• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    兩種形貌納米Fe2O3對(duì)TKX-50熱分解的催化性能研究

    2020-06-30 09:46:54張明趙鳳起楊燕京李輝張建侃馬文喆高紅旭李娜
    物理化學(xué)學(xué)報(bào) 2020年6期
    關(guān)鍵詞:燕京李輝張明

    張明,趙鳳起,楊燕京,李輝,張建侃,馬文喆,高紅旭,李娜

    西安近代化學(xué)研究所,燃燒與爆炸技術(shù)重點(diǎn)實(shí)驗(yàn)室,西安 710065

    1 Introduction

    Energy components used in solid rocket propellants help to improve the energy performance, and their thermal decomposition characteristics will significantly affect the combustion properties of propellants1-3. Owing to the favorable physical and chemical stability, ammonium perchlorate (AP) is a commonly used oxidizer of solid propellant. However,hydrogen chloride formed from AP decomposition could corrode the nozzle of engine, and hydrochloric acid formed from the reaction between hydrogen chloride and air has a great harm to the environment4-6. Replacing AP with high energy, low sensitivity and environment friendly energetic materials is an inevitable development trend in the field of solid rocket propellants7-9.

    As a kind of energetic material with both high energy and low sensitivity, 5,5’-bistetrazole-1,1’-diolate (TKX-50) can not only improve the energy and safety characteristics of solid propellant,but also avoid the drawbacks of equipment corrosion and environmental pollution caused by AP10,11. However, most of the current studies focus on the thermal decomposition and combustion characteristics of AP based propellant, while the thermal decomposition and combustion performances of TKX-50 are seldom reported.

    Burning catalyst is another important component of solid propellant, which could significantly improve the burning rate of propellant and reduce the pressure exponent. Nanometer transition metal oxides used as burning catalysts can effectively promote the thermal decomposition of energetic components, and thus enhance the combustion properties of solid propellants12-15.Among various metal oxides, nano-Fe2O3presents excellent catalytic activity on the thermal decomposition of energetic ionic salts including 5,5’-bistetrazole-1,1’-diolate (TKX-50)16-18.Previous studies confirmed the reduction of the thermal decomposition peak temperature and apparent activation energy of TKX-50 after mixed with spherical Fe2O319. However, the catalytic effect comparison of the Fe2O3with different morphologies for thermal decomposition of TKX-50 has not been studied.

    Fig. 1 Illustration of Fe2O3 fabrication and used for thermal decomposition of TKX-50.

    Based on this, shape-dependent catalytic activity of nano-Fe2O3 for thermal decomposition of TKX-50 were studied. As can be seen from Fig. 1, the Fe2O3samples with spherical and tubular microstructures were preparedviathe simple one-pot solvothermal method and characterized using SEM, TEM, XRD,FT-IR and XPS, respectively. Then, the catalytic action of Fe2O3(spherical and tubular microstructures) on the thermal decomposition of TKX-50 were studied by TG and DSC method.The apparent activation energies of TKX-50 were also calculated according to the DSC data. Besides, the possible catalytic mechanism of Fe2O3for thermal decomposition of TKX-50 was also analyzed.

    2 Experimental and computational section

    2.1 Materials

    All the chemicals used were analytical grade and used without further purification. Ferric nitrate hydrate (Fe(NO3)3·9H2O,99.99%), ferric trichloride hexahydrate (FeCl3·6H2O, 99.9%)and sodium dihydrogen phosphate (NaH2PO4, 99%) were purchased from Aladdin Inc. Ammonia (FuYu Chemical Co.,Ltd. of TianJin, 25%) was used to adjust pH value. Distilled water and ethanol (EA) (Xi’an Chemical Reagent Factory, 95%)were used for Fe2O3samples fabrication. TKX-50 (99.5%) was obtained from Xi’an Modern Chemistry Research Institute.

    2.2 Preparation of spherical Fe2O3

    Certain amounts of Fe(NO3)3·9H2O (0.2 g) was dissolved in 60 mL distilled water under magnetic agitation. Then, the pH value of the solution was adjusted to 9-10 by dropping ammonia.The reactants were converted into 100 mL Teflon-sealed autoclave and heated for 24 h at 180 °C. After cooling, the products were washed several times by distilled water and absolute alcohol and cured at 60 °C in a vacuum oven over night.The obtained powder was ground for further characterization18.

