• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    三維氧化鐵/石墨烯的構(gòu)建及其對CL-20的熱分解性能的影響

    2020-06-30 09:47:00張婷李翠翠王偉郭兆琦龐愛民馬海霞
    物理化學(xué)學(xué)報 2020年6期
    關(guān)鍵詞:馬海霞張婷西北大學(xué)

    張婷 ,李翠翠 ,王偉 ,郭兆琦 ,龐愛民 , ,馬海霞 ,

    1西北大學(xué)化工學(xué)院,西安 710069

    2湖北航天化學(xué)技術(shù)研究所,航天化學(xué)動力技術(shù)重點實驗室,湖北 襄陽441003

    1 Introduction

    Nano metal oxides are of great importance in catalysts, sensor,capacitor and water treatment because of their unique properties,such as surface effect, small size effect and quantum size effect1-3.For explosives or propellants, nano metal oxides are important additives as combustion catalysts, which are mainly utilized in regulating the thermal decomposition behavior and burning rate as well as enhanced combustion performance4-6, which contribute to evidently modify the thermal conductivity, the heat of reaction and energy barrier of pyrolysis of energetic ingredients7. However, nano-materials are easy to aggregate,resulting in the decreased specific surface area and reduced active sites.

    Graphene has large surface area, high conductivity and excellent mechanical properties8. Benefiting from its excellent properties, graphene can be used as an ideal carrier for constructing new supported materials. Coupling metal oxides with graphene forming a binary composite is an effective strategy due to the synergistic effects. And composite materials often exhibit excellent properties, which cannot be achieved with a single component. Research finds that metal oxide/graphene composite, as a new type of combustion catalyst, shows an improved catalytic activity on the pyrolysis of energetic components by the multi-component synergistic effect9.Besides, graphene is also an excellent additive for constructing the insensitive energetic materials, which can be used to improve the safety performance of energetic component10,11.

    Hexanitrohexaazaisowurtzitane (CL-20) is mainly used as energetic component in solid propellants12. However, its high sensitivity limits its application13. Researches mainly focus on the catalytic activity of metal oxides and metal oxides/graphene on the thermal decomposition of some energetic materials(EMs),such as ammonium perchlorate (AP),cyclotrimethylenetrinitramine (RDX), and cyclotetramethylenete-tranitramine (HMX) with less concern on the effect on the sensitivity to EMs14-17. Herein, exploring new materials with increased catalytic activity and decreased sensitivity are highly desirable. Iron oxide is a common metal oxide in nature and the most commonly used combustion catalyst in solid propellants. In our previous work, different morphological iron oxides had been synthesized and used to study the catalytic action on the thermal decomposition of energetic components. Results found that the specific surface area of iron oxide has a vital role in thermal decomposition of nitrocellulose18. Inspired by this study, iron oxide/graphene binary composites with three-dimensional macroporous structure and high specific surface area through the coupling between iron oxide and graphene were constructed by interface self-assembly. On the one hand, these composite materials are expected to promote the thermal decomposition of CL-20. On the other hand, it is expected to improve the safety performance of CL-20. In this study, the thermal behaviour of CL-20 under the catalytic action of Fe2O3/G was investigated systematically.And the safety performance of CL-20 was further evaluated by impact sensitivity test.

    2 Experimental and computational section

    2.1 Reagents and materials

    All of the reagents were analytical reagent (AR) from Sinopharm Chemical Reagent Co., Ltd. and no further purified.CL-20 is explosive hazardous material and provided by Xi’an modern chemistry research institute. Metal shovel is strictly prohibited. Fire and electrostatic discharge should be avoided.

    2.2 Preparation of rFe2O3 and rFe2O3/G

    The synthetic procedures of rFe2O3and rFe2O3/G are as follows: 0.249 g Fe(NO)3·9H2O was dissolved into 10 mL H2O with stirring for 30 min. After that, 2.5 mol·L?1NaOH aqueous solution was dropped into the above solution with constantly stirring. Then the prepared mixture was transferred into 25 mL teflon-lined stainless steel autoclave and maintained at 150 °C for 12 h. At last, the yellow products (FeO(OH)) were obtained and washed with deionized water and absolute ethanol for several times and freezy-dried at ?50 °C for 12 h. Subsequently,the samples were calcined in a muffle furnace at 300 °C for 1 h.The product was labeled as rFe2O3. And then the as-prepared rFe2O3was re-dispersed to 100 mL GO (1 mg·mL?1) aqueous solution in a round bottom flask. The mixture was ultrasonicated for 2 h to obtain a homogeneous solution. 0.8 g NaBH4was added into the solution slowly, and then heated at 80 °C for 2 h with stirring constantly. Finally, the obtained product was washed with deionized water and absolute ethanol and freezydried at ?50 °C for 12 h, which was denoted as rFe2O3/G.

    2.3 Preparation of pFe2O3 and pFe2O3/G

    0.249 g Fe(NO)3·9H2O was dissolved into 10 mL·H2O with stirring for 30 min. Next, 2.5 mol?L?1urea aqueous solution (5 mL) was dropped in the above solution with constant stirring.The mixture was transferred into 25 mL teflon-lined stainless steel autoclave and maintained at 150 °C for 12 h. The products were labeled as pFe2O3. The prepared procedure of pFe2O3/G is the same as rFe2O3/G.

