• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonnegativity-enforced Gaussian process regression

    2020-07-01 05:13:38AndrewPensoneultXiuYngXueyuZhu

    Andrew Pensoneult, Xiu Yng*, Xueyu Zhu,*

    a Department of Mathematics, University of Iowa, Iowa, IA 52246, USA

    b Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015, USA

    Keywords:Gaussian process regression Constrained optimization

    ABSTRACT Gaussian process (GP) regression is a flexible non-parametric approach to approximate complex models. In many cases, these models correspond to processes with bounded physical properties.Standard GP regression typically results in a proxy model which is unbounded for all temporal or spacial points, and thus leaves the possibility of taking on infeasible values. We propose an approach to enforce the physical constraints in a probabilistic way under the GP regression framework. In addition, this new approach reduces the variance in the resulting GP model.

    In many applications, evaluating a computational model can require significant computational resources and time. One approach to address this problem is to build a surrogate model with statistical emulators such as Gaussian processes (GP) regression [1]. We aim to design surrogate models that have low approximation error, and satisfy meaningful bounds on some physical properties. However, no such information is encoded in the standard GP regression method. Therefore, it can produce infeasible predictions.

    Incorporating physical information in GP has been explored in many works of literature. For example, it is demonstrated in Ref. [2] that the mean prediction of a GP model satisfies a set of linear equality constraints provided the training data satisfy these constraints. A similar result holds for quadratic equality constraints under a transformation of the parameterization. Alternatively, linear equality constraints can be enforced by modeling the process as a transformation of an underlying function and imposing the constraints on that transformation [3].

    Moreover, physical information in the form of differential operators can be incorporated in GP models [4–7].

    Incorporating inequality constraints in a GP is more difficult,as the underlying process conditional on the constraints is no longer a GP [8]. To address this problem, several different approaches have been explored. The approach in Ref. [9] enforces inequality constraints at several locations and draws approximate samples from the predictive distribution with a data augmentation approach. Linear inequality functional (such as monotonicity) are enforced via virtual observations at several location within [10–14]. In Ref. [11], it is shown that when linear inequality constraints are applied to a finite set of points in the domain, the process conditional on the constraints is a compound GP with a truncated Gaussian mean. In Ref. [8, 15, 16],linear inequality constraints are enforced on the entire domain instead of a finite set of points by making a finite-dimensional approximation of the GP and enforcing the constraints through the choice of the associated approximation coefficients.

    In this work, we focus on enforcing non-negativity in the GP model. This is a requirement for many physical properties, e.g.,elastic modulus, viscosity, density, and temperature. We propose to impose this inequality constraint with high probability via selecting a set of constraint points in the domain and imposing the non-negativity on the posterior GP at these points. In addition to enforcing non-negativity, this approach improves accuracy and reduces uncertainty in the resulting GP model.

    The paper is organized as follows. We review the standard GP regression framework first, then present our novel approach to enforce non-negativity in GP regression, and provide numerical examples at last.

    We introduce the framework for GP regression based on the descriptions in Ref. [17]. Assume we have y = (y(1), y(2),..., y(N))Tas the values of the target function, where y(i)∈R are observations at locationswhere x(i)are d-dimensional vectors in the domain D ∈Rd. We aim to use a GP Y(·,·) : D ×? →R to approximate the underlying target function. Typically, Y(x) is denoted as

    where μ(·) : D →R and K (·, ·) : D ×D →R are the associated mean function and covariance function, i.e

    A widely used kernel is the standard squared exponential covariance kernel with an additive independent identically distributed Gaussian noise term ? with variance:

    where δx,x'is a Kronecker delta fuction, l is the length-scale, and σ2is the signal variance. In general, by assuming zero mean function μ(x) ≡ 0, we use θ = (σ, l, σn) to denote the hyperparameters, and they are determined based on the training data.

