• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Learning material law from displacement fields by artificial neural network

    2020-07-01 05:14:00HangYangQianXiangShanTangXuGuo

    Hang Yang, Qian Xiang, Shan Tang,*, Xu Guo,*

    a State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China

    b International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China

    Keywords:Data-driven Material law Displacement field Digital image correlation Artificial neural network

    ABSTRACT The recently developed data-driven approach can establish the material law for nonlinear elastic composite materials (especially newly developed materials) by the generated stress-strain data under different loading paths (Computational Mechanics, 2019). Generally, the displacement (or strain) fields can be obtained relatively easier using digital image correlation (DIC) technique experimentally, but the stress field is hard to be measured. This situation limits the applicability of the proposed data-driven approach. In this paper, a method based on artificial neural network(ANN) to identify stress fields and further obtain the material law of nonlinear elastic materials is presented, which can make the proposed data-driven approach more practical. A numerical example is given to prove the validity of the method. The limitations of the proposed approach are also discussed.

    Materials law plays a key role in mechanics problems as it can relate strain to stress response for a given material. Although many function-based material models are proposed, it is difficult to cover all the materials especially for some newly developed materials. Building an appropriate material law usually requires long-time efforts through the traditional approach,which severely inhibit the use of the newly developed materials in engineering design.

    Recently, many data-driven approaches are proposed, which can replace the function-based material law with data. For example, Kirchdoerfer and Ortiz [1] solved the boundary-value problems in mechanics by minimizing the distance of both computed stress and strain to the stress–strain database of a material. A self-consistent clustering analysis (SCA) was also proposed to reduce the computational cost in Liu’s group [2–4]. Our previous works showed the possibility of replacing the materials law of composites by artificial neural network (ANN) trained by stress–strain data [5, 6]. In these approaches, the database of stress–strain data under different loading paths is pre-required.However, it is difficult to obtain a homogeneous stress-state under multi-axis loadings in the experiments. For inhomogeneous stress-states, the stress fields are hard to obtain directly. But the displacement fields can be measured by digital image correlation (DIC) technique relatively easier [7]. With the measured displacement field by DIC, the parameters involved in the existing function-based hyperelastic models such as Mooney–Rivlin can be calibrated [8–10]. Réthoré [11] further considered the identification of Poisson’s ratio based on the perturbed displacement fields by noises.

    Despite the success of these model-based parameter-identification methods, integration the recognition of material law with the data-driven approach is very attractive because it can avoid the choice of the existing function-based material models or construction of a new one. A stress–strain database can be obtained through the experiments [12–15], which can be used to solve the boundary-value problem by the data-driven approach initialized by Ortiz’s group [1], avoiding the function-based material law.

    In this paper, a data-driven method is proposed to identify the material law based on the measured displacement fields through ANN. The obtained material law based on ANN can be integrated seamlessly with our proposed data-driven approach to solve boundary value problem under the displacement-driven finite element framework. The learned material law is also very flexible to be integrated into commercial software or inhouse code and numerical solving shows the second-order convergence [5].

    The force balance method (FEMU-F) [16–18], which can obtain the parameters in the existing function-based material law based on the available displacements of all the nodesin the experiments, is further developed in this paper. In combination with ANN, it is possible to build a material law without any explicit functional form, which is described in the following. All subsequent formulations are consistent with the current DIC technique under the plane stress conditions.

    The left Cauchy–Green tensor and the Cauchy stress are chosen as measures of strain and stress because they are coaxial under the isotropic assumption. The left Cauchy–Green tensor is defined as

    where F is deformation gradient, given by F =I+. Here, I and ?0are the second-order identity tensor and the gradient operator defined in the original configuration, respectively. The Cauchy stress σ can be given through an implicit function ? as Here the ANN can play the role of this function. In the proposed approach, the function ? rotates the input b first to the principal direction. Then the two principal components of b (b1and b2)are input into the ANN with the different order (b1and b2are switched) (see the upper and lower ANNs in Fig. 1. The two ANNs share the same weights and bias, which can be considered to be the same ANN actually.) The adoption of the two ANN is to ensure that the materials law is strictly isotropic [5]. Finally the outputs of the ANN are averaged and rotated back to the original directions. This process of computing σ from b is shown in Fig. 1,and summarized in the following:

    ? Compute the eigenvalues and eigenvectors of b:

    where biand Nirepresent the eigenvalues (principal component) and eigenvectors of b, respectively.

