频了| 91精品国产国语对白视频| 色老头精品视频在线观看| 韩国精品一区二区三区| 一a级毛片在线观看| 麻豆久久精品国产亚洲av| 亚洲自拍偷在线| 在线观看免费视频网站a站| 巨乳人妻的诱惑在线观看| 国产野战对白在线观看| 美女大奶头视频| 麻豆久久精品国产亚洲av| 黄色成人免费大全| 又黄又粗又硬又大视频| 精品久久久精品久久久| 欧美国产精品va在线观看不卡| 女人高潮潮喷娇喘18禁视频| 国产蜜桃级精品一区二区三区| 露出奶头的视频| 国产色视频综合| 国产精品久久电影中文字幕| 熟妇人妻久久中文字幕3abv| 一进一出抽搐gif免费好疼| 国产精品久久久人人做人人爽| 国内毛片毛片毛片毛片毛片| bbb黄色大片| 最新美女视频免费是黄的| 黄网站色视频无遮挡免费观看| 少妇被粗大的猛进出69影院| 国产一区二区三区在线臀色熟女| 午夜亚洲福利在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 91麻豆av在线| 国产成人精品久久二区二区免费| 亚洲欧美激情在线| 成人三级黄色视频| 亚洲精品国产精品久久久不卡| 国产精品 国内视频| 亚洲一区高清亚洲精品| 国产成人免费无遮挡视频| 久久国产精品影院| 国产三级在线视频| 亚洲精品美女久久av网站| 欧美一级a爱片免费观看看 | 两人在一起打扑克的视频| 女人爽到高潮嗷嗷叫在线视频| 在线视频色国产色| cao死你这个sao货| 窝窝影院91人妻| 久久久国产欧美日韩av| 久久久久久久久久久久大奶| 高潮久久久久久久久久久不卡| 精品电影一区二区在线| АⅤ资源中文在线天堂| 女人被狂操c到高潮| 一级a爱视频在线免费观看| 91麻豆精品激情在线观看国产| 亚洲成av人片免费观看| 成人永久免费在线观看视频| 久久天堂一区二区三区四区| 极品人妻少妇av视频| www日本在线高清视频| 欧美黑人精品巨大| 麻豆国产av国片精品| 香蕉久久夜色| 亚洲男人天堂网一区| 女警被强在线播放| 岛国在线观看网站| 午夜免费观看网址| 国产精品亚洲av一区麻豆| 午夜激情av网站| 亚洲,欧美精品.| 99香蕉大伊视频| 国产熟女xx| 黑人巨大精品欧美一区二区蜜桃| 色精品久久人妻99蜜桃| 看黄色毛片网站| 午夜a级毛片| 1024视频免费在线观看| 中文字幕色久视频| 女同久久另类99精品国产91| 欧美黑人欧美精品刺激| 国产色视频综合| 咕卡用的链子| 国产成年人精品一区二区| av片东京热男人的天堂| 午夜两性在线视频| 亚洲欧美一区二区三区黑人| av天堂久久9| 老熟妇仑乱视频hdxx| 精品国产乱码久久久久久男人| 午夜成年电影在线免费观看| 此物有八面人人有两片| 91国产中文字幕| 欧美日本视频| 久久中文看片网| 久久久精品国产亚洲av高清涩受| 国语自产精品视频在线第100页| 天堂动漫精品| 亚洲国产精品久久男人天堂| 久久欧美精品欧美久久欧美| 色精品久久人妻99蜜桃| 中文字幕高清在线视频| 国产精品久久久久久精品电影 | 男男h啪啪无遮挡| 亚洲片人在线观看| 欧美日韩一级在线毛片| 久久精品亚洲熟妇少妇任你| 国产精品一区二区三区四区久久 | 亚洲成a人片在线一区二区| 久久影院123| 91大片在线观看| 伦理电影免费视频| 国产视频一区二区在线看| 国产精品一区二区三区四区久久 | 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利18| 巨乳人妻的诱惑在线观看| 岛国视频午夜一区免费看| 亚洲aⅴ乱码一区二区在线播放 | 国产一区二区三区综合在线观看| 午夜亚洲福利在线播放| 狂野欧美激情性xxxx| 50天的宝宝边吃奶边哭怎么回事| 777久久人妻少妇嫩草av网站| av天堂在线播放| www.999成人在线观看| 久久久久久久精品吃奶| 无人区码免费观看不卡| 看免费av毛片| 