    In particular, we enforce the non-negativity in the quantity of interest. We minimize the negative marginal log-likelihood function in Eq. (7) while requiring that the probability of violating the constraints is small. More specifically, for 0 < η ? 1, we impose the following constraint:

    This differs from other methods in the literature, which enforce the constraint via truncated Gaussian assumption [8], or use a bounded likelihood function and perform inference based on the Laplace approximation and expectation propagation [18]. In contrast, our method retains the Gaussian posterior of standard GP regression, and only requires a slight modification of the existing cost function. As Y(x)|x, y, X follows a Gaussian distribution, this constraint can be rewritten in terms of the posterior mean y*and posterior standard deviation s:

    where Φ?1is the inverse cumulative density function (CDF) of a standard Gaussian random variable. In this work, we set η = 2.2%for demonstration purpose, and consequently Φ?1(η) = ?2, i.e.,two standard deviations below the mean is still nonnegative.Therefore, we minimize the negative log-likelihood cost function subject to constraints on the posterior mean and standard deviation:

    We note that Eq. (11) is a functional constraint and thus can be difficult to enforce. Instead, we enforce Eq. (11) on a set of constraint pointsOf note, these constraint points play similar roles as the aforementioned virtual observations[10–14].

    Meanwhile, in practice, a heuristic on the distance of the posterior mean of the GP from the training data is applied to stabilize the optimization algorithm, as such to guarantee that it results in a model that fits measurement data. Subsequently, to obtain the constrained GP, we solve the following constrained minimization problem:

    where ? > 0 is chosen to be sufficiently small. In the this paper,we set ? = 0.03. The last constraint is chosen so that the given solution fits the data sufficiently well.

    We remark that compared with unconstrained optimization,constrained optimization is in general more computationally expensive [19]. However, if non-negativity approximation of the target function is crucial for the underlying applications, one may weigh less on the efficiency in order to get more reliable and feasible approximation within the computational budget.

    We present numerical examples to illustrate the effectiveness of our method. We measure the relative l2error between the posterior mean y*and the true value of the target function f(x)over a set of test points

    For the examples below, we use NT= 1000 equidistant test points over the domain D. We use the standard squared exponential covariance kernel as well as a zero prior mean function μ(x) = 0.We solve the unconstrained log-likelihood minimization problem in MATLAB using the GPML package [20]. For the constrained optimization, we use the fmincon from the MATLAB Optimization Toolbox based on the built-in interior point algorithm [21].

    RemarkIf the method results in convergence to an infeasible solution, the optimization is performed again with another random initial guess (with a standard Gaussian noise added to the base initial condition, θ0= [log(l), log(σ), log(σn)] =(?3, ?3, ?10).

    Example 1

    Consider the following function:

    For our tests on this example, the training point set is

    Figure 1a shows the posterior mean of the unconstrained GP with 95% confidence interval. It can be seen that on [0.65, 0.85],the posterior mean violates the non-negativity bounds with a large variance. In contrast, the posterior mean of the constrained GP in these regions no longer violates the constraints,as shown in Fig. 1b. Besides, the confidence interval is reduced dramatically after the non-negativity constraint is imposed.

    To illustrate the robustness of the algorithm, we repeat the same experiment on 100 different training data sets as in Ref. [4].Figure 2a illustrates the distribution of the relative l2error over the 100 trials. It is clear that incorporating the constraint tends to result in a lower relative error in the posterior mean statistically.Figure 2b compares the percentage of the posterior mean over the test points that violate non-negativity constraint over the 100 trails. There is a large portion of the posterior mean by the unconstrained GP that violates the non-negativity, while the constrained GP preserves the non-negativity very well.

    Example 2

    Consider the following function:

    We train our constrained and unconstrained GP models over 14 training points at locations:

    Figure 3a shows a 95% confidence interval around the posterior mean of the unconstrained GP. Notice that the posterior mean is less than zero near neighborhoods of 0.8. In contrast,the constrained GP doesn't violate the constraints as shown in Fig. 3b. The confidence interval of the posterior mean is also much narrower, which illustrates the advantage of incorporating the constraints.