    2.3 Preparation of tubular Fe2O3

    Certain amounts of FeCl3·6H2O (0.3745 g) was dissolved in 30 mL distilled water. Then, the 30 mL solution of sodium dihydrogen phosphate (NaH2PO4, 2.5 mmol·L?1) was mixed with the above solution under magnetic agitation. The reactants were transformed into 100 mL Teflon-sealed autoclave and heated at 200 °C for 44 h. After cooling, the products were washed several times by distilled water and absolute alcohol and cured at 60 °C in a vacuum oven over night. The obtained powder was ground for further characterization.

    2.4 Characterization

    The morphology and size of Fe2O3 were characterized by scanning electron microscope (SEM, Quanta600,Quantachrome, America) and transmission electron microscopy(TEM, Tecnai G2 F20, FEI, America). The structure and composition were analyzed using X-ray diffraction (XRD,EMPYREAN, PANayltical, Netherlands), Fourier transform infrared spectroscopy (FT-IR, Tensor 27, Bruker, Germany) and X-ray photoelectron spectroscopy (XPS, NEXSA, Thermo scientific, UK) methods. XRD were collected with CuKαsource in the measurement angle range 2θ= 5°-90° with a scan rate of 8 (°)·min?1. The catalytic activities of Fe2O3samples on the thermal decomposition of TKX-50 (the mass ratio of TKX-50 to Fe2O3is 10) were studied by differential scanning calorimeter(DSC, 200 F3, NETZSCH, Germany) and TG-DSC (NETZSCH STA 449C with TASC 414/4 controller, Germany) with a heating rate of 5, 10, 15 and 20 K·min?1, respectively (N2flow rate of 50 mL·min?1, sample mass of (0.5 ± 0.2) mg).Iso-conversional methods (Kissinger and Flynn-Wall-Ozawa) were employed to obtain the activation energies of TKX-50 before and after mixed with different Fe2O3samples (Eqs. (1) and (2))20-22.

    HereEis activation energy;Tis temperature;βis heating rate;Ris universal gas constant;Ais pre-exponential factor;

    3 Results and discussion

    3.1 Morphology and size characterization

    The morphologies and sizes of Fe2O3samples were characterized using SEM and TEM instruments, and the results were shown in Fig. 2. The SEM results indicated that the Fe2O3samples with spherical and tubular microstructures were successfully fabricated. The spherical Fe2O3sample is composed of agglomerated Fe2O3nano-particles with average particle size of 110 nm. SEM and low-magnification TEM results showed the hollow structure of the tubular Fe2O3sample with an average diameter of 120 nm and a length about 200 nm. The HRTEM images of the spherical and tubular Fe2O3samples were shown in Fig. 2c,f, respectively. Both of them showed clear lattice fringes with the inter planar distance of 0.368 nm, which can be indexed to the (012) plane of the hexahedron Fe2O3structure.

    3.2 Composition and structure characterization

    Fig. 2 SEM (a, d), TEM (b, e) and HRTEM (c, f) images of spherical (a-c) and tubular (d-f) Fe2O3 samples.

    XRD results confirmed the successful fabrication of spherical and tubular Fe2O3using solvothermal methods (Fig. 3). The diffraction peaks of Fe2O3appear at 24.2°, 33.2°, 35.6°, 40.9°,49.5°, 54.1°, 62.4°, and 64.0°, which correspond well with the crystal planes of (012), (104), (110), (113), (024), (116), (214)and (300) of hematite (JCPDS No. 33-0664)23. Besides, there are no unknown crystalline phases and impurities in the spherical and tubular Fe2O3samples. Average crystallite size of the spherical and tubular Fe2O3samples were calculated using(d110) according Scherrer’s equation. The calculation indicated that the average crystallite sizes of spherical and tubular Fe2O3samples are 28.65 and 30.33 nm, respectively.

    Fig. 3 XRD results of spherical and tubular Fe2O3 samples.

    FT-IR measurement was also conducted to investigate the composition of Fe2O3, and the corresponding spectra are shown in Fig. 4. For both spherical and tubular Fe2O3samples,absorption peaks appeared around 3500 cm?1and 1650 cm?1deriving from the O―H stretching vibration and bending vibration of adsorbed water molecules, respectively.Additionally, strong peaks at 564 cm?1and 477 cm?1(derived from the stretching vibration of Fe―O) consist well with the previous study that the peaks of Fe―O located around 580 cm?1and 470 cm?124. The peaks appeared around 1040 cm?1deriving from the Fe―O bending vibration, and the difference between spherical and tubular Fe2O3may result from the different fabrication method25.