    ? Compute the principal stress by ANN:

    where w and β are the wight and bias of the ANN (fANN),represents the i-th output of the ANN, and σirepresents the i-th principal component of σ. More details about the ANN are given in the appendix.

    ? Compute the stress in the original directions:

    The internal force of each nodecan be predicted through finite element method (FEM) as

    Fig. 1. Artificial neural network for strictly isotropic nonlinear elastic materials. The dotted boxes identify the functions of ? and f ANN defined in the paper. The weights w and biases β and its components and are also marked. The mapping from the left Cauchy-Green tensor to the Cauchy stress can be obtained after ANN training.

    which is a function of w and β. Here ?(e)is the area of the element e, and B(e)is strain-displacement matrix depending on the shape function [19]. The total force on all the nodes should also satisfy the equilibrium condition, which can be written as follows

    where ? represents the internal area and Sσrepresents the boundary with the externally imposed force fext. Equilibrium equations can be transformed into a minimization problem as

    where viis the introduced weight greater than zero which can improve the convergence to the global optimal solution. Two regularization terms for both weights and bias are also introduced to prevent over-fitting, and the optimization should be carried out in the entire loading process as

    where T is the total time of the loading process, λ is the regularization coefficient, ∥ ·∥L2is L2 norm operator, and (·)(t)is the value of (·) at time t. This is a non-convex unconstrained optimization problem, which can be solved by intelligent optimization algorithm (e.g., particle swarm optimization) or stochastic gradient descent method (the gradients can be obtained by back propagation algorithm of ANN).

    The solving process is similar to the standard ANN training,discussed in our previous work [5]. The difference is that the entire process only provides input data (the measured displacements), and the output data (stress) is not required and replaced by the equilibrium condition. The ANN does not compute the node forces directly, but predicts the stress in each element. The force on a node is computed by the stress from multiple elements, and the stress of an element also affects the node force of multiple nodes, explained in Fig. 2. It can be seen that elements 1, 2, and 4 jointly determine the force of the blue node that needs to be in equilibrium with the external force. Elements 1, 3, 4, 5, 6 and 7 jointly determine the force of the red node that needs to reach the zero resultant force. At least one non-zero force boundary condition is required. Otherwise it converges to the solution with all-zeros.

    The optimization problem discussed above is not a convex one, so the ordinary gradient-based optimization method usually is hard to give the globally optimal solution. It tends to converge to a solution where the weights w and biases β are all-zeros, leading to the predicted stress with zeros. In this situation,only the equilibrium condition on the boundary with the externally imposed force cannot be satisfied but all other nodes can,which is a local optimal solution. The situation can be improved by increasing the weight viof nodes on the boundary in Eqs. (8)and (9). On the other hand, intelligent optimization algorithms can solve this problem well. The cost of computation is much lower than that of the sample preparation and physical experiments.

    The displacement fields used to learn the material law must contain enough multi-axis stress-states so that the trained ANN can predict the stress accurately with arbitrary strain. Otherwise,the trained ANN cannot predict the mechanical responses under some specific stress-states. The gathering of the measured displacement fields from different specimens can be used to train the ANN together to avoid this issue. More detailed discussion is given as below.

    The proposed method shown in the above only considers the two dimensional problem (plane stress), which can be naturally extended to three dimension problem. But the method is limited by the DIC technology, which can only measure the displacement/strain on the 2D surface.

    A rectangular plate with three circular holes of different radius under the imposed tensile loading is investigated under plane stress conditions. The unit of length is mm; force is N; stress,pressure and modulus are MPa. The geometric setup is shown in Fig. 3a. Six equally spaced concentrated forces are applied to the right edge. On the left edge, both X and Y degrees of freedom are fixed. The Ogden model with parameters μ = 5, α = 2, and D =0.01 is employed (the definition of these parameters is consistent with ABAQUS manual). The displacement field is computed by FEM with the given Odgen model. The entire loading process is equally divided into 6 incremental steps. Particle swarm algorithm, in which the swarm size is 1000, is used to solve the optimization problem (Eq. (9)), identifying the weights w and biases β of the ANN. Note that the numerical experiment is used to replace the role of DIC technique to obtain the required displacement fields for the optimization problem. The employed ANN consists of two hidden layers with 3, 3 neurons respectively.

