• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    三維無溶劑含能Ag-MOF的制備、熱分解動力學(xué)及爆炸性能

    2020-06-30 09:47:12喬成芳呂磊許文風(fēng)夏正強周春生陳三平高勝利
    物理化學(xué)學(xué)報 2020年6期
    關(guān)鍵詞:無溶劑商洛陜西省

    喬成芳,呂磊,許文風(fēng),夏正強,周春生,陳三平,*,高勝利,

    1商洛學(xué)院化學(xué)工程與現(xiàn)代材料學(xué)院,陜西省尾礦資源綜合利用重點實驗室,陜西 商洛 726000

    2西北大學(xué)化學(xué)與材料科學(xué)學(xué)院,教育部合成與天然功能分子化學(xué)重點實驗室,西安 710127

    3延安大學(xué)化學(xué)與化工學(xué)院,陜西省化學(xué)反應(yīng)工程重點實驗室,陜西 延安 716000

    1 Introduction

    The development of new energetic materials with high energy,low sensitivity, and good thermal stability is always desirable1.Nowadays the main attention has been paid on the design and synthesis of high energy density single compound explosive,which is formed by combining the high-energy or explosive groups (―NO2, ―ONO2, ―N3,etc.) and energetic skeletons(such as the nitrogen-rich heterocycles: furazan, tetrazole,triazole, tetrazine,etc.) in one molecule2-4. However, the sensitivity of materials rapidly increases with the rising energy density, resulting in the restriction of mass production and extensive application5,6. Recently, energetic metal-organic frameworks (EMOFs) constructed by