    XPS was carried out to study the surface chemical composition of spherical and tubular Fe2O3samples, and the results were shown in Fig. 5. The wide scan XPS confirmed the existence of Fe and O elements in both Fe2O3samples. The peaks at 711 and 725 eV appeared in spherical Fe2O3sample are related to Fe 2p3/2and Fe 2p1/2, providing clear evidence for the existence of Fe3+. Besides, the accompanying satellite peaks of Fe 2p3/2at 719.0 eV also confirm the existence of Fe3+26.

    Fig. 4 FTIR results of spherical and tubular Fe2O3 samples.

    3.3 Catalytic performance

    3.3.1 DSC analysis

    Fig. 5 XPS results of spherical and tubular Fe2O3 samples.

    Fig. 6 DSC curves of pristine TKX-50, TKX-50 mixed withs pherical and tubular Fe2O3 at different heating rates.

    The catalytic performance of spherical and tubular Fe2O3samples for thermal decomposition of TKX-50 was investigated by DSC, and the results were shown in Fig. 6. The shape dependence of Fe2O3on the thermal decomposition peak temperature of TKX-50 was explored according to the DSC curves. DSC curves of pristine TKX-50 contains two exothermic decomposition peaks appeared at 509.95 K and 533.95 K, which correspond to the decomposition processes of TKX-5022.

    As can be seen from Fig. 6, theTFDPand the second thermal decomposition peak temperature (TSDP) of TKX-50 decreased obviously after mixed with spherical and tubular Fe2O3(listed in Table 1). TheTFDP(TSDP) of TKX-50 + Fe2O3(spherical) and TKX-50 + Fe2O3 (tubular) samples are decreased by 26.3 (30.1)and 36.5 K (40.9) in comparison with the pristine TKX-50 at 10 K·min?1. The better catalytic activity of tubular Fe2O3is resulting from its hollow structure, which can provide more active sites are beneficial for the thermal decomposition of TKX-50.

    3.3.2 TG and DTG analyses

    The TG and the corresponding DTG curves of TKX-50 before and after mixed with different Fe2O3samples at 10 K·min?1were shown in Fig. 7. The decomposition process can be divided into two stages as shown in the TG and DTG curves. The TG results indicated that the mass loss of pristine TKX-50 after the first decomposition is 81.80%. The total mass loss until 450 °C is 95.20%, which suggests that the decomposition of TKX-50 is nearly complete. After the addition of Fe2O3, the reduction of mass loss can be attributed to the addition of Fe2O3. Additionally,the advanced mass loss of TKX-50 also showed the catalytic effect of Fe2O3for thermal decomposition of TKX-50. As shown in Fig. 7, tubular Fe2O3 possessed better catalytic activity than spherical Fe2O3, which coincide with the DSC results.

    3.3.3 Activation energy

    The activation energies (Ea) of TKX-50 thermal decomposition mixed with the Fe2O3samples were evaluated by Kissinger and Ozawa’s methods using DSC data, and the results were shown in Fig. 8. The results showed that the activation energies calculated by Kissinger method are in good agreement with the Ozawa results. Besides, both spherical and tubular Fe2O3can effectively reduce theEaof TKX-50 thermal decomposition, and theEawas significantly reduced after mixed with the tubular Fe2O3. Combined with the DSC, TG-DTG and activation energy results, both Fe2O3 could effectively promote the thermal decomposition of TKX-50, and the tubular Fe2O3presents better catalytic activity than spherical Fe2O3.

    3.4 Catalytic mechanism analysis

    The thermal decomposition of TKX-50 involved several processes including protonation, hydroxylamine decomposition,breaking of the tetrazole ring and the formation of stable products (see Fig. 1). First of all, the protons are transferred from hydroxylamine to tetrazole ring. The decomposition of hydroxylamine corresponds to the initial stage of exothermic decomposition. After that, the N―N bonds in the tetrazole ring are broken to form nitrogen and intermediate products. The process corresponding to the first decomposition peak of TKX-50 is accompanied by rapid heat release. Finally, the intermediates decomposed into stable products, corresponding to the second decomposition peak of TKX-5022,26,27.

    Table 1 Thermal decomposition peak temperatures of TKX-50 at different heating rates.

    Fig. 7 TG-DTG curves of TKX-50 before and after mixed with different Fe2O3 samples at 10 K·min?1.

    Fig. 8 Activation energy of TKX-50 decomposition obtained from DSC data by iso-conversional methods.

    DSC curves indicated that the spherical and tubular Fe2O3samples not only affect the initial stage of thermolysis, but also play a significant role for tetrazole ring breaking. Besides, the catalytic effect of Fe2O3 samples on tetrazole ring breaking resulted in an obvious reduction ofTFDPandEa. Combined with DSC and SEM results, the better catalytic activity of tubular Fe2O3 sample may results from the hollow structure, which is beneficial for the thermal decomposition process of TKX-50.