    Fig. 1 (a) XRD patterns of rFe2O3 and rFe2O3/G; (b) TG-DTG curve of FeO(OH); (c) XRD patterns of pFe2O3 and pFe2O3/G; and(d) XPS spectra of Fe 2p of pFe2O3/G and rFe2O3/G.

    2.4 Characterization

    The structures of as-prepared materials were characterized by X-ray diffractometer (XRD) with CuKαradiation (Rigaku,Japan). The morphologies were detected by scanning electron microscope (SEM, Zeiss SIGMA, Germany) and transmission electron microscope (TEM, Zeiss Libra 200FE, Germany).Element composition and valence state were investigated by X-ray photoelectron spectroscopy (XPS, Thermo Scientific, USA).The specific surface area was measured using a N2adsorptiondesorption equipment (TriStar II plus 2.02, USA). The thermal behaviors of the samples were determined using differential scanning calorimetry (DSC, Q2000, TA, USA.) and simultaneous thermal analysis (SDT, Q600, TA, USA) in N2atmosphere.

    3 Results and discussion

    3.1 Characterization of Fe2O3 and Fe2O3/G

    As shown in Fig. 1a, XRD analysis indicates that the precursor is goethite, all diffraction peaks can be assigned to the (110),(120), (130), (101), (024), (111), (210), (140), (141), (240) and(106) lattice planes of FeO(OH) (JCPDS No. 81-0464). Because goethite could form hematite by dehydration, a rod-like Fe2O3can be obtained by the calcination of FeO(OH) at 573.15 K for 1 h (The calcination temperature of FeO(OH) is determined by TG-DTG analysis as shown in Fig. 1b). The diffraction patterns of rFe2O3and rFe2O3/G in Fig. 1a are almost identical. All the diffraction peaks could be indexed as the (012), (104), (110),(113), (024), (116), (122), (214) and (300) lattice planes of α-Fe2O3(JCPDS No. 33-0664)19. The XRD patterns of pFe2O3and pFe2O3/G are shown in Fig. 1c. When sodium hydroxide was replaced by urea, the obtained red products also can be indexed as α-Fe2O3(JCPDS No. 33-0664). After coupling with graphene,the characteristic peaks of rFe2O3/G and pFe2O3/G do not change, indicating the phase composition and crystallinity remain constant. Furthermore, XPS was used to identify the chemical state of Fe in Fe2O3/G composite. The corresponding Fe2pspectra of rFe2O3/G and pFe2O3/G are shown in Fig. 1d.For pFe2O3/G, the peaks located at 710.66 eV and 724.13 eV correspond to the Fe 2p3/2 and Fe 2p1/2, respectively. Two accompanying satellite peaks located at 718.53 eV and 733.05 eV further reveal the existence of Fe3+3,20. And the deconvolution Fe 2ppeaks in pFe2O3/G assigned to Fe 2p1/2and Fe 2p3/2are located 710.84 eV and 724.41 eV, respectively. Two satellite peaks similarly identify the chemical state of Fe is Fe3+.

    Fig. 2 SEM and TEM images of (a, b) FeO(OH) and (c, d) rFe2O3; (e, f) SEM image of GO and rFe2O3/G; and(g, h) particle size distribution of rFe2O3

    Fig. 3 (a, b) SEM image of pFe2O3 and pFe2O3/G; and (c) the statistical distribution of particle size of pFe2O3.

    As shown in Fig. 2a,b, a yellow FeO(OH) with a rod-like morphology can be obtained. The inserted high resolution transmission electron microscope (HRTEM) image shows a distinct lattice fringe with a spacing of 0.41 nm, corresponding to the (110) plane of FeO(OH). It is found that the micromorphology of Fe2O3remains constant after high temperature calcination from Fig. 2c,d. The lattice distance of Fe2O3 is 0.27 nm corresponding to (104) plane as shown in the inserted image of Fig. 2d. Fig. 2e reveals a wrinkled and multilayer structured graphene oxide prepared by improved hummer method. It can be seen that Fe2O3 nanoparticles (NPs) attach on the graphene sheets and form three-dimension porous skeleton structure from Fig. 2f. Graphene could prevent Fe2O3from agglomerating and in turn Fe2O3can restrict the stack of graphene sheets via the interfacial interaction. The particle size distribution patterns of rFe2O3/rGO are shown in Fig. 2g,h. The average width of Fe2O3is about (38.66 ± 1.84) nm and the average length is about(285.47 ± 2.17) nm. When sodium hydroxide was replaced by urea, the granular Fe2O3can be formed and a serious agglomeration phenomenon emerges as shown in Fig. 3a. The average particle size is about (40.69 ± 0.59) nm (Fig. 3c) from the statistical distribution diagram of the particle size of pFe2O3.Fig. 3b shows that the surface of graphene sheet is overlaid by pFe2O3 NPs. As shown in Fig. 4, the hysteresis loops appear at relative highP/P0region, which shows a typical “type IV”isotherm from the adsorption-desorption isotherms of rFe2O3/G21.In comparison with pure rFe2O3, its BET surface area increases from 34.8 to 80.4 m2·g?1. And the N2adsorption-desorption isotherms of pFe2O3/G and pFe2O3 also can be identified as ‘type IV’. According to the Brunauer-Emmett-Teller (BET) equation,pFe2O3/G exhibits a larger surface area (78.1 m2·g?1) than that of pFe2O3(33.6 m2·g?1).