    Again, to show the robustness of the algorithm, we repeat the same experiment on 100 trials. Figure 4a shows the relative l2error over 100 trials. The constrained GP has a histogram more heavily weighted towards lower relative error in the posterior mean, compared to the unconstrained GP. Figure 4b shows that the posterior mean of the unconstrained GP violates the nonnegativity condition more frequently.

    Example 3

    The Korteweg?de Vries (KdV) [22] equation can be used to describe the evolution of solitons, which are characterized by the following properties: (1) invariant shape; (2) approaches a constant as t → ∞; (3) strong interactions with other solitons. We consider the KdV equation in the following form

    Fig. 1. Posterior mean and the corresponding 95% confidence interval of the GP models in example 1. a Unconstrained GP. b Constrained GP.

    Fig. 2. a Normalized histogram associated with the l2 relative error between the GP mean and the true function over the test set based on 100 different training sets. b Normalized histogram associated with the percentage of the posterior mean over test points that violate the non-negativity constraint.

    Fig. 3. Posterior mean and the corresponding 95% confidence interval of the GP models in example 2. a Unconstrained GP. b Constrained GP.

    Fig. 4. a Normalized histogram associated with the l2 relative error between the GP mean and the true function over the test set based on 100 different training sets. b Normalized histogram associated with the percentage of the posterior mean over test points which violate the non-negativity constraint.

    Fig. 5. Posterior mean and the corresponding 95% confidence interval of GP models approximating the two-soliton interacting system at t = ?1 for a set training data set. a Unconstrained GP. b Constrained GP.

    Fig. 6. a Normalized histogram associated with the l2 relative error between the GP mean and the true function over the test set based on 100 different training sets. b Normalized histogram associated with the percentage of the posterior mean over test points that violate the non-negativity constraint.

    Under several assumptions on the form of u, an analytic solution can be found. For the case of two solitons, a (normalised)solution can be found in Ref. [22]:

    For this equation, u(x, t) > 0 for all x,t ∈R, we aim to approximate u(x, ?1) using GP.

    We train our constrained and unconstrained GP model based on 13 training points at locations:

    As can be seen in Fig. 5, the unconstrained GP violates nonnegativity around x = ?7, which is avoided in the constrained GP.More importantly, the confidence interval of the resulting GP is dramatically reduced by imposing non-negativity constraint. In addition, Fig. 6a shows that the relative error is significantly reduced when we incorporate the non-negativity information. Of note, in this case, because the majority of the test points are near zero, the relative error is much more sensitive to approximation errors in these regions. Figure 6b illustrates that the constrained GP preserves the non-negativity with very high probability while the unconstrained GP violates the non-negativity much more frequently.

    In this paper, we propose a novel method to enforce the nonnegativity constraints on the GP in the probabilistic sense. This approach not only reduces the difference between the posterior mean and the ground truth, but significantly lowers the variance,i.e., narrows the confidence interval, in the resulting GP model because the non-negativity information is incorporated. While this paper covers only the non-negativity bound, other inequality constraints can be enforced in a similar manner.

    Acknowledgement

    X.Y. Zhu's work was supported by Simons Foundation. X.Yang's work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research as part of Physics-Informed Learning Machines for Multiscale and Multiphysics Problems (PhILMs).