    4 Conclusions

    The spherical and tubular Fe2O3particles were successfully fabricatedviathe solvothermal method, and the catalytic action of the nano-Fe2O3for thermal decomposition of TKX-50 were studied according DSC and TG-DTG curves. SEM and TEM results showed the hollow structure of tubular Fe2O3 with an average diameter of 120 nm and a length about 200 nm. DSC and TG-DTG results indicated that the tubular Fe2O3presents better catalytic activity for TKX-50 thermal decomposition. The first thermal decomposition peak temperature of TKX-50 were reduced by 36.5 K and 26.3 K in the presence of tubular Fe2O3 and spherical Fe2O3, respectively. Besides, the activation energies of TKX-50 reduced obviously after mixed with Fe2O3samples, and tubular Fe2O3possesses better effect than spherical Fe2O3sample. The better catalytic activity of the tubular Fe2O3is attributed to the hollow structure, which owns more active site are beneficial for TKX-50 thermal decomposition.

    猜你喜歡
    燕京李輝張明
    憶燕京門下
    少林與太極(2023年4期)2023-07-14 07:47:54
    Mechanism of microweld formation and breakage during Cu–Cu wire bonding investigated by molecular dynamics simulation
    Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer*
    Fasudil prevents liver fibrosis via activating natural killer cells and suppressing hepatic stellate cells
    “燕京八絕”之首的景泰藍(lán)色彩研究
    流行色(2018年10期)2018-03-23 03:36:26
    二手貨
    The variations of suspended sediment concentration in Yangtze River Estuary*
    你怎么不向我借錢
    特殊任務(wù)
    張明等
    日日摸夜夜添夜夜添小说| 免费人成视频x8x8入口观看| 欧美日本中文国产一区发布| 国产成年人精品一区二区 | 18禁黄网站禁片午夜丰满| 精品无人区乱码1区二区| 老司机午夜十八禁免费视频| 中出人妻视频一区二区| 国产精品永久免费网站| 国产av一区在线观看免费| 99久久综合精品五月天人人| 三级毛片av免费| 在线av久久热| 久久久精品国产亚洲av高清涩受| 女人精品久久久久毛片| 99久久精品国产亚洲精品| 欧美黄色淫秽网站| √禁漫天堂资源中文www| 中文字幕最新亚洲高清| 一级毛片高清免费大全| 曰老女人黄片| 悠悠久久av| 色在线成人网| 久久狼人影院| 美女高潮到喷水免费观看| 