    The predicted stress fields by both the reference and the trained ANN models are plotted in Fig. 3(c, d). Define the relative error of the effective stress between two models as

    Fig. 2. Physical explanation of equilibrium equations by ANN model. The nodes are marked blue on the boundary with the externally imposed force, black on the boundary with the imposed displacement and red inside the simulated domain. The internal force is equal to the external force on the blue nodes, and equal to zeros on the red nodes. The force on the black nodes are not considered. The force on each node depends on the stress of all the elements that contain the node, and each element has an effect on the force of all the nodes belonging to it.

    The principal components of the left Cauchy–Green tensor,b1and b2in all the elements of the numerical example during the whole loading process are summarized in Fig. 5. The ANN trained model by the given displacement fields can accurately predict the stress when the strain is close to the data points shown in the figure, but it cannot predict stress accurately when the strain is far from the data points. Most points lie in the II and IV regions while only a few in the I and III regions. In order to predict mechanical response better, the displacement field reflecting the deformation modes shown in the I and III region should be introduced to train the ANN together.

    In this paper, a data-driven method based on ANN to obtain the material law is proposed. The proposed method can be used to quickly build the material law for isotropic nonlinear elastic materials based on the measured displacements in the experiments. In this short paper, the displacement field is generated by the numerical experiments rather than the DIC measurement. If the data of the displacement fields measured by DIC is used, the same way can be used.

    Fig. 3. Numerical example for a rectangular plate with three holes. a Geometric model and boundary conditions of the voided plate. The contour plots of effective stress computed by b the finite element simulation with the reference Odgen model and d the proposed method. c Finite element mesh contains 142 nodes and 226 element.

    Fig. 5. Summary of all the strain states during the loading process.The principal components of the left Cauchy-Green tensor, b1 and b2 of every element at each time step are plotted.

    Fig. 4. Statistics of the relative error between the predicted results by the proposed method and the reference Odgen model. The results of all incremental steps are counted together.

    The proposed method can only be applied to isotropic nonlinear elastic materials at present. In the future, it should be extended for more complex materials such as elastoplastic and viscoelastic materials. Numerical techniques for improving efficiency and robustness of the proposed method should also be incorporated. These things leave abundant room to improve the present method.

    Acknowledgement

    S. Tang appreciates the support from the National Natural Science Foundation of China (Grant 11872139). X. Guo thanks the support from the National Natural Science Foundation of China (Grants 11732004 and 11821202), and Program for Changjiang Scholars, Innovative Research Team in University(PCSIRT).

    Appendix: Discussion on the ANN

    ANN is briefly discussed here. The reader can refer to our previous work for more details [5]. For a general ANN, a functional transformation is defined as

    on n-th layer (superscript n represents the layer number), which can map the data unit on i-th neuronfrom the n-th layer to (n+1)-th layer, whereis the weights for the link between i-th neuron on n-th layer and j-th neuron on (n+1)-th layer, andis the bias for the j-th neuron on (n+1)-th layer.

    For materials law described in the principal directions, the iteration for ANN training starts from the input layer with the principal component of the left Cauchy–Green tensor as the input:

    which correspond to the upper and the lower ANNs in Fig. 1,respectively. The two ANNs share the same weights and bias.The mapping from n-th layer to (n+1)-th layer takes

    The outputs at the final layer are the principal components of the Cauchy stress in Eq. (4) as

    where N represents the total number of layers of the ANN.