    Fig. 4 Nitrogen adsorption-desorption isotherms of (a) rFe2O3 and rFe2O3/G and (b) pFe2O3 and pFe2O3/G.

    3.2 Catalytic performance

    DSC is used for evaluating the thermal decomposition characteristics and thermal behaviors of energetic materials22.In this work, we firstly studied the catalytic activity of asprepared Fe2O3and Fe2O3/G on the thermal decomposition of CL-20 by DSC at the heating rate (β) of 10 K·min?1. The samples were placed in aluminium pans and sample sizes of about 0.2 mg were employed. Fig. 5a demonstrates pure CL-20 has an exothermic behaviour with a peak temperature ofTp= 525.28 K.And the decomposition temperature of CL-20 decrease to 516.94, 517.59, 519.00 and 519.44 K under the catalytic action of rFe2O3/G, pFe2O3/G, rFe2O3and pFe2O3, respectively. All prepared samples show a degree of catalytic effect for thermal decomposition of CL-20. rFe2O3/G, pFe2O3/G, rFe2O3and pFe2O3decrease the thermal decomposition peak temperature of CL-20 by 8.34, 7.69, 6.28 and 5.84 K, respectively. The corresponding TG curves reveal that the weight loss rate reaches the maximum at 515.04, 515.75, 516.87 and 517.82 K, which are all lower than that of pure CL-20 (Tp= 522.88 K; Fig. 5b).Besides, one can see that rFe2O3/G/CL-20 shows a more enhanced catalytic activity on the thermal decomposition of CL-20 compared with rFe2O3/CL-20. The same trend occurs in pFe2O3/G and pFe2O3, which may be due to the synergistic effect between Fe2O3and graphene.

    Fig. 5 (a) DSC and (b) TG-DTG curves of CL-20 mixed with different catalysts.

    Furthermore, we studied the kinetic parameters [apparent activation energy (Ea, kJ·mol?1), pre-exponential constant(lg(A/s?1))] and the most probable model function of the exothermic decomposition process of prepared samples by DSC at four different heating rates (5, 7.5, 10 and 12.5 K·min?1). The values ofEOcorresponding toα(reaction fraction)were obtaineby Flynn-Wall-Ozawa method (Eq. 1)23and an integral iso-conversional non-linear (NL-INT) method (Eq. 2)24was used to check the validity ofEO. As shown in Fig. 6, the values ofEOare almost equal toEN, which further demonstrates thatEOis credible25,26.

    Substituting forty-one types of kinetic model functions and original data (the temperatures corresponding to the selection range ofαand the corresponding heating rate) into five integral ethods (general integral, universal integral, MacCallum-Tanner,?atava-?esták, Agrawal)27, a newEa can be obtainedviaa logical choice method and is approximately equal with the calculated activation energy obtained from the peak temperature(Tp) by Kissinger method and Ozawa method. And the No. 11 function (Avrami-Erofeev equation:f(a) = 3(1 ?a)[?ln(1 ?a)]2/3) can be selected as the most probable model function for the exothermic decomposition reaction of rFe2O3/G/CL-20 by logical choice method. Substitutingf(α) = 3(1 ?ɑ)[?ln(1 ?ɑ)]2/3,A(1013.76s?1) andEa(157.67 kJ·mol?1) into the (Eq. 3), the most probable kinetic equation (Eq. 4) for rFe2O3/G/CL-20 can be obtained. Besides, we found that the kinetic equations of other prepared samples (CL-20, rFe2O3/CL-20, pFe2O3/G/CL-20 and pFe2O3/CL-20) all follow the No. 11 mechanism function. The detailed data for five prepared samples are listed in Tables 1 and 2.

    Fig. 6 E vs α curves of prepared samples (EO obtained by Ozawa method and EN obtained by NL-INT method).

    Table 1 The calculated thermal decomposition kinetics parameters of CL-20, rFe2O3/G/CL-20 and rFe2O3/CL-20.

    By the contrast analysis, bothEandAof rFe2O3/G/CL-20 are the lowest, indicating rFe2O3/G can facilitate the thermal decomposition of CL-20 more easily. It may be the synergistic action between rFe2O3and graphene which endows the composite a bigger surface area and more pore structure than other samples, and makes it easily adsorb small molecules and ions produced by the decomposition of CL-20.

    Furthermore, we also studied whether rFe2O3/G has high catalytic activity on HMX and RDX. Fig. 7 shows the exothermic decomposition temperatures of pure HMX and RDX are 556.31 and 515.65 K at the heating rate of 10 K·min?1,respectively. After mixed with prepared catalyst, a significant change has been found in the decomposition process of HMX and RDX. There is a distinct endothermic melting peak for pure HMX, which entirely disappears after the addition of rFe2O3/G or rFe2O3(marked with red box). In fact, the degradation of HMX occurs in the melting state. In other word, the liquid phase of HMX is composed of HMX molecules and some decomposition products. When the catalyst was added, the decomposition rate of HMX in the liquid phase was accelerated28,29.The initial decomposition temperature of rFe2O3/G/HMX is lower than that of rFe2O3/HMX and the exothermic decomposition peak temperatures decrease to 551.72 K and 553.18 K from 556.31 K, respectively. In Fig. 7b, though there is no change in the position of the endothermic temperature of RDX, the exothermic peak has an evident change under the addition of rFe2O3or rFe2O3/G. The DSC curve of rFe2O3/RDX show a sharp peak, and a broaden heat flow curve was obtained by the addition of rFe2O3/G with a peak temperature of 507.23 K. It follows that rFe2O3/G can catalyze the exothermic decomposition of CL-20 as well as HMX and RDX.