国产精华一区二区三区| 精品欧美一区二区三区在线| 丰满迷人的少妇在线观看| 黄色丝袜av网址大全| 后天国语完整版免费观看| 国产蜜桃级精品一区二区三区| 欧美日韩黄片免| 亚洲精品成人av观看孕妇| 男女高潮啪啪啪动态图| 99久久精品国产亚洲精品| 国产单亲对白刺激| 最新美女视频免费是黄的| 亚洲午夜理论影院| 激情在线观看视频在线高清| 久久婷婷成人综合色麻豆| 久久久国产欧美日韩av| 国产蜜桃级精品一区二区三区| 色综合站精品国产| 亚洲aⅴ乱码一区二区在线播放 | 精品第一国产精品| 亚洲自偷自拍图片 自拍| 伊人久久大香线蕉亚洲五| 欧美午夜高清在线| 美女午夜性视频免费| 国产精华一区二区三区| 亚洲七黄色美女视频| 亚洲精品美女久久久久99蜜臀| 日本黄色日本黄色录像| 天堂动漫精品| 免费高清在线观看日韩| 国产精品久久久久久人妻精品电影| 超色免费av| 精品一区二区三区四区五区乱码| 日韩欧美在线二视频| 看片在线看免费视频| 成年版毛片免费区| 好男人电影高清在线观看| 国产精品香港三级国产av潘金莲| 亚洲,欧美精品.| 亚洲九九香蕉| 波多野结衣一区麻豆| 亚洲国产中文字幕在线视频| 亚洲精品av麻豆狂野| 精品国产亚洲在线| 亚洲精品一二三| 久久久久国内视频| 国产精品电影一区二区三区| 纯流量卡能插随身wifi吗| 女生性感内裤真人,穿戴方法视频| 久久香蕉激情| 亚洲中文日韩欧美视频| 国产成人系列免费观看| 免费看十八禁软件| 99精品在免费线老司机午夜| 亚洲精品一区av在线观看| 久久中文字幕一级| 法律面前人人平等表现在哪些方面| 亚洲欧美精品综合一区二区三区| 国产欧美日韩精品亚洲av| 久9热在线精品视频| 黄色怎么调成土黄色| 每晚都被弄得嗷嗷叫到高潮| 国产有黄有色有爽视频| 色综合欧美亚洲国产小说| 在线观看舔阴道视频| 亚洲欧洲精品一区二区精品久久久| 亚洲九九香蕉| 交换朋友夫妻互换小说| 热99re8久久精品国产| 亚洲人成伊人成综合网2020| 99精品久久久久人妻精品| 这个男人来自地球电影免费观看| 国产亚洲欧美98| 精品第一国产精品| 色婷婷久久久亚洲欧美| 免费在线观看影片大全网站| 国产xxxxx性猛交| 欧美日韩中文字幕国产精品一区二区三区 | 国产97色在线日韩免费| 欧美久久黑人一区二区| 9191精品国产免费久久| 久久香蕉精品热| 久久狼人影院| 99在线视频只有这里精品首页| 日日夜夜操网爽| 亚洲全国av大片| 亚洲人成77777在线视频| 国产97色在线日韩免费| 国产精品98久久久久久宅男小说| 中文字幕人妻丝袜一区二区| 一进一出抽搐动态| 亚洲一区中文字幕在线| 亚洲成人精品中文字幕电影 | 一个人免费在线观看的高清视频| 视频区欧美日本亚洲| 中文字幕人妻丝袜制服| 18禁美女被吸乳视频| 黄色 视频免费看| 在线十欧美十亚洲十日本专区| 亚洲一区二区三区色噜噜 | 啦啦啦免费观看视频1| 人人妻人人爽人人添夜夜欢视频| 国产一区二区三区在线臀色熟女 | 水蜜桃什么品种好| 久久欧美精品欧美久久欧美| 波多野结衣高清无吗| 好男人电影高清在线观看| 免费av毛片视频| 淫秽高清视频在线观看| 欧美成人性av电影在线观看| 成人国语在线视频| 在线观看舔阴道视频| 亚洲少妇的诱惑av| 久久久久久久午夜电影 | 国产精品乱码一区二三区的特点 | 国产成人欧美| 国产亚洲精品第一综合不卡| 亚洲精品美女久久久久99蜜臀| 波多野结衣一区麻豆| 免费在线观看日本一区| 女同久久另类99精品国产91| 亚洲少妇的诱惑av| 日韩 欧美 亚洲 中文字幕| 男女床上黄色一级片免费看| 超色免费av| 丁香六月欧美| 欧美黑人精品巨大| 免费在线观看亚洲国产| 国产精品一区二区精品视频观看| 琪琪午夜伦伦电影理论片6080| 中文字幕色久视频| 亚洲成人久久性| 大陆偷拍与自拍| 校园春色视频在线观看| 久久久久久人人人人人| 老鸭窝网址在线观看| 人妻丰满熟妇av一区二区三区| 嫩草影视91久久| 在线看a的网站| av天堂久久9| 大型黄色视频在线免费观看| 亚洲五月天丁香| 久久青草综合色| 午夜影院日韩av| 99国产精品一区二区蜜桃av| 丝袜美足系列| 国产精品免费一区二区三区在线| 午夜老司机福利片| 亚洲精品成人av观看孕妇| 