    亚洲国产欧美在线一区| av天堂中文字幕网| 国产成人freesex在线| 特级一级黄色大片| 小说图片视频综合网站| 中文亚洲av片在线观看爽| 不卡一级毛片| 麻豆久久精品国产亚洲av| 欧美精品一区二区大全| 人人妻人人澡欧美一区二区| 一区福利在线观看| 国产成人精品婷婷| 一级毛片久久久久久久久女| 欧美激情在线99| 99在线视频只有这里精品首页| 亚洲国产精品国产精品| 免费无遮挡裸体视频| 国产av在哪里看| 国产av不卡久久| 免费人成视频x8x8入口观看| 精品久久久久久久久久久久久| 九草在线视频观看| 菩萨蛮人人尽说江南好唐韦庄 | 97人妻精品一区二区三区麻豆| 日韩强制内射视频| 麻豆av噜噜一区二区三区| 一级毛片aaaaaa免费看小| 成人特级黄色片久久久久久久| 久久久久久久久大av| 嫩草影院新地址| 成年免费大片在线观看| 亚洲最大成人中文| 一区福利在线观看| 国产成人a∨麻豆精品| 中文字幕制服av| 不卡视频在线观看欧美| 精品国产三级普通话版| 在线观看午夜福利视频| 精品久久久噜噜| 欧美三级亚洲精品| 精品久久国产蜜桃| 国产日本99.免费观看| 午夜视频国产福利| 国产午夜精品久久久久久一区二区三区| a级毛片免费高清观看在线播放| 一本久久精品| 深夜a级毛片| 我要看日韩黄色一级片| 人妻系列 视频| 国产探花在线观看一区二区| 国产91av在线免费观看| 美女黄网站色视频| 日韩三级伦理在线观看| 久久久久久久久久黄片| 国产视频首页在线观看| 噜噜噜噜噜久久久久久91| 日韩av在线大香蕉| av女优亚洲男人天堂| 国产v大片淫在线免费观看| 丝袜喷水一区| 搞女人的毛片| 夜夜看夜夜爽夜夜摸| 国产午夜精品久久久久久一区二区三区| 亚州av有码| 国产黄色小视频在线观看| 男人和女人高潮做爰伦理| 人妻久久中文字幕网| 免费看光身美女| 婷婷色综合大香蕉| 一级毛片我不卡| 高清在线视频一区二区三区 | 国语自产精品视频在线第100页| 久久精品国产自在天天线| 欧美激情在线99| 亚洲美女搞黄在线观看| 国产一级毛片七仙女欲春2| 国产成年人精品一区二区| 老司机影院成人| 精品国内亚洲2022精品成人| 日本免费一区二区三区高清不卡| 18禁在线播放成人免费| 国产精品福利在线免费观看| a级毛片免费高清观看在线播放| 国产中年淑女户外野战色| 日韩成人伦理影院| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩卡通动漫| 老师上课跳d突然被开到最大视频| 欧美最新免费一区二区三区| 美女国产视频在线观看| 午夜爱爱视频在线播放| 欧美高清成人免费视频www| 最好的美女福利视频网| 免费人成视频x8x8入口观看| 啦啦啦观看免费观看视频高清| 欧美一区二区精品小视频在线| 久久久精品94久久精品| 成人亚洲精品av一区二区| 国语自产精品视频在线第100页| 久久久久久伊人网av| 亚洲欧美清纯卡通| 久久久欧美国产精品| 自拍偷自拍亚洲精品老妇| 免费观看人在逋| 中文字幕免费在线视频6| 亚洲av二区三区四区| 久久中文看片网| 给我免费播放毛片高清在线观看| 日韩大尺度精品在线看网址| 国产真实伦视频高清在线观看| 91在线精品国自产拍蜜月| 内地一区二区视频在线| 边亲边吃奶的免费视频| 欧美性猛交黑人性爽| 干丝袜人妻中文字幕| 九草在线视频观看| АⅤ资源中文在线天堂| 91精品国产九色| 99久久九九国产精品国产免费| 国产精品久久久久久精品电影| 免费观看的影片在线观看| 