    Table 2 The calculated thermal decomposition kinetics parameters of pFe2O3/G/CL-20 and pFe2O3/CL-20.

    Fig. 7 DSC curves of (a) rFe2O3/G and (b) rFe2O3 mixed with HMX and RDX.

    The gases products were detected by the real time FTIR during the whole pyrolysis process of CL-20 mixed with rFe2O3/G and rFe2O3, which reveals that a complex mixture forms in Ar atmosphere. And the apparent variations in the IR absorption peaks of the gaseous decomposition products of three samples are shown in Fig. 8 at five typical temperatures (initial temperatureTi, extrapolated onset temperatureTo, peak temperatureTp; the extrapolated end temperatureTeand the final temperatureTf). The main gas phase products can be identified by their characteristic IR absorbances: H2O (3600-3740 cm?1),CO2(2300-2380 cm?1), CO (2150-2194 cm?1), NO2(1593-1635 cm?1), N2O (2200-2300 cm?1) and HCHO (2700-2900 cm?1)23,30,31. At the initial decomposition temperature of CL-20,the H2O and CO2 are formed, along with some amount of NO2.As the temperature increases, the other gases could be detected.One can see that more gases release at the initial temperature of rFe2O3/G/CL-20, including NO2, N2O, H2O and CO2. Notably,for rFe2O3/G/CL-20, the whole decomposition process occurs at a lower temperature compared with CL-20 or rFe2O3/CL-20,indicating that rFe2O3/G can accelerate the bond cleavage of CL-20 faster than rFe2O3.

    Fig. 8 FTIR spectra of the evolved gases at different temperature for (a) CL-20; (b) rFe2O3/CL-20 and (c) rFe2O3/G/CL-20.

    Moreover, the self-accelerating decomposition temperature(TSADTorTe0, K), thermal ignition temperature (Tbe0orTTIT, K),critical thermal explosion temperature (Tb,K), the corresponding entropy of activation (ΔS≠, J·K?1·mol?1), enthalpy of activation(ΔH≠, kJ·mol?1) and free energy of activation (ΔG≠, kJ·mol?1) of the decomposition reaction of prepared samples could be obtained by following Equations (5-9), respectively. According these results, one can evaluate its thermal safety of prepared samples26,27,32.

    whereaandbare coefficients.T=Tp0,Ea=EKandA=AK.kBis the Boltzmann constant (1.381 × 10?23J·K?1) andhis the Planck constant (6.626 × 10?34J·s).

    As shown in Table 3, the values of thermal safety parameters show a decreasing trend with the additions of rFe2O3and rFe2O3/G, respectively. However, the effect of rFe2O3/G on the explosion temperature of CL-20 is lower than that of rFe2O3.Whether this phenomenon is the effect of graphene, we test the impact sensitivity (IS) of prepared samples. A fall hammer apparatus is used for the determination of impact sensitivity using 2 kg drop weight with maximum height of 120 cm. The explosion of CL-20 emerges at a height of 75 cm with an IS value of 14.7 J. The IS values of rFe2O3/CL-20 is 100 cm corresponding to an impact energy of 19.6 J. However,rFe2O3/G/CL-20 shows reduced impact sensitivity (110 cm,21.56 J) than rFe2O3/CL-20. Combined with the calculated explosion temperature, we deduce that the mechanical property and heat-conduction of graphene may responsible for the reducing of internal hot spots10. In other words, the interaction between rFe2O3and graphene is helpful for accelerating the thermal decomposition of CL-20, other than initiate explosion,indicating that graphene-based catalyst has a better thermal safety for storage or transport.

    Table 3 Thermal safety parameters of three prepared samples.

    4 Conclusions

    In summary, Fe2O3 NPs with two morphologies of rod-like and granular were synthesized, and then Fe2O3NPs coupled with graphene sheets were achieved through an interface assembly process. Compared with rFe2O3, pFe2O3and pFe2O3/G,rFe2O3/G showed the best catalytic activation for the pyrolysis of CL-20 with the lowest thermal decomposition temperature(516.94 K), apparent activation energy (157.67 kJ·mol?1) and pre-exponential constant (1013.76s?1). The most probable kinetic model function of rFe2O3/G/CL-20 is classified as Avrami-Erofeev equation:f(ɑ) = 3(1?ɑ)[?ln(1 ?ɑ)]2/3. As a conducting framework for sustaining rFe2O3 NPs, graphene nanosheets endow its abundant pore structure and large surface area, which is helpful to accelerate the thermal decomposition of CL-20.Besides, the decreased impact sensitivity of rFe2O3/G/CL-20 compared with CL-20 may due to the excellent mechanical property and conduction of graphene, which can reduce the internal hot spots. This work may greatly stimulate the practical application of graphene/metal oxides in propellants as catalytic material.