国产一区二区激情短视频| 亚洲成国产人片在线观看| 久热爱精品视频在线9| 在线天堂中文资源库| 成人国语在线视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产欧美一区二区综合| 91精品国产国语对白视频| 美女大奶头视频| 超色免费av| 精品卡一卡二卡四卡免费| 久久狼人影院| 精品久久久久久电影网| 丰满饥渴人妻一区二区三| 91成年电影在线观看| 成人三级做爰电影| 久久欧美精品欧美久久欧美| a在线观看视频网站| 麻豆一二三区av精品| av在线播放免费不卡| 香蕉国产在线看| 99国产精品99久久久久| 1024香蕉在线观看| 色综合欧美亚洲国产小说| 国产一区二区三区视频了| 国产亚洲精品久久久久5区| 国产精品久久电影中文字幕| 99国产极品粉嫩在线观看| 亚洲国产欧美一区二区综合| 亚洲国产欧美网| 国产高清激情床上av| 日韩有码中文字幕| 一边摸一边做爽爽视频免费| 免费女性裸体啪啪无遮挡网站| 丰满迷人的少妇在线观看| 亚洲美女黄片视频| 一进一出抽搐动态| 精品一区二区三区视频在线观看免费 | 如日韩欧美国产精品一区二区三区| 9191精品国产免费久久| 免费高清视频大片| 国产单亲对白刺激| 久久久久久人人人人人| 高清毛片免费观看视频网站 | 岛国视频午夜一区免费看| 日本撒尿小便嘘嘘汇集6| 变态另类成人亚洲欧美熟女 | 欧美日韩福利视频一区二区| 亚洲,欧美精品.| 亚洲av美国av| 欧美在线一区亚洲| 老司机午夜十八禁免费视频| 日日爽夜夜爽网站| 老司机靠b影院| 国产午夜精品久久久久久| 中文字幕人妻熟女乱码| 国产在线精品亚洲第一网站| 国产精品一区二区精品视频观看| 精品国产一区二区三区四区第35| 极品教师在线免费播放| 久久久国产成人精品二区 | 91av网站免费观看| 亚洲第一欧美日韩一区二区三区| www日本在线高清视频| 国产高清激情床上av| 18禁裸乳无遮挡免费网站照片 | 精品国产美女av久久久久小说| 中国美女看黄片| av网站在线播放免费| 久久精品国产综合久久久| 免费在线观看影片大全网站| 亚洲激情在线av| 免费人成视频x8x8入口观看| 高清av免费在线| 黄色成人免费大全| 亚洲精品一二三| 国产精品偷伦视频观看了| 国产精品野战在线观看 | 日韩有码中文字幕| 午夜日韩欧美国产| 亚洲乱码一区二区免费版| 免费观看人在逋| 国产精品久久久久久久久免 | 宅男免费午夜| 亚洲最大成人手机在线| 亚洲中文日韩欧美视频| 亚洲国产精品999在线| 成年人黄色毛片网站| 国产毛片a区久久久久| 90打野战视频偷拍视频| 啦啦啦观看免费观看视频高清| 欧美bdsm另类| 国产精品伦人一区二区| 日韩人妻高清精品专区| 国产淫片久久久久久久久 | 国产精品自产拍在线观看55亚洲| 啦啦啦观看免费观看视频高清| 国产高清激情床上av| 麻豆av噜噜一区二区三区| 99久久久亚洲精品蜜臀av| 毛片一级片免费看久久久久 | 欧美最新免费一区二区三区 | 小蜜桃在线观看免费完整版高清| 国产91精品成人一区二区三区| 中出人妻视频一区二区| 久久国产乱子伦精品免费另类| 1024手机看黄色片| 永久网站在线| 国产亚洲av嫩草精品影院| 国内精品一区二区在线观看| 亚洲无线在线观看| 国产v大片淫在线免费观看| 欧美+日韩+精品| 久久热精品热| 亚洲av.av天堂| 久久亚洲真实| 直男gayav资源| 亚洲第一区二区三区不卡| 色吧在线观看| 简卡轻食公司| 91在线观看av| 丁香欧美五月| 色精品久久人妻99蜜桃| 免费观看精品视频网站| 久久人人精品亚洲av| 91在线精品国自产拍蜜月| 成年免费大片在线观看| 婷婷精品国产亚洲av| 亚洲国产欧洲综合997久久,| 91av网一区二区| 欧美日韩中文字幕国产精品一区二区三区| 国产高清三级在线| 最新中文字幕久久久久| 精品人妻视频免费看| 免费av毛片视频| 久久九九热精品免费| 少妇人妻一区二区三区视频| 久久久久国产精品人妻aⅴ院| 久久久久久久久中文| 免费人成在线观看视频色| 极品教师在线视频| 欧美成人一区二区免费高清观看| 天美传媒精品一区二区| 偷拍熟女少妇极品色| 欧美日韩乱码在线| 嫩草影院精品99| 一夜夜www| 