国产av麻豆久久久久久久| 日韩精品青青久久久久久| 超碰av人人做人人爽久久| 精品日产1卡2卡| 黄色日韩在线| 亚洲18禁久久av| 可以在线观看的亚洲视频| 亚洲欧美成人精品一区二区| 91麻豆精品激情在线观看国产| 1024手机看黄色片| 亚洲欧美日韩东京热| eeuss影院久久| 国模一区二区三区四区视频| 亚洲三级黄色毛片| 黄片wwwwww| 性色avwww在线观看| 国产探花在线观看一区二区| 国产不卡一卡二| 18禁裸乳无遮挡免费网站照片| 大又大粗又爽又黄少妇毛片口| 此物有八面人人有两片| 国产精品久久久久久av不卡| 欧美潮喷喷水| 精品国产三级普通话版| 精品无人区乱码1区二区| 伊人久久精品亚洲午夜| 在线免费观看的www视频| 亚洲成人久久爱视频| 色5月婷婷丁香| 最新中文字幕久久久久| 好男人在线观看高清免费视频| 麻豆一二三区av精品| 亚洲精品日韩av片在线观看| 18禁在线无遮挡免费观看视频| 蜜桃亚洲精品一区二区三区| 99热6这里只有精品| 男人的好看免费观看在线视频| 成年免费大片在线观看| 国产色爽女视频免费观看| 欧美+日韩+精品| 一区二区三区高清视频在线| 丰满的人妻完整版| 成人午夜高清在线视频| 女人被狂操c到高潮| 国产成人aa在线观看| 久久久a久久爽久久v久久| 亚洲经典国产精华液单| 国产 一区精品| 乱人视频在线观看| 狂野欧美白嫩少妇大欣赏| 国产中年淑女户外野战色| 三级毛片av免费| 熟妇人妻久久中文字幕3abv| 精品午夜福利在线看| a级毛色黄片| 三级经典国产精品| 男女边吃奶边做爰视频| 亚洲图色成人| 免费看a级黄色片| 国产精品久久视频播放| 中文资源天堂在线| 亚洲精品色激情综合| 秋霞在线观看毛片| 亚洲国产高清在线一区二区三| 热99re8久久精品国产| 2022亚洲国产成人精品| 久久午夜福利片| 日韩一区二区视频免费看| 国产一级毛片七仙女欲春2| 美女黄网站色视频| 精品日产1卡2卡| 日本黄大片高清| 观看美女的网站| 丝袜喷水一区| 最新中文字幕久久久久| 美女 人体艺术 gogo| 国产精品一区二区三区四区免费观看| a级毛片免费高清观看在线播放| 人妻久久中文字幕网| 1000部很黄的大片| 性插视频无遮挡在线免费观看| 又黄又爽又刺激的免费视频.| 国产极品天堂在线| 波野结衣二区三区在线| 国产国拍精品亚洲av在线观看| 性欧美人与动物交配| 欧美日韩一区二区视频在线观看视频在线 | 午夜a级毛片| 国产人妻一区二区三区在| 久久久久国产网址| 国产一区二区三区在线臀色熟女| 国产成人a区在线观看| 国产午夜精品久久久久久一区二区三区| 插阴视频在线观看视频| 久久精品国产亚洲av涩爱 | 午夜免费男女啪啪视频观看| 国产精品国产三级国产av玫瑰| 桃色一区二区三区在线观看| 麻豆久久精品国产亚洲av| av在线播放精品| 精品国内亚洲2022精品成人| 久久精品国产清高在天天线| 国产单亲对白刺激| 国产爱豆传媒在线观看| 性色avwww在线观看| 欧美潮喷喷水| 97超视频在线观看视频| 亚洲美女搞黄在线观看| 成人三级黄色视频| 国产中年淑女户外野战色| 在线观看免费视频日本深夜| 91久久精品国产一区二区成人| 可以在线观看毛片的网站| 久久精品夜夜夜夜夜久久蜜豆| 最近的中文字幕免费完整| 波野结衣二区三区在线| 免费看美女性在线毛片视频| 波多野结衣巨乳人妻| www.