久久久久国产精品人妻aⅴ院| 伊人久久大香线蕉亚洲五| 天堂√8在线中文| 欧美成人一区二区免费高清观看 | 在线国产一区二区在线| 亚洲精品国产区一区二| 国产av一区二区精品久久| 久久久久久久久久久久大奶| 自拍欧美九色日韩亚洲蝌蚪91| 精品国产国语对白av| 精品电影一区二区在线| 亚洲熟妇中文字幕五十中出| 在线观看午夜福利视频| 免费久久久久久久精品成人欧美视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品在线观看二区| 成人亚洲精品一区在线观看| 日韩有码中文字幕| 久久人人爽av亚洲精品天堂| 亚洲一区中文字幕在线| 午夜福利欧美成人| 亚洲av第一区精品v没综合| 久久这里只有精品19| 精品一区二区三区av网在线观看| 成人国产综合亚洲| 欧美日本亚洲视频在线播放| 90打野战视频偷拍视频| 欧美色视频一区免费| √禁漫天堂资源中文www| 美女国产高潮福利片在线看| 欧美日本亚洲视频在线播放| 欧美日韩乱码在线| 女人精品久久久久毛片| 91九色精品人成在线观看| 亚洲全国av大片| 久久精品影院6| 欧美成狂野欧美在线观看| 久久久久久久久免费视频了| 亚洲专区国产一区二区| 9191精品国产免费久久| 99久久久亚洲精品蜜臀av| 啦啦啦 在线观看视频| 亚洲国产精品成人综合色| 夜夜躁狠狠躁天天躁| 在线观看免费视频日本深夜| 一二三四社区在线视频社区8| 一级作爱视频免费观看| 91老司机精品| 不卡一级毛片| 亚洲精品一区av在线观看| 精品乱码久久久久久99久播| 一个人免费在线观看的高清视频| 久久久久九九精品影院| 亚洲成a人片在线一区二区| 精品国产乱子伦一区二区三区| 亚洲 欧美一区二区三区| 国语自产精品视频在线第100页| 国产精品综合久久久久久久免费 | av网站免费在线观看视频| 国产成人av教育| 在线观看舔阴道视频| 亚洲国产精品sss在线观看| 一个人免费在线观看的高清视频| e午夜精品久久久久久久| 久久精品亚洲熟妇少妇任你| 丝袜在线中文字幕| 亚洲美女黄片视频| 国产一卡二卡三卡精品| 大陆偷拍与自拍| 黄片大片在线免费观看| 久久久久国内视频| 国产精品亚洲av一区麻豆| 色综合婷婷激情| 久久国产精品影院| 欧美av亚洲av综合av国产av| 国产亚洲精品久久久久5区| 欧美黄色淫秽网站| 久久久久国产精品人妻aⅴ院| 日韩欧美三级三区| 欧美大码av| avwww免费| 欧美中文日本在线观看视频| 久久国产乱子伦精品免费另类| 午夜老司机福利片| 韩国精品一区二区三区| 99久久国产精品久久久| 伊人久久大香线蕉亚洲五| 真人一进一出gif抽搐免费| 亚洲专区国产一区二区| 18美女黄网站色大片免费观看| 久久精品亚洲精品国产色婷小说| 欧美日韩亚洲综合一区二区三区_| 一级毛片高清免费大全| 成人亚洲精品一区在线观看| 亚洲国产欧美网| 久久香蕉国产精品| 麻豆一二三区av精品| 深夜精品福利| 9色porny在线观看| 99精品欧美一区二区三区四区| 亚洲国产精品久久男人天堂| 久久婷婷人人爽人人干人人爱 | 宅男免费午夜| 国产av一区在线观看免费| av在线播放免费不卡| 夜夜夜夜夜久久久久| 日韩精品青青久久久久久| 中文字幕人妻熟女乱码| 亚洲三区欧美一区| 高清毛片免费观看视频网站| 国产视频一区二区在线看| 电影成人av| 欧美激情久久久久久爽电影 | 亚洲国产高清在线一区二区三 | 在线观看日韩欧美| 999久久久国产精品视频| 久久久国产成人免费| 国产一区二区三区视频了| 一区二区三区精品91| 国产视频一区二区在线看| 中亚洲国语对白在线视频| 老熟妇乱子伦视频在线观看| 欧美在线一区亚洲| 曰老女人黄片| 亚洲黑人精品在线| 一级黄色大片毛片| www.www免费av| 97人妻天天添夜夜摸| 亚洲欧美一区二区三区黑人| 色老头精品视频在线观看| 亚洲欧美一区二区三区黑人| 一边摸一边抽搐一进一出视频| 国产亚洲精品久久久久5区| 欧美乱码精品一区二区三区| 国产伦人伦偷精品视频| 不卡av一区二区三区| 久久中文字幕一级| 欧美精品啪啪一区二区三区| 夜夜爽天天搞| 亚洲欧美精品综合一区二区三区| 日韩大码丰满熟妇| 亚洲一区二区三区色噜噜| 午夜精品在线福利| 国产欧美日韩一区二区三区在线| 日本一区二区免费在线视频| 大型黄色视频在线免费观看| 美女 人体艺术 gogo| 日本免费一区二区三区高清不卡 | av在线播放免费不卡| 亚洲av电影不卡..