    日韩强制内射视频| 少妇精品久久久久久久| 最近手机中文字幕大全| 18禁在线无遮挡免费观看视频| a级毛片免费高清观看在线播放| 亚洲伊人久久精品综合| 亚洲精品日韩在线中文字幕| 黄色日韩在线| 尾随美女入室| 午夜免费观看性视频| 免费黄网站久久成人精品| 性色av一级| 国产精品一区www在线观看| 少妇猛男粗大的猛烈进出视频| 一级毛片电影观看| 一本—道久久a久久精品蜜桃钙片| 国产精品秋霞免费鲁丝片| 国产精品爽爽va在线观看网站| 亚洲一级一片aⅴ在线观看| 欧美bdsm另类| av在线观看视频网站免费| 男的添女的下面高潮视频| 寂寞人妻少妇视频99o| 精品国产露脸久久av麻豆| 看免费成人av毛片| 另类亚洲欧美激情| 成人综合一区亚洲| 国产成人精品一,二区| 国产在线一区二区三区精| 中文字幕制服av| 一级av片app| 热re99久久精品国产66热6| 欧美3d第一页| 亚洲精品456在线播放app| 美女高潮的动态| 亚洲欧美中文字幕日韩二区| 在现免费观看毛片| 亚洲va在线va天堂va国产| 久久国产亚洲av麻豆专区| 超碰av人人做人人爽久久| 亚洲精品国产色婷婷电影| 深爱激情五月婷婷| 观看美女的网站| 18禁在线播放成人免费| 在线观看国产h片| 亚洲av电影在线观看一区二区三区| 精品久久久久久久久av| 少妇的逼好多水| 少妇的逼好多水| 我要看日韩黄色一级片| 激情五月婷婷亚洲| 日韩av免费高清视频| 亚洲一级一片aⅴ在线观看| 日日撸夜夜添| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧洲国产日韩| 亚州av有码| 国产精品爽爽va在线观看网站| www.色视频.com| 亚洲av男天堂| 91午夜精品亚洲一区二区三区| 我的老师免费观看完整版| 天堂中文最新版在线下载| 99精国产麻豆久久婷婷| 国产av码专区亚洲av| 天天躁夜夜躁狠狠久久av| 男人舔奶头视频| 国产爱豆传媒在线观看| 久久久久久九九精品二区国产| av在线观看视频网站免费| 中文欧美无线码| 街头女战士在线观看网站| 在线观看免费日韩欧美大片 | 日韩中字成人| 成人黄色视频免费在线看| 精品人妻视频免费看| 亚洲美女视频黄频| 国产精品免费大片| 91久久精品国产一区二区三区| 国产高清国产精品国产三级 | 国产久久久一区二区三区| 中文字幕亚洲精品专区| 亚洲国产精品国产精品| 久久久久久久久久久丰满| 91精品国产九色| 如何舔出高潮| 直男gayav资源| av在线老鸭窝| 中文在线观看免费www的网站| 精品人妻一区二区三区麻豆| 亚洲美女搞黄在线观看| 如何舔出高潮| 亚洲精品乱码久久久v下载方式| 国产精品麻豆人妻色哟哟久久| 免费黄频网站在线观看国产| 精品亚洲成a人片在线观看 | 99热国产这里只有精品6| 26uuu在线亚洲综合色| 91aial.com中文字幕在线观看| 久久国产乱子免费精品| 亚洲精品日韩av片在线观看| 一区二区av电影网| 日韩精品有码人妻一区| 精品一区二区免费观看| 亚洲精品色激情综合| 国产亚洲午夜精品一区二区久久| 欧美少妇被猛烈插入视频| 一级毛片电影观看| 亚洲av.av天堂| 精品人妻视频免费看| 全区人妻精品视频| 国产免费一级a男人的天堂| av在线观看视频网站免费| 成人国产麻豆网| 亚洲精品乱久久久久久| 亚洲欧洲日产国产| 青春草亚洲视频在线观看| 亚洲国产精品一区三区| 人人妻人人添人人爽欧美一区卜 | 色婷婷久久久亚洲欧美| 人妻少妇偷人精品九色| 