色视频.com| 欧美色欧美亚洲另类二区| 高清午夜精品一区二区三区 | 中文亚洲av片在线观看爽| 青青草视频在线视频观看| 亚洲在线自拍视频| 国产私拍福利视频在线观看| 国产91av在线免费观看| 日本色播在线视频| 日本撒尿小便嘘嘘汇集6| 国产午夜福利久久久久久| 国产高清有码在线观看视频| 成人永久免费在线观看视频| 国产精品爽爽va在线观看网站| 国产乱人偷精品视频| 国产亚洲5aaaaa淫片| 高清毛片免费观看视频网站| 国产精品一区二区在线观看99 | av在线观看视频网站免费| 国产亚洲精品久久久com| 岛国毛片在线播放| 亚洲无线在线观看| 观看免费一级毛片| 日韩制服骚丝袜av| 免费黄网站久久成人精品| 久久久午夜欧美精品| 国产亚洲精品久久久com| 亚洲国产精品合色在线| 免费大片18禁| 亚洲成av人片在线播放无| 黑人高潮一二区| 人妻久久中文字幕网| 国产精品久久久久久亚洲av鲁大| 久久国内精品自在自线图片| 欧美最新免费一区二区三区| 免费人成视频x8x8入口观看| 看免费成人av毛片| 免费观看人在逋| 国产伦精品一区二区三区四那| 成人国产麻豆网| 人妻系列 视频| 国产精品一区二区性色av| 性插视频无遮挡在线免费观看| 亚洲无线观看免费| 我要看日韩黄色一级片| 人人妻人人看人人澡| 亚洲熟妇中文字幕五十中出| 精品久久久久久久久久免费视频| 日韩制服骚丝袜av| 亚洲图色成人| 国产精品av视频在线免费观看| 国产视频内射| 久久久午夜欧美精品| 国产老妇伦熟女老妇高清| 欧美最新免费一区二区三区| 欧美成人a在线观看| 欧美日韩国产亚洲二区| or卡值多少钱| 欧美变态另类bdsm刘玥| 精品久久久久久久久av| 亚洲三级黄色毛片| 国产成人精品婷婷| 日韩大尺度精品在线看网址| 波多野结衣高清作品| 日本在线视频免费播放| 国内揄拍国产精品人妻在线| 亚洲人成网站在线播| 欧美日韩在线观看h| 欧美xxxx性猛交bbbb| 日本黄色视频三级网站网址| 夜夜爽天天搞| 久久久精品大字幕| 久久热精品热| a级毛片a级免费在线| 精品99又大又爽又粗少妇毛片| 国产黄片美女视频| 国产成人精品婷婷| 精品日产1卡2卡| 国产精品综合久久久久久久免费| 一个人观看的视频www高清免费观看| 国产激情偷乱视频一区二区| 精华霜和精华液先用哪个| 国产高清有码在线观看视频| 黄色欧美视频在线观看| 亚洲欧洲国产日韩| 一进一出抽搐动态| 网址你懂的国产日韩在线| 国产一区二区在线av高清观看| 人妻久久中文字幕网| 99久久久亚洲精品蜜臀av| 成人午夜高清在线视频| 国产探花在线观看一区二区| 色综合亚洲欧美另类图片| 人妻少妇偷人精品九色| 变态另类成人亚洲欧美熟女| 成人漫画全彩无遮挡| 直男gayav资源| 欧美又色又爽又黄视频| 日本爱情动作片www.在线观看| 国产色婷婷99| 国产不卡一卡二| 99热全是精品| 女同久久另类99精品国产91| 听说在线观看完整版免费高清| 级片在线观看| 免费看a级黄色片| 午夜福利视频1000在线观看| 欧美日韩国产亚洲二区| 哪里可以看免费的av片| 99国产精品一区二区蜜桃av| 成年av动漫网址| 久久精品人妻少妇| 一个人观看的视频www高清免费观看| 99精品在免费线老司机午夜| 欧美日韩精品成人综合77777| 麻豆国产av国片精品| 欧美激情国产日韩精品一区| 国产精品久久久久久精品电影| 在线免费十八禁| 老熟妇乱子伦视频在线观看| 亚洲av男天堂| 国产亚洲av片在线观看秒播厂 | 在线观看美女被高潮喷水网站| 老师上课跳d突然被开到最大视频| 国产亚洲5aaaaa淫片| 亚洲va在线va天堂va国产| 亚洲无线观看免费| 