    猜你喜歡
    馬海霞張婷西北大學(xué)
    《暮歸》國畫
    西北大學(xué)木香文學(xué)社
    那年春節(jié)的高跟鞋
    判斷函數(shù)單調(diào)性的幾個途徑
    《西北大學(xué)學(xué)報》(自然科學(xué)版)征稿簡則
    糾結(jié)
    喜劇世界(2017年21期)2017-12-05 13:17:33
    《我們》、《疑惑》
    閱讀理解題的解題策略
    西北大學(xué)博物館
    石油知識(2017年4期)2017-08-31 16:54:22
    小腸多發(fā)鈣化性纖維性假瘤誤診一例
    腹部外科(2016年2期)2016-12-16 16:45:42
    免费观看a级毛片全部| 日日爽夜夜爽网站| 亚洲综合色网址| 亚洲国产精品一区三区| 在现免费观看毛片| 中文字幕亚洲精品专区| 97超碰精品成人国产| 大话2 男鬼变身卡| 两性夫妻黄色片 | 欧美日韩国产mv在线观看视频| 午夜福利视频精品| 秋霞在线观看毛片| 国产色婷婷99| 亚洲国产日韩一区二区| a级毛片在线看网站| 亚洲美女视频黄频| 国产视频首页在线观看| 国产在线视频一区二区| 日韩精品有码人妻一区| 国产成人精品在线电影| 青春草视频在线免费观看| 丰满少妇做爰视频| 色吧在线观看| 日产精品乱码卡一卡2卡三| 男女边摸边吃奶| 亚洲性久久影院| 老女人水多毛片| 国产成人欧美| 在线亚洲精品国产二区图片欧美| 最黄视频免费看| 国产深夜福利视频在线观看| 男女高潮啪啪啪动态图| 国产精品久久久久久久电影| 国产精品一区www在线观看| 亚洲综合色网址| 97超碰精品成人国产| 少妇猛男粗大的猛烈进出视频| 日韩大片免费观看网站| 久久久久国产精品人妻一区二区| 人人妻人人添人人爽欧美一区卜| 男女边吃奶边做爰视频| 精品一区二区三区四区五区乱码 | 日韩中文字幕视频在线看片| 在线观看三级黄色| 国产片内射在线| 久久97久久精品| 国产亚洲精品久久久com| 日韩一区二区三区影片| 乱人伦中国视频| 久久久精品免费免费高清| 国产欧美亚洲国产| 男女下面插进去视频免费观看 | 免费黄色在线免费观看| 国产爽快片一区二区三区| 久久狼人影院| 国产免费现黄频在线看| 日韩电影二区| 天天躁夜夜躁狠狠久久av| 久久女婷五月综合色啪小说| 日本-黄色视频高清免费观看| freevideosex欧美| 看免费成人av毛片| 宅男免费午夜| 成人国产av品久久久| 伦理电影免费视频| 狂野欧美激情性xxxx在线观看| 精品久久国产蜜桃| 久久精品国产综合久久久 | 成人毛片60女人毛片免费| 男女免费视频国产| 精品人妻偷拍中文字幕| 精品久久久久久电影网| 99热这里只有是精品在线观看| av不卡在线播放| 久久97久久精品| 国产一区二区三区av在线| 草草在线视频免费看| 少妇的逼好多水| 91精品国产国语对白视频| 国产精品久久久久久精品电影小说| 女的被弄到高潮叫床怎么办| 青春草视频在线免费观看| 黄色配什么色好看| 精品人妻偷拍中文字幕| 色婷婷av一区二区三区视频| 久久影院123| 国产免费一区二区三区四区乱码| 三级国产精品片| 日本91视频免费播放| 国产不卡av网站在线观看| 夫妻性生交免费视频一级片| 久久久久久久久久久久大奶| 极品人妻少妇av视频| 青春草亚洲视频在线观看| 最后的刺客免费高清国语| 国产亚洲一区二区精品| 亚洲国产毛片av蜜桃av| 亚洲国产日韩一区二区| 男女啪啪激烈高潮av片| 亚洲综合色惰| 天美传媒精品一区二区| 欧美日韩av久久| 波野结衣二区三区在线| 国产有黄有色有爽视频| 两性夫妻黄色片 | 精品久久久精品久久久| 999精品在线视频| 成年女人在线观看亚洲视频| 国产免费现黄频在线看| 国产精品成人在线| 日韩中文字幕视频在线看片| 久久韩国三级中文字幕| 麻豆乱淫一区二区| 巨乳人妻的诱惑在线观看| 成人免费观看视频高清| 国产极品天堂在线| 最近最新中文字幕免费大全7| 日韩成人av中文字幕在线观看| 国产 精品1| 老女人水多毛片| 性高湖久久久久久久久免费观看| 亚洲精品自拍成人| 各种免费的搞黄视频| 啦啦啦视频在线资源免费观看| 秋霞在线观看毛片| 久久97久久精品| 亚洲高清免费不卡视频| 一二三四在线观看免费中文在 | 国产高清不卡午夜福利| 午夜av观看不卡| 日韩大片免费观看网站| 激情五月婷婷亚洲| 日韩免费高清中文字幕av| 欧美日韩亚洲高清精品| 精品人妻在线不人妻| 免费观看在线日韩| 