天堂俺去俺来也www色官网| 91精品国产九色| 亚洲图色成人| 日韩欧美一区视频在线观看 | h视频一区二区三区| 国产伦理片在线播放av一区| 日韩成人伦理影院| 欧美+日韩+精品| 美女脱内裤让男人舔精品视频| 亚洲精品aⅴ在线观看| 蜜臀久久99精品久久宅男| 亚洲成人中文字幕在线播放| 日韩不卡一区二区三区视频在线| 久久人人爽人人爽人人片va| 国产精品爽爽va在线观看网站| 亚洲精品久久午夜乱码| 99久久综合免费| 色婷婷久久久亚洲欧美| 成年av动漫网址| 免费看日本二区| 国产爽快片一区二区三区| 老师上课跳d突然被开到最大视频| 国产 一区 欧美 日韩| 美女中出高潮动态图| 伦精品一区二区三区| 亚洲av二区三区四区| 日韩欧美 国产精品| 午夜福利在线在线| 欧美bdsm另类| 国产精品国产三级国产av玫瑰| 97在线视频观看| 亚洲成人手机| av国产精品久久久久影院| 国产免费一区二区三区四区乱码| 蜜桃久久精品国产亚洲av| 亚洲精品一区蜜桃| h视频一区二区三区| 高清视频免费观看一区二区| 久久女婷五月综合色啪小说| 国产老妇伦熟女老妇高清| 身体一侧抽搐| 免费高清在线观看视频在线观看| 亚洲欧美成人综合另类久久久| 又粗又硬又长又爽又黄的视频| 少妇裸体淫交视频免费看高清| 一本久久精品| 建设人人有责人人尽责人人享有的 | 偷拍熟女少妇极品色| 午夜免费鲁丝| 王馨瑶露胸无遮挡在线观看| 少妇 在线观看| av在线app专区| 精品视频人人做人人爽| 五月开心婷婷网| 久久人妻熟女aⅴ| 免费高清在线观看视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 久久久久人妻精品一区果冻| 毛片一级片免费看久久久久| 国产亚洲精品久久久com| 99热这里只有是精品在线观看| 老熟女久久久| 中国美白少妇内射xxxbb| 欧美区成人在线视频| 蜜臀久久99精品久久宅男| 亚洲国产av新网站| 美女xxoo啪啪120秒动态图| av国产久精品久网站免费入址| 秋霞在线观看毛片| 国产 一区 欧美 日韩| 欧美激情国产日韩精品一区| 亚洲国产高清在线一区二区三| 深夜a级毛片| 久久久国产一区二区| 欧美zozozo另类| 久久久久国产精品人妻一区二区| 亚洲av不卡在线观看| 美女中出高潮动态图| 91狼人影院| 亚洲av日韩在线播放| 精华霜和精华液先用哪个| 2018国产大陆天天弄谢| 日本av手机在线免费观看| 亚洲国产精品成人久久小说| 特大巨黑吊av在线直播| 亚洲人成网站在线观看播放| 人体艺术视频欧美日本| 蜜臀久久99精品久久宅男| 色吧在线观看| 亚洲国产精品一区三区| 亚洲精品日本国产第一区| 亚洲精品一区蜜桃| 亚洲,欧美,日韩| 国产女主播在线喷水免费视频网站| 久久精品国产自在天天线| 国产精品三级大全| 大片免费播放器 马上看| 麻豆乱淫一区二区| a级一级毛片免费在线观看| 国产av精品麻豆| 精品久久久久久久久亚洲| 久久人人爽人人爽人人片va| 一级毛片我不卡| 麻豆乱淫一区二区| 亚洲第一av免费看| 亚洲色图av天堂| 一区在线观看完整版| 丰满乱子伦码专区| 一本久久精品| 熟妇人妻不卡中文字幕| 国产欧美日韩精品一区二区| 免费av不卡在线播放| 亚洲真实伦在线观看| 欧美精品国产亚洲| 日韩欧美精品免费久久| 成人二区视频| 亚洲精品一二三| 在线天堂最新版资源| 欧美bdsm另类| 人人妻人人添人人爽欧美一区卜 | videos熟女内射| 精品少妇黑人巨大在线播放| 