在线观看| av视频免费观看在线观看| 国产激情久久老熟女| 欧美在线黄色| 熟女少妇亚洲综合色aaa.| 一区福利在线观看| 国产av一区在线观看免费| 免费av毛片视频| 欧洲精品卡2卡3卡4卡5卡区| 国产精品,欧美在线| 国产片内射在线| 少妇被粗大的猛进出69影院| 亚洲情色 制服丝袜| 中文字幕人妻丝袜一区二区| 麻豆一二三区av精品| 久久久久久大精品| 女人爽到高潮嗷嗷叫在线视频| 久久人妻福利社区极品人妻图片| 老司机深夜福利视频在线观看| 亚洲精品中文字幕一二三四区| 欧美国产精品va在线观看不卡| 久久久久久久精品吃奶| 国产亚洲av高清不卡| 高清毛片免费观看视频网站| 丝袜在线中文字幕| 99香蕉大伊视频| 亚洲av第一区精品v没综合| 看免费av毛片| 亚洲成人久久性| 怎么达到女性高潮| 少妇 在线观看| 99国产精品一区二区蜜桃av| 香蕉久久夜色| 国产一区二区激情短视频| 9色porny在线观看| 午夜免费观看网址| 性欧美人与动物交配| 韩国精品一区二区三区| 一边摸一边抽搐一进一小说| 亚洲午夜理论影院| 99在线人妻在线中文字幕| 国内精品久久久久精免费| 国产精品免费一区二区三区在线| 亚洲第一电影网av| 国产真人三级小视频在线观看| 亚洲一区高清亚洲精品| 神马国产精品三级电影在线观看 | 亚洲国产精品sss在线观看| 极品人妻少妇av视频| 免费在线观看影片大全网站| a级毛片在线看网站| 精品久久久精品久久久| 午夜福利影视在线免费观看| 99精品欧美一区二区三区四区| 中出人妻视频一区二区| 久久婷婷成人综合色麻豆| 欧美在线一区亚洲| 午夜日韩欧美国产| 午夜福利,免费看| 成年女人毛片免费观看观看9| 一进一出抽搐gif免费好疼| 亚洲五月天丁香| 看黄色毛片网站| 欧美老熟妇乱子伦牲交| 亚洲一区高清亚洲精品| 国产一级毛片七仙女欲春2 | 亚洲人成77777在线视频| 黑人欧美特级aaaaaa片| 亚洲国产精品sss在线观看| 18禁裸乳无遮挡免费网站照片 | 国语自产精品视频在线第100页| 亚洲无线在线观看| 黄色a级毛片大全视频| 午夜福利一区二区在线看| 欧美黄色淫秽网站| 久久久久久人人人人人| 亚洲人成电影观看| 国产精品1区2区在线观看.| 免费女性裸体啪啪无遮挡网站| 亚洲欧洲精品一区二区精品久久久| 欧美在线黄色| 国产成人欧美在线观看| 乱人伦中国视频| 黄色片一级片一级黄色片| 亚洲电影在线观看av| 日韩高清综合在线| 欧美日本视频| 成在线人永久免费视频| 亚洲国产欧美网| videosex国产| 男男h啪啪无遮挡| 中文字幕人妻丝袜一区二区| 黄色丝袜av网址大全| 日韩 欧美 亚洲 中文字幕| 老司机午夜福利在线观看视频| 亚洲美女黄片视频| 在线av久久热| 免费看a级黄色片| 美女 人体艺术 gogo| 亚洲国产欧美日韩在线播放| 欧美成狂野欧美在线观看| 午夜两性在线视频| 午夜免费激情av| 精品一区二区三区视频在线观看免费| 欧美在线一区亚洲| 757午夜福利合集在线观看| 日本a在线网址| 一本大道久久a久久精品| 91成年电影在线观看| 窝窝影院91人妻| 99国产精品免费福利视频| 我的亚洲天堂| 人人妻人人爽人人添夜夜欢视频| 亚洲av电影不卡..