国产私拍福利视频在线观看| 婷婷色av中文字幕| 1000部很黄的大片| 欧美激情在线99| 日韩一区二区视频免费看| 男女下面进入的视频免费午夜| 中文字幕精品亚洲无线码一区| 九九在线视频观看精品| 18禁在线播放成人免费| 少妇的逼水好多| 免费电影在线观看免费观看| 国产人妻一区二区三区在| 亚洲最大成人中文| 哪里可以看免费的av片| 别揉我奶头 嗯啊视频| 亚洲乱码一区二区免费版| 久久久久性生活片| 美女大奶头视频| 色视频www国产| 村上凉子中文字幕在线| 国产v大片淫在线免费观看| 欧美日韩精品成人综合77777| 欧美成人免费av一区二区三区| eeuss影院久久| 精品99又大又爽又粗少妇毛片| 最新中文字幕久久久久| 亚洲天堂国产精品一区在线| 欧美精品国产亚洲| 天堂av国产一区二区熟女人妻| 久久久久久大精品| 欧美人与善性xxx| 综合色丁香网| 欧美不卡视频在线免费观看| 插阴视频在线观看视频| 亚洲国产高清在线一区二区三| 99久国产av精品国产电影| 身体一侧抽搐| 一级黄片播放器| 最好的美女福利视频网| 午夜福利成人在线免费观看| 久久久久久伊人网av| 丝袜喷水一区| 国产一区二区在线av高清观看| 国产午夜精品一二区理论片| 天美传媒精品一区二区| 一个人看的www免费观看视频| 97热精品久久久久久| 日本黄色视频三级网站网址| 久99久视频精品免费| 欧美又色又爽又黄视频| 国产精品蜜桃在线观看 | 一级黄片播放器| 日本与韩国留学比较| 成人二区视频| 男女做爰动态图高潮gif福利片| 国产精品永久免费网站| 亚洲国产欧美在线一区| 日韩欧美在线乱码| 亚洲七黄色美女视频| 人人妻人人澡人人爽人人夜夜 | 国产精品免费一区二区三区在线| 欧美最黄视频在线播放免费| 国产精品精品国产色婷婷| 内射极品少妇av片p| av视频在线观看入口| 国产精品一区二区在线观看99 | 亚洲国产欧洲综合997久久,| 人人妻人人看人人澡| 午夜亚洲福利在线播放| 黄色日韩在线| 99在线视频只有这里精品首页| 男人舔奶头视频| 老司机影院成人| 国产午夜福利久久久久久| 熟女人妻精品中文字幕| 美女大奶头视频| 欧美色欧美亚洲另类二区| 悠悠久久av| 麻豆成人午夜福利视频| 日本与韩国留学比较| 欧美xxxx性猛交bbbb| 日韩欧美在线乱码| 一级二级三级毛片免费看| 免费看光身美女| 18禁在线无遮挡免费观看视频| 欧美三级亚洲精品| 国产中年淑女户外野战色| 日韩欧美精品v在线| 成年av动漫网址| 国产精品国产三级国产av玫瑰| 美女被艹到高潮喷水动态| 欧美性猛交╳xxx乱大交人| 亚洲国产精品合色在线| 久久国内精品自在自线图片| 波多野结衣高清无吗| 国产v大片淫在线免费观看| www.色视频.com| 国产探花在线观看一区二区| 超碰av人人做人人爽久久| h日本视频在线播放| 午夜精品在线福利| 最好的美女福利视频网| 色尼玛亚洲综合影院| av又黄又爽大尺度在线免费看 | 亚洲色图av天堂| 99久久精品国产国产毛片| 久久精品人妻少妇| 成人亚洲精品av一区二区| 日韩欧美三级三区| 18+在线观看网站| 一区二区三区四区激情视频 | 在线免费观看不下载黄p国产| 欧美日韩在线观看h| 国产精品永久免费网站| 亚洲国产欧美人成| 少妇熟女aⅴ在线视频| 一边摸一边抽搐一进一小说| 日本免费一区二区三区高清不卡| 如何舔出高潮| 国产精品人妻久久久影院| 18+在线观看网站| 91久久精品国产一区二区成人| 亚洲第一区二区三区不卡| 热99re8久久精品国产| 