精品人妻偷拍中文字幕| 亚洲精品色激情综合| av国产久精品久网站免费入址| 国产精品伦人一区二区| 精品视频人人做人人爽| 免费观看在线日韩| 3wmmmm亚洲av在线观看| 国国产精品蜜臀av免费| 狂野欧美激情性bbbbbb| 老女人水多毛片| 网址你懂的国产日韩在线| 五月伊人婷婷丁香| 国产爽快片一区二区三区| 久久毛片免费看一区二区三区| 边亲边吃奶的免费视频| 国产精品人妻久久久影院| 国产精品久久久久成人av| 国产在线一区二区三区精| 岛国毛片在线播放| 观看av在线不卡| 国产精品一区二区在线不卡| 国产黄色视频一区二区在线观看| 久久国产精品男人的天堂亚洲 | 边亲边吃奶的免费视频| 精品久久久久久电影网| 91在线精品国自产拍蜜月| 久久久久性生活片| 亚洲丝袜综合中文字幕| 在线看a的网站| 亚洲国产av新网站| 日日摸夜夜添夜夜爱| 男人狂女人下面高潮的视频| 久久av网站| 亚洲精品aⅴ在线观看| 各种免费的搞黄视频| 日本欧美国产在线视频| 国产一区有黄有色的免费视频| 久久久久久久久久久免费av| 日韩伦理黄色片| 成人漫画全彩无遮挡| 麻豆精品久久久久久蜜桃| 国产精品人妻久久久久久| 久久久午夜欧美精品| 多毛熟女@视频| av女优亚洲男人天堂| 人妻 亚洲 视频| 午夜日本视频在线| 搡老乐熟女国产| 99热6这里只有精品| 日韩欧美一区视频在线观看 | 大陆偷拍与自拍| 日本vs欧美在线观看视频 | 国产黄片视频在线免费观看| 韩国高清视频一区二区三区| 久久久欧美国产精品| 国产精品无大码| 久久99热这里只频精品6学生| 国产91av在线免费观看| 亚洲经典国产精华液单| 亚洲欧美成人综合另类久久久| 97热精品久久久久久| 99久久人妻综合| 人人妻人人澡人人爽人人夜夜| 3wmmmm亚洲av在线观看| 亚洲aⅴ乱码一区二区在线播放| 久热久热在线精品观看| 少妇精品久久久久久久| 十八禁网站网址无遮挡 | 午夜视频国产福利| 午夜福利在线在线| 亚洲精品国产色婷婷电影| 国产精品一二三区在线看| 日日摸夜夜添夜夜添av毛片| 亚洲欧美日韩无卡精品| 亚洲精品久久午夜乱码| 亚洲av不卡在线观看| 岛国毛片在线播放| 亚洲熟女精品中文字幕| 综合色丁香网| 成年av动漫网址| 精品国产露脸久久av麻豆| 日韩三级伦理在线观看| 下体分泌物呈黄色| 午夜免费男女啪啪视频观看| 大话2 男鬼变身卡| 日本猛色少妇xxxxx猛交久久| 97精品久久久久久久久久精品| 午夜视频国产福利| 国产午夜精品久久久久久一区二区三区| 丰满迷人的少妇在线观看| 天堂俺去俺来也www色官网| 不卡视频在线观看欧美| 在线观看一区二区三区| 能在线免费看毛片的网站| 欧美一级a爱片免费观看看| 国产高潮美女av| 欧美另类一区| 三级国产精品片| 亚洲国产日韩一区二区| 3wmmmm亚洲av在线观看| 亚洲婷婷狠狠爱综合网| 中文在线观看免费www的网站| 一级毛片黄色毛片免费观看视频| 大码成人一级视频| 免费在线观看成人毛片| 欧美日本视频| 免费观看a级毛片全部| 亚洲婷婷狠狠爱综合网| 日韩视频在线欧美| 国产女主播在线喷水免费视频网站| 色哟哟·www| 免费看av在线观看网站| 亚洲中文av在线| 最近最新中文字幕免费大全7| 男人爽女人下面视频在线观看| 欧美高清成人免费视频www| 亚洲欧美精品专区久久| 91精品国产国语对白视频| 亚洲精品一区蜜桃| 日本-黄色视频高清免费观看| 国产精品欧美亚洲77777| 一级av片app| 亚洲成色77777| 丰满人妻一区二区三区视频av| 