老鸭窝网址在线观看| 麻豆国产av国片精品| 国内精品久久久久久久电影| 别揉我奶头~嗯~啊~动态视频| 99热6这里只有精品| 免费黄网站久久成人精品 | 日本成人三级电影网站| 国产乱人视频| 男人舔女人下体高潮全视频| 深爱激情五月婷婷| 别揉我奶头~嗯~啊~动态视频| 蜜桃亚洲精品一区二区三区| 亚洲人成网站高清观看| 激情在线观看视频在线高清| 此物有八面人人有两片| 免费高清视频大片| 69av精品久久久久久| 18禁黄网站禁片午夜丰满| 天堂影院成人在线观看| 真人做人爱边吃奶动态| 日本成人三级电影网站| 丁香欧美五月| 丁香欧美五月| 国产国拍精品亚洲av在线观看| АⅤ资源中文在线天堂| 欧美成人性av电影在线观看| 国产美女午夜福利| 国内精品久久久久精免费| 欧美区成人在线视频| 97人妻精品一区二区三区麻豆| 色综合站精品国产| 麻豆成人午夜福利视频| 怎么达到女性高潮| 欧美日韩瑟瑟在线播放| 亚洲自拍偷在线| 香蕉av资源在线| 琪琪午夜伦伦电影理论片6080| 十八禁人妻一区二区| 亚洲天堂国产精品一区在线| 啦啦啦韩国在线观看视频| 欧美不卡视频在线免费观看| 深夜a级毛片| 欧美性猛交╳xxx乱大交人| 精品一区二区三区视频在线| 一本精品99久久精品77| 国产精品综合久久久久久久免费| 国产精品日韩av在线免费观看| 免费人成视频x8x8入口观看| 热99re8久久精品国产| 亚洲国产日韩欧美精品在线观看| 神马国产精品三级电影在线观看| 亚洲内射少妇av| 高清毛片免费观看视频网站| 中文字幕人妻熟人妻熟丝袜美| 国产免费男女视频| 2021天堂中文幕一二区在线观| 免费观看人在逋| 国产精品一区二区免费欧美| 婷婷精品国产亚洲av在线| 一区二区三区四区激情视频 | 国产高清三级在线| 人妻制服诱惑在线中文字幕| 97人妻精品一区二区三区麻豆| 99国产综合亚洲精品| xxxwww97欧美| 人妻制服诱惑在线中文字幕| 亚洲av免费在线观看| 狂野欧美白嫩少妇大欣赏| 怎么达到女性高潮| 动漫黄色视频在线观看| 亚洲国产精品999在线| 一二三四社区在线视频社区8| 精品免费久久久久久久清纯| 一区二区三区免费毛片| 麻豆成人午夜福利视频| 18禁黄网站禁片午夜丰满| 日本在线视频免费播放| 黄色一级大片看看| 久久久久久久久久黄片| 97超级碰碰碰精品色视频在线观看| 又黄又爽又免费观看的视频| 一区福利在线观看| 久久天躁狠狠躁夜夜2o2o| 国内久久婷婷六月综合欲色啪| 又黄又爽又免费观看的视频| 精品国产三级普通话版| 日韩高清综合在线| 脱女人内裤的视频| 波多野结衣高清无吗| 国产精品精品国产色婷婷| 首页视频小说图片口味搜索| 熟妇人妻久久中文字幕3abv| 亚洲国产精品999在线| 中国美女看黄片| 日日夜夜操网爽| 村上凉子中文字幕在线| 夜夜爽天天搞| 最近中文字幕高清免费大全6 | 我的女老师完整版在线观看| 午夜老司机福利剧场| 欧美国产日韩亚洲一区| 亚洲av二区三区四区| 亚洲内射少妇av| 欧美国产日韩亚洲一区| 日韩免费av在线播放| 国产伦人伦偷精品视频| 精品一区二区三区av网在线观看| 两个人的视频大全免费| 97超视频在线观看视频| 欧美成人一区二区免费高清观看| 久久久久精品国产欧美久久久| 91午夜精品亚洲一区二区三区 | 亚洲av.av天堂| 国产69精品久久久久777片| 99视频精品全部免费 在线| 丰满人妻一区二区三区视频av| 毛片女人毛片| 亚洲欧美日韩高清在线视频| 91字幕亚洲| 久久久精品欧美日韩精品| 国产精品美女特级片免费视频播放器| 麻豆一二三区av精品| 亚洲专区中文字幕在线| 最近中文字幕高清免费大全6 | 99热只有精品国产| 久久久久九九精品影院| 啦啦啦观看免费观看视频高清| 全区人妻精品视频| 变态另类成人亚洲欧美熟女| 久久久久久久久久黄片| 欧美丝袜亚洲另类 | 18+在线观看网站| 国产精品av视频在线免费观看| 免费观看的影片在线观看| 免费在线观看日本一区| 午夜免费成人在线视频| 精品免费久久久久久久清纯| 直男gayav资源| 色哟哟哟哟哟哟| 黄色视频,在线免费观看| 中出人妻视频一区二区| 亚洲av五月六月丁香网| 免费av毛片视频| 国产人妻一区二区三区在| 成人永久免费在线观看视频| avwww免费| 