成人国产麻豆网| 制服人妻中文乱码| 夜夜骑夜夜射夜夜干| 亚洲精品国产av蜜桃| 午夜福利,免费看| 一级片免费观看大全| 免费不卡的大黄色大毛片视频在线观看| 一二三四中文在线观看免费高清| 国产精品国产三级国产专区5o| 成年动漫av网址| 国产成人精品在线电影| 男人操女人黄网站| 国产视频首页在线观看| a 毛片基地| 欧美精品高潮呻吟av久久| 色94色欧美一区二区| 成人手机av| 多毛熟女@视频| 色婷婷久久久亚洲欧美| 91成人精品电影| 90打野战视频偷拍视频| 国产熟女午夜一区二区三区| 伦理电影免费视频| 欧美精品亚洲一区二区| 午夜影院在线不卡| 成人亚洲欧美一区二区av| 色网站视频免费| 男人操女人黄网站| 日韩av免费高清视频| 国产成人a∨麻豆精品| 另类精品久久| 日韩在线高清观看一区二区三区| 亚洲国产精品999| 色5月婷婷丁香| 99国产综合亚洲精品| 在线天堂最新版资源| 欧美精品人与动牲交sv欧美| 国产不卡av网站在线观看| 免费女性裸体啪啪无遮挡网站| 亚洲国产精品一区二区三区在线| 纵有疾风起免费观看全集完整版| 成人黄色视频免费在线看| 久久精品国产自在天天线| 99久久中文字幕三级久久日本| 日本猛色少妇xxxxx猛交久久| av国产久精品久网站免费入址| 18禁动态无遮挡网站| 国产日韩欧美在线精品| 国产一区二区三区综合在线观看 | 啦啦啦视频在线资源免费观看| 免费看av在线观看网站| 久久亚洲国产成人精品v| 人人妻人人澡人人爽人人夜夜| 看非洲黑人一级黄片| 丰满迷人的少妇在线观看| av电影中文网址| 久久久a久久爽久久v久久| 精品国产一区二区三区久久久樱花| 我的女老师完整版在线观看| 亚洲精品久久午夜乱码| 精品99又大又爽又粗少妇毛片| 久久女婷五月综合色啪小说| 一区在线观看完整版| 国产成人免费无遮挡视频| 青春草国产在线视频| av视频免费观看在线观看| 超色免费av| 日本av手机在线免费观看| 国产老妇伦熟女老妇高清| 国产免费又黄又爽又色| 久久久久久久久久成人| 国产黄频视频在线观看| 多毛熟女@视频| 97人妻天天添夜夜摸| 蜜桃在线观看..| 视频在线观看一区二区三区| 精品久久蜜臀av无| 大香蕉97超碰在线| 久久人人97超碰香蕉20202| 成年人免费黄色播放视频| 亚洲激情五月婷婷啪啪| 亚洲一级一片aⅴ在线观看| 国内精品宾馆在线| 免费日韩欧美在线观看| 在线观看www视频免费| 老熟女久久久| 久久久久久久久久成人| 在线观看免费日韩欧美大片| 久久ye,这里只有精品| 建设人人有责人人尽责人人享有的| 久久久欧美国产精品| a级毛片在线看网站| 男女边吃奶边做爰视频| 欧美丝袜亚洲另类| 人妻一区二区av| 91aial.com中文字幕在线观看| 男女边吃奶边做爰视频| 免费日韩欧美在线观看| 又黄又爽又刺激的免费视频.| 国产高清不卡午夜福利| 蜜臀久久99精品久久宅男| 777米奇影视久久| 天美传媒精品一区二区| 99久久精品国产国产毛片| 性色av一级| 国产高清三级在线| 99视频精品全部免费 在线| 中文欧美无线码| 成人影院久久| 婷婷成人精品国产| 午夜精品国产一区二区电影| 日韩免费高清中文字幕av| 涩涩av久久男人的天堂| 午夜日本视频在线| 国产精品女同一区二区软件| 美女视频免费永久观看网站| h视频一区二区三区| 亚洲美女黄色视频免费看| 毛片一级片免费看久久久久| 成年av动漫网址| 国产av精品麻豆| 黑人高潮一二区| 亚洲欧美日韩另类电影网站| 黄色配什么色好看| 国产激情久久老熟女| 欧美日韩亚洲高清精品| 99精国产麻豆久久婷婷| 久久久国产一区二区| a级毛色黄片| 91精品三级在线观看| 少妇的丰满在线观看| 久久精品久久久久久久性| 久久精品国产亚洲av涩爱| 波多野结衣一区麻豆| 亚洲国产最新在线播放| 午夜免费观看性视频| 亚洲色图 男人天堂 中文字幕 | 欧美日韩国产mv在线观看视频| 国产精品麻豆人妻色哟哟久久| 成人毛片a级毛片在线播放| 黄片播放在线免费| 国产精品久久久av美女十八| 亚洲av中文av极速乱| 91在线精品国自产拍蜜月| 高清毛片免费看| 国产有黄有色有爽视频| 男女国产视频网站| 亚洲国产精品国产精品| 久久99精品国语久久久| 久久韩国三级中文字幕| 亚洲丝袜综合中文字幕| av播播在线观看一区| 一级a做视频免费观看| 成年人午夜在线观看视频| 男人添女人高潮全过程视频| 一级毛片黄色毛片免费观看视频| 日本vs欧美在线观看视频| 国产成人免费无遮挡视频| 亚洲精品一区蜜桃| 色94色欧美一区二区| 