毛片女人毛片| 免费看不卡的av| 黄片wwwwww| 国产精品久久久久久精品电影小说 | 久久鲁丝午夜福利片| 国产精品秋霞免费鲁丝片| 99久久精品国产国产毛片| 国产又色又爽无遮挡免| 99热国产这里只有精品6| 婷婷色综合www| 国产精品国产av在线观看| 国产一区二区三区av在线| 国产精品久久久久成人av| 午夜免费男女啪啪视频观看| 一区在线观看完整版| 免费观看的影片在线观看| 小蜜桃在线观看免费完整版高清| 亚洲色图av天堂| 久久人人爽人人爽人人片va| 少妇熟女欧美另类| 成人亚洲欧美一区二区av| 大片电影免费在线观看免费| 日韩一区二区三区影片| 看十八女毛片水多多多| 日韩中文字幕视频在线看片 | 人妻夜夜爽99麻豆av| 黄色怎么调成土黄色| 观看免费一级毛片| freevideosex欧美| av卡一久久| 欧美一级a爱片免费观看看| av在线观看视频网站免费| 精品久久久久久久末码| 国产欧美日韩精品一区二区| 精华霜和精华液先用哪个| 美女cb高潮喷水在线观看| 亚洲精华国产精华液的使用体验| 观看av在线不卡| 春色校园在线视频观看| 国产伦在线观看视频一区| 色婷婷av一区二区三区视频| 亚洲成人一二三区av| 欧美区成人在线视频| 91久久精品国产一区二区三区| 国产欧美日韩一区二区三区在线 | 春色校园在线视频观看| av视频免费观看在线观看| 日本vs欧美在线观看视频 | 久久久久网色| 免费看光身美女| 欧美精品国产亚洲| 欧美极品一区二区三区四区| av.在线天堂| 99九九线精品视频在线观看视频| 99久久人妻综合| 午夜福利高清视频| 欧美zozozo另类| 国产午夜精品一二区理论片| 亚洲欧美成人综合另类久久久| 国产黄色视频一区二区在线观看| 波野结衣二区三区在线| 黑人猛操日本美女一级片| 久久精品国产亚洲av天美| av在线观看视频网站免费| 性色avwww在线观看| 中文字幕久久专区| 成人黄色视频免费在线看| 亚洲国产精品成人久久小说| 久久久久久久久久成人| 在线观看三级黄色| 18禁动态无遮挡网站| 欧美日韩一区二区视频在线观看视频在线| 搡老乐熟女国产| 亚洲不卡免费看| 91午夜精品亚洲一区二区三区| 欧美xxxx黑人xx丫x性爽| 国产精品不卡视频一区二区| 亚洲综合色惰| 成年免费大片在线观看| 大陆偷拍与自拍| 久久人人爽av亚洲精品天堂 | 日韩制服骚丝袜av| 乱系列少妇在线播放| 欧美日韩综合久久久久久| 欧美一区二区亚洲| tube8黄色片| 最黄视频免费看| 久久久久精品性色| 国产男女超爽视频在线观看| 国产视频首页在线观看| 内地一区二区视频在线| 日日啪夜夜撸| 男人和女人高潮做爰伦理| 精品酒店卫生间| 搡老乐熟女国产| 一级爰片在线观看| 精华霜和精华液先用哪个| 国产 精品1| 国产精品久久久久久久电影| 日韩成人av中文字幕在线观看| 美女中出高潮动态图| 在线观看一区二区三区| 精品熟女少妇av免费看| 久久99蜜桃精品久久| 99久久精品国产国产毛片| 亚洲国产日韩一区二区| 亚洲精品国产成人久久av| 亚洲国产精品国产精品| 日本av免费视频播放| 国产人妻一区二区三区在| 岛国毛片在线播放| 久久久久人妻精品一区果冻| 亚洲av成人精品一区久久| 国产精品av视频在线免费观看| 三级国产精品片| 午夜福利在线观看免费完整高清在| 久久久久久久精品精品| 久久这里有精品视频免费| 亚洲伊人久久精品综合| 久久99热6这里只有精品| 国产免费福利视频在线观看| 久久 成人 亚洲| 91狼人影院| 