欧美成狂野欧美在线观看| 成人欧美大片| 午夜福利在线在线| 美女cb高潮喷水在线观看| 成年版毛片免费区| 淫秽高清视频在线观看| 观看免费一级毛片| 久久精品久久久久久噜噜老黄 | 成年女人看的毛片在线观看| 九色成人免费人妻av| 欧美高清性xxxxhd video| 亚洲一区二区三区色噜噜| 少妇裸体淫交视频免费看高清| 一本精品99久久精品77| 深夜a级毛片| 亚洲成av人片免费观看| 九九在线视频观看精品| 亚洲av一区综合| 午夜日韩欧美国产| 国产高清视频在线观看网站| 成熟少妇高潮喷水视频| 国产高潮美女av| 99久久无色码亚洲精品果冻| 久久久久久久久中文| 国产精品,欧美在线| 久久精品国产99精品国产亚洲性色| 亚洲成人久久性| 青草久久国产| 在线观看66精品国产| 18美女黄网站色大片免费观看| 亚洲欧美日韩东京热| 国产国拍精品亚洲av在线观看| 亚洲久久久久久中文字幕| av天堂在线播放| 久久久色成人| 国产精品国产高清国产av| 长腿黑丝高跟| 亚洲av不卡在线观看| 午夜福利高清视频| 一个人观看的视频www高清免费观看| 色综合婷婷激情| 国产精品,欧美在线| 色av中文字幕| av天堂在线播放| 精品熟女少妇八av免费久了| 国产白丝娇喘喷水9色精品| 美女xxoo啪啪120秒动态图 | eeuss影院久久| xxxwww97欧美| 大型黄色视频在线免费观看| 青草久久国产| 亚洲专区国产一区二区| 欧美日韩乱码在线| 国产在线男女| 99在线人妻在线中文字幕| 日本在线视频免费播放| 少妇人妻一区二区三区视频| 在线免费观看不下载黄p国产 | 免费av不卡在线播放| 性色av乱码一区二区三区2| 可以在线观看毛片的网站| 亚洲综合色惰| 极品教师在线视频| 国产男靠女视频免费网站| 精品一区二区三区视频在线| 九九在线视频观看精品| 亚洲黑人精品在线| 天天一区二区日本电影三级| 噜噜噜噜噜久久久久久91| 男人的好看免费观看在线视频| 精品福利观看| 免费人成视频x8x8入口观看| 久久精品国产亚洲av涩爱 | 变态另类丝袜制服| 国产精品永久免费网站| 精品久久久久久,| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品久久久久久毛片| 久久6这里有精品| 久久精品国产亚洲av涩爱 | 综合色av麻豆| 久久久久久久久中文| 九色成人免费人妻av| 亚洲在线观看片| 色综合亚洲欧美另类图片| 日韩欧美在线二视频| 欧美在线黄色| 老司机福利观看| 少妇人妻一区二区三区视频| 亚洲欧美激情综合另类| 一进一出抽搐gif免费好疼| 一本一本综合久久| 国产一级毛片七仙女欲春2| 男人的好看免费观看在线视频| 波野结衣二区三区在线| 欧美在线一区亚洲| 欧美日韩瑟瑟在线播放| 免费看美女性在线毛片视频| 国产午夜精品论理片| 国产精品精品国产色婷婷| netflix在线观看网站| 国产亚洲欧美在线一区二区| 国产探花在线观看一区二区| 精品午夜福利在线看| 国产高清三级在线| 久久久久久久久久黄片| 国产在线精品亚洲第一网站| 88av欧美| 久久人妻av系列| 精品午夜福利在线看| 免费观看精品视频网站| 在线免费观看的www视频| av在线老鸭窝| 丰满人妻一区二区三区视频av| 午夜久久久久精精品| 亚洲av美国av| 亚洲在线自拍视频| 免费高清视频大片| 精品国内亚洲2022精品成人| 十八禁网站免费在线| 日日夜夜操网爽| 国产精品日韩av在线免费观看| 精品国内亚洲2022精品成人| 久久精品影院6| 精品国内亚洲2022精品成人| 麻豆国产97在线/欧美| 人妻丰满熟妇av一区二区三区| 亚洲内射少妇av| a级一级毛片免费在线观看| 亚洲国产欧美人成| 午夜视频国产福利| 国产精品日韩av在线免费观看| 亚洲中文日韩欧美视频| a级毛片a级免费在线| 中文字幕av在线有码专区| a级毛片a级免费在线| 91狼人影院| 国产高清有码在线观看视频| 激情在线观看视频在线高清| 欧美成人a在线观看| av天堂中文字幕网| 亚洲最大成人手机在线| av在线蜜桃| 麻豆成人午夜福利视频| 91午夜精品亚洲一区二区三区 | 一级作爱视频免费观看| 成人国产一区最新在线观看| 午夜激情欧美在线|