在线观看三级黄色| 亚洲精品第二区| 香蕉丝袜av| 高清不卡的av网站| 国产毛片在线视频| 在线观看国产h片| 亚洲国产看品久久| 一边亲一边摸免费视频| 日韩视频在线欧美| 午夜激情久久久久久久| 国产精品麻豆人妻色哟哟久久| 久久精品久久久久久噜噜老黄| 99热这里只有是精品在线观看| 亚洲精品aⅴ在线观看| 亚洲综合精品二区| 大陆偷拍与自拍| 久久ye,这里只有精品| 亚洲丝袜综合中文字幕| 亚洲欧洲日产国产| 成年动漫av网址| 一本—道久久a久久精品蜜桃钙片| 亚洲国产成人一精品久久久| 一区在线观看完整版| a级毛色黄片| 男女边摸边吃奶| 国产精品嫩草影院av在线观看| 99视频精品全部免费 在线| 毛片一级片免费看久久久久| 国产成人精品在线电影| 国产免费一区二区三区四区乱码| 国产男女超爽视频在线观看| 久久午夜福利片| 看免费成人av毛片| 亚洲色图综合在线观看| 考比视频在线观看| 搡老乐熟女国产| 久久久精品免费免费高清| 久久久国产一区二区| 国产精品久久久av美女十八| 色吧在线观看| 国产日韩欧美在线精品| 国产亚洲欧美精品永久| 美女中出高潮动态图| 18禁裸乳无遮挡动漫免费视频| 一边摸一边做爽爽视频免费| 在线天堂最新版资源| 黑人欧美特级aaaaaa片| 色5月婷婷丁香| 在线观看国产h片| 热99久久久久精品小说推荐| 99久久中文字幕三级久久日本| 97精品久久久久久久久久精品| 伊人亚洲综合成人网| 亚洲欧美日韩卡通动漫| 午夜福利乱码中文字幕| 日韩av免费高清视频| 日韩视频在线欧美| 欧美精品国产亚洲| 日韩精品免费视频一区二区三区 | 久久久久久久大尺度免费视频| av在线观看视频网站免费| 少妇人妻精品综合一区二区| 久久99精品国语久久久| 999精品在线视频| 香蕉国产在线看| 国产精品国产三级国产专区5o| 亚洲一区二区三区欧美精品| 韩国高清视频一区二区三区| 两性夫妻黄色片 | 国产精品 国内视频| 男人爽女人下面视频在线观看| av.在线天堂| 我要看黄色一级片免费的| 九九在线视频观看精品| 高清欧美精品videossex| av.在线天堂| 大香蕉97超碰在线| 精品福利永久在线观看| 国产精品99久久99久久久不卡 | 美女脱内裤让男人舔精品视频| 久久精品国产综合久久久 | 欧美xxxx性猛交bbbb| 日本-黄色视频高清免费观看| 日本欧美国产在线视频| 制服丝袜香蕉在线| 国产精品一区www在线观看| 美女大奶头黄色视频| 精品一区二区三区视频在线| 亚洲激情五月婷婷啪啪| 免费看av在线观看网站| 国产国语露脸激情在线看| 在线亚洲精品国产二区图片欧美| 国产一区二区在线观看av| 亚洲少妇的诱惑av| 亚洲精品乱久久久久久| 夜夜爽夜夜爽视频| 国产亚洲午夜精品一区二区久久| 热99久久久久精品小说推荐| 天美传媒精品一区二区| 国产免费现黄频在线看| 高清欧美精品videossex| 国产成人精品久久久久久| 老司机影院成人| 成人毛片60女人毛片免费| 国产片特级美女逼逼视频| 永久免费av网站大全| 国产精品一区www在线观看| 亚洲激情五月婷婷啪啪| 成人二区视频| 精品一区二区三区四区五区乱码 | 免费观看a级毛片全部| 亚洲国产成人一精品久久久| 色婷婷av一区二区三区视频| 又黄又爽又刺激的免费视频.| 中文精品一卡2卡3卡4更新| 亚洲丝袜综合中文字幕| 国产男人的电影天堂91| 午夜福利乱码中文字幕| 欧美性感艳星| videosex国产| 我要看黄色一级片免费的| 国产免费一级a男人的天堂| 中文乱码字字幕精品一区二区三区| 一级片免费观看大全| 亚洲精品成人av观看孕妇| 只有这里有精品99| 成年av动漫网址| 日韩精品有码人妻一区| 久久人人爽人人片av| 一级毛片黄色毛片免费观看视频| 最近中文字幕高清免费大全6| 成年动漫av网址| 亚洲美女视频黄频| 建设人人有责人人尽责人人享有的| 99视频精品全部免费 在线| 狂野欧美激情性xxxx在线观看| 精品亚洲成a人片在线观看| 91国产中文字幕| 丰满饥渴人妻一区二区三| 亚洲熟女精品中文字幕| 97在线人人人人妻| 久久人人爽人人爽人人片va| 国产不卡av网站在线观看| 黄色怎么调成土黄色| 久久精品人人爽人人爽视色| 免费日韩欧美在线观看| 汤姆久久久久久久影院中文字幕| 亚洲国产成人一精品久久久| 亚洲一级一片aⅴ在线观看| 成年女人在线观看亚洲视频| 国产日韩一区二区三区精品不卡| 黄色配什么色好看| 欧美 亚洲 国产 日韩一| 久久久亚洲精品成人影院| 欧美丝袜亚洲另类| 少妇人妻久久综合中文| 