在线观看三级黄色| 尤物成人国产欧美一区二区三区| 自拍偷自拍亚洲精品老妇| 下体分泌物呈黄色| 久久鲁丝午夜福利片| 久久久久人妻精品一区果冻| 精品一区二区三卡| 男女下面进入的视频免费午夜| 国产精品国产三级国产专区5o| 亚洲国产高清在线一区二区三| 午夜福利视频精品| 成人午夜精彩视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲不卡免费看| 一区在线观看完整版| 天堂俺去俺来也www色官网| 国产精品一区二区性色av| 亚洲高清免费不卡视频| 亚洲国产精品999| 午夜激情久久久久久久| 国产日韩欧美亚洲二区| 哪个播放器可以免费观看大片| 麻豆乱淫一区二区| 欧美三级亚洲精品| 久久国产亚洲av麻豆专区| 亚洲国产精品999| 精品一区在线观看国产| 精品久久久噜噜| 亚洲国产精品专区欧美| 久久精品国产亚洲av天美| 中文欧美无线码| 欧美丝袜亚洲另类| 亚洲激情五月婷婷啪啪| 中文字幕精品免费在线观看视频 | av播播在线观看一区| 下体分泌物呈黄色| 日本黄大片高清| 国产亚洲精品久久久com| 黄色日韩在线| 啦啦啦中文免费视频观看日本| 日韩成人伦理影院| 男女边吃奶边做爰视频| 在线观看人妻少妇| 久久久成人免费电影| 欧美成人午夜免费资源| 最黄视频免费看| 婷婷色av中文字幕| 日产精品乱码卡一卡2卡三| 乱系列少妇在线播放| av在线蜜桃| 色婷婷久久久亚洲欧美| 欧美xxⅹ黑人| 国产免费一区二区三区四区乱码| 亚洲色图av天堂| 一区二区三区四区激情视频| 国产伦在线观看视频一区| 在线观看国产h片| 国产精品不卡视频一区二区| 青春草亚洲视频在线观看| 亚洲精华国产精华液的使用体验| 国产精品欧美亚洲77777| 一级毛片aaaaaa免费看小| 国产精品三级大全| a级一级毛片免费在线观看| 有码 亚洲区| 久久久精品免费免费高清| 日韩av免费高清视频| 成人综合一区亚洲| 大片电影免费在线观看免费| 少妇精品久久久久久久| 日韩三级伦理在线观看| 国产成人精品一,二区| 国产男人的电影天堂91| 中文字幕久久专区| 色哟哟·www| 国产在线男女| 国产精品精品国产色婷婷| 欧美人与善性xxx| 观看美女的网站| 免费看光身美女| 久久6这里有精品| 国产精品一区二区三区四区免费观看| 国精品久久久久久国模美| 女性生殖器流出的白浆| av卡一久久| 夜夜看夜夜爽夜夜摸| 中文字幕精品免费在线观看视频 | 中文天堂在线官网| 精品人妻熟女av久视频| 亚洲精品亚洲一区二区| 免费在线观看成人毛片| 亚洲精品,欧美精品| 韩国高清视频一区二区三区| 亚洲欧美日韩无卡精品| 女的被弄到高潮叫床怎么办| 一区在线观看完整版| 欧美极品一区二区三区四区| 日韩不卡一区二区三区视频在线| av黄色大香蕉| 五月玫瑰六月丁香| 免费人成在线观看视频色| 国产精品免费大片| kizo精华| 日本爱情动作片www.在线观看| 国产一区二区三区综合在线观看 | 亚洲欧洲日产国产| 丝袜喷水一区| 又粗又硬又长又爽又黄的视频| 亚洲av在线观看美女高潮| 国产极品天堂在线| 久久99热6这里只有精品| 亚洲熟女精品中文字幕| 国产久久久一区二区三区| 我的女老师完整版在线观看| 亚洲av成人精品一区久久| 一级a做视频免费观看| 久久av网站| 美女福利国产在线 | 18禁裸乳无遮挡动漫免费视频| 免费少妇av软件| 国产视频首页在线观看| 熟女av电影| 女人十人毛片免费观看3o分钟| 老司机影院毛片| 日本欧美国产在线视频|