在线观看| 国产在线观看jvid| 一区二区三区精品91| 黑人巨大精品欧美一区二区mp4| cao死你这个sao货| 在线十欧美十亚洲十日本专区| 国产一区二区在线av高清观看| 91大片在线观看| 男人舔女人下体高潮全视频| 老司机午夜福利在线观看视频| 美女免费视频网站| 性欧美人与动物交配| 久久久国产欧美日韩av| 国产精品秋霞免费鲁丝片| 免费在线观看影片大全网站| 成年人黄色毛片网站| 久久久久久免费高清国产稀缺| 国产成人影院久久av| 国产伦一二天堂av在线观看| 51午夜福利影视在线观看| 日韩国内少妇激情av| 免费观看人在逋| 国产免费男女视频| 男女之事视频高清在线观看| 搞女人的毛片| 欧美成人性av电影在线观看| 亚洲专区字幕在线| 色播在线永久视频| 久久婷婷人人爽人人干人人爱 | 免费无遮挡裸体视频| 国产成年人精品一区二区| 人人妻人人澡人人看| 咕卡用的链子| 在线观看免费视频网站a站| 久久久久九九精品影院| 亚洲 欧美一区二区三区| 国产精品影院久久| 狠狠狠狠99中文字幕| 天堂影院成人在线观看| 国产99白浆流出| 精品久久久久久久毛片微露脸| 欧美一级毛片孕妇| 国产亚洲av高清不卡| 亚洲精品美女久久av网站| 97超级碰碰碰精品色视频在线观看| www日本在线高清视频| 欧美老熟妇乱子伦牲交| 中文字幕人妻熟女乱码| 久久精品亚洲精品国产色婷小说| 两个人免费观看高清视频| 成年人黄色毛片网站| 国产亚洲精品av在线| av欧美777| 制服诱惑二区| 香蕉久久夜色| 他把我摸到了高潮在线观看| 一区在线观看完整版| 9191精品国产免费久久| 一区福利在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 美国免费a级毛片| 免费av毛片视频| 国产欧美日韩一区二区精品| av电影中文网址| 18禁国产床啪视频网站| 国产国语露脸激情在线看| 色老头精品视频在线观看| 91精品三级在线观看| 久久草成人影院| 美女国产高潮福利片在线看| 国产欧美日韩精品亚洲av| 国产区一区二久久| 黄色成人免费大全| 亚洲无线在线观看| 法律面前人人平等表现在哪些方面| 亚洲精品在线美女| 国内毛片毛片毛片毛片毛片| 久久影院123| 亚洲国产毛片av蜜桃av| 亚洲成av人片免费观看| 欧美绝顶高潮抽搐喷水| 国产精品一区二区三区四区久久 | av欧美777| 国产国语露脸激情在线看| av免费在线观看网站| 国产一区二区三区在线臀色熟女| 欧美国产日韩亚洲一区| 此物有八面人人有两片| 这个男人来自地球电影免费观看| 亚洲国产日韩欧美精品在线观看 | 搡老妇女老女人老熟妇| 亚洲欧美日韩高清在线视频| 欧美av亚洲av综合av国产av| 亚洲色图 男人天堂 中文字幕| 亚洲国产精品合色在线| 国产一区二区激情短视频| 高清在线国产一区| 久久国产乱子伦精品免费另类| 麻豆国产av国片精品| av免费在线观看网站| 国内毛片毛片毛片毛片毛片| 怎么达到女性高潮| 男女做爰动态图高潮gif福利片 | 一卡2卡三卡四卡精品乱码亚洲| 18禁观看日本| 18美女黄网站色大片免费观看| 国产伦一二天堂av在线观看| 99在线人妻在线中文字幕| 国产激情久久老熟女| 亚洲专区中文字幕在线| 久久精品成人免费网站| 两性午夜刺激爽爽歪歪视频在线观看 | 色婷婷久久久亚洲欧美| 黄色视频不卡| 9色porny在线观看| 久热这里只有精品99| 首页视频小说图片口味搜索| 一区二区三区高清视频在线| 最近最新免费中文字幕在线| 日韩国内少妇激情av| 国产亚洲欧美在线一区二区| 9色porny在线观看| 他把我摸到了高潮在线观看| 国产单亲对白刺激| 久久欧美精品欧美久久欧美| 欧美色视频一区免费| 欧美成人午夜精品| 91av网站免费观看| 国产亚洲精品综合一区在线观看 | 99在线视频只有这里精品首页| 久久国产精品影院| 高清黄色对白视频在线免费看| 精品久久久精品久久久| 19禁男女啪啪无遮挡网站|