亚洲国产最新在线播放| 久久av网站| 久久 成人 亚洲| 一级毛片黄色毛片免费观看视频| 国产成人aa在线观看| 只有这里有精品99| 99久久人妻综合| 日韩三级伦理在线观看| 欧美老熟妇乱子伦牲交| 黄色毛片三级朝国网站| 大话2 男鬼变身卡| 亚洲精品成人av观看孕妇| 五月伊人婷婷丁香| 老女人水多毛片| 一边亲一边摸免费视频| 久久精品国产亚洲av涩爱| videossex国产| 亚洲av日韩在线播放| 国产成人aa在线观看| 亚洲天堂av无毛| 精品亚洲成a人片在线观看| 精品久久国产蜜桃| 十八禁网站网址无遮挡| 国产1区2区3区精品| 国产av码专区亚洲av| 国产成人aa在线观看| 日本色播在线视频| 91成人精品电影| 高清av免费在线| 在线精品无人区一区二区三| 午夜老司机福利剧场| 国产女主播在线喷水免费视频网站| 激情视频va一区二区三区| 又大又黄又爽视频免费| 日韩电影二区| 看免费av毛片| 国产成人精品久久久久久| 黄网站色视频无遮挡免费观看| 看非洲黑人一级黄片| 国产精品久久久av美女十八| 两个人看的免费小视频| 久久久久久久久久人人人人人人| 欧美国产精品va在线观看不卡| 18在线观看网站| 国产爽快片一区二区三区| 爱豆传媒免费全集在线观看| 久久av网站| 日韩欧美精品免费久久| 久久免费观看电影| 欧美日韩亚洲高清精品| 欧美精品国产亚洲| 日本黄色日本黄色录像| 高清欧美精品videossex| 免费高清在线观看视频在线观看| 亚洲伊人色综图| 国产精品免费大片| 亚洲精品美女久久av网站| 久久国内精品自在自线图片| 这个男人来自地球电影免费观看 | 麻豆乱淫一区二区| 极品人妻少妇av视频| 80岁老熟妇乱子伦牲交| 日日爽夜夜爽网站| 精品福利永久在线观看| 三上悠亚av全集在线观看| 中文精品一卡2卡3卡4更新| 亚洲成av片中文字幕在线观看 | 侵犯人妻中文字幕一二三四区| 69精品国产乱码久久久| 国产精品久久久av美女十八| 色视频在线一区二区三区| 人体艺术视频欧美日本| 侵犯人妻中文字幕一二三四区| 亚洲欧洲国产日韩| 午夜免费观看性视频| 卡戴珊不雅视频在线播放| 亚洲国产精品一区二区三区在线| 香蕉精品网在线| 大码成人一级视频| 亚洲久久久国产精品| 一本大道久久a久久精品| 国产黄频视频在线观看| 丝袜喷水一区| 久久人人爽av亚洲精品天堂| 精品国产露脸久久av麻豆| 99热这里只有是精品在线观看| 亚洲av.av天堂| 国产精品人妻久久久久久| 热re99久久国产66热| 亚洲精品视频女| 韩国精品一区二区三区 | 久久久久久久久久久免费av| 欧美xxxx性猛交bbbb| 国产精品秋霞免费鲁丝片| 午夜免费男女啪啪视频观看| 亚洲婷婷狠狠爱综合网| 午夜日本视频在线| 丁香六月天网| 亚洲情色 制服丝袜| 精品熟女少妇av免费看| 欧美成人精品欧美一级黄| 免费久久久久久久精品成人欧美视频 | 伊人久久国产一区二区| 伦理电影免费视频| 黑丝袜美女国产一区| 青春草国产在线视频| 各种免费的搞黄视频| 亚洲,欧美,日韩| 色婷婷久久久亚洲欧美| 免费在线观看黄色视频的| 国产av一区二区精品久久| 国产成人a∨麻豆精品| 亚洲精品视频女| 新久久久久国产一级毛片| 9色porny在线观看| 午夜福利在线观看免费完整高清在| 免费看av在线观看网站| 国产国拍精品亚洲av在线观看| 国产精品.久久久| 亚洲欧美一区二区三区国产| 日本vs欧美在线观看视频| 久久av网站| 在线 av 中文字幕| 亚洲欧洲国产日韩| 亚洲精品一二三| 日韩免费高清中文字幕av| 波多野结衣一区麻豆| 极品少妇高潮喷水抽搐| 9色porny在线观看| 男女下面插进去视频免费观看 | 国产激情久久老熟女| 色94色欧美一区二区| 三级国产精品片| 亚洲国产欧美在线一区| 黄色配什么色好看| 亚洲欧美日韩另类电影网站| 18禁裸乳无遮挡动漫免费视频| 日本黄色日本黄色录像| 狂野欧美激情性bbbbbb| 亚洲伊人久久精品综合| 人人妻人人爽人人添夜夜欢视频| 国内精品宾馆在线| 亚洲欧洲国产日韩| 久久av网站| 曰老女人黄片| 国产麻豆69| 宅男免费午夜| 久久久久网色| 日韩不卡一区二区三区视频在线| a级片在线免费高清观看视频| 国产在视频线精品| av免费观看日本| 另类亚洲欧美激情| 亚洲四区av| 26uuu在线亚洲综合色| 亚洲精品一二三| 久久久久网色| 色婷婷av一区二区三区视频| 国产探花极品一区二区| 最近的中文字幕免费完整| 爱豆传媒免费全集在线观看| 女性生殖器流出的白浆| 久久精品久久久久久久性|