日韩中字成人| 天堂网av新在线| 偷拍熟女少妇极品色| 欧美最新免费一区二区三区| 日韩 亚洲 欧美在线| 亚洲国产精品sss在线观看| 国产精品永久免费网站| 色综合站精品国产| 看十八女毛片水多多多| 简卡轻食公司| 久久精品国产自在天天线| 亚洲av成人精品一区久久| 黄色视频,在线免费观看| 黄色日韩在线| 欧美xxxx性猛交bbbb| 国产不卡一卡二| 亚洲三级黄色毛片| 亚洲av第一区精品v没综合| 日本黄色视频三级网站网址| 久久99热6这里只有精品| 日韩欧美一区二区三区在线观看| 一级毛片aaaaaa免费看小| 亚洲av第一区精品v没综合| 午夜福利在线在线| 又爽又黄无遮挡网站| 欧美日韩精品成人综合77777| av女优亚洲男人天堂| 乱系列少妇在线播放| 高清午夜精品一区二区三区 | 老女人水多毛片| 久久人人爽人人爽人人片va| 看黄色毛片网站| 我要搜黄色片| www.av在线官网国产| 男女视频在线观看网站免费| 变态另类成人亚洲欧美熟女| 日本欧美国产在线视频| 天天躁夜夜躁狠狠久久av| 一级av片app| 日韩制服骚丝袜av| 久久久a久久爽久久v久久| 亚洲内射少妇av| 久久久久久久久中文| 在线观看美女被高潮喷水网站| 久久久久国产网址| 国产精品久久视频播放| 寂寞人妻少妇视频99o| 久久精品夜色国产| 久久99蜜桃精品久久| 中文字幕制服av| www.色视频.com| 联通29元200g的流量卡| 国产一区二区三区av在线 | 国产三级中文精品| 啦啦啦啦在线视频资源| 3wmmmm亚洲av在线观看| 精品99又大又爽又粗少妇毛片| 婷婷色综合大香蕉| 午夜福利成人在线免费观看| 黄片wwwwww| 国内久久婷婷六月综合欲色啪| 国产成人91sexporn| 又爽又黄a免费视频| 日韩欧美三级三区| 联通29元200g的流量卡| 亚洲无线在线观看| 国产午夜精品论理片| 一区二区三区四区激情视频 | 免费搜索国产男女视频| av天堂中文字幕网| 久久国内精品自在自线图片| 国产爱豆传媒在线观看| 久久久久性生活片| 国产一区二区在线观看日韩| 亚洲国产精品国产精品| 国产精品人妻久久久影院| 99久久精品一区二区三区| 亚洲最大成人av| 免费看光身美女| 中国美女看黄片| 色哟哟哟哟哟哟| 热99re8久久精品国产| 91aial.com中文字幕在线观看| 欧美极品一区二区三区四区| 亚洲av男天堂| 免费人成在线观看视频色| 国产一区二区三区在线臀色熟女| 伊人久久精品亚洲午夜| 欧美成人一区二区免费高清观看| 国产乱人视频| 一本精品99久久精品77| 精品免费久久久久久久清纯| 久久热精品热| 一本精品99久久精品77| 嫩草影院新地址| 精品人妻偷拍中文字幕| 亚洲天堂国产精品一区在线| 精品免费久久久久久久清纯| 午夜福利高清视频| 一本精品99久久精品77| 日本av手机在线免费观看| 日韩欧美 国产精品| 亚洲国产精品国产精品| 综合色丁香网| 午夜福利高清视频| 国产综合懂色| 校园人妻丝袜中文字幕| 国产乱人视频| 亚洲国产精品成人久久小说 | 国产欧美日韩精品一区二区| 欧美xxxx黑人xx丫x性爽| 中文欧美无线码| 联通29元200g的流量卡| 18禁在线无遮挡免费观看视频| 国产精品福利在线免费观看| 啦啦啦韩国在线观看视频| 97热精品久久久久久| 亚洲国产精品sss在线观看| 国产精品野战在线观看| 成人无遮挡网站| 久久国产乱子免费精品| 看片在线看免费视频| 午夜福利视频1000在线观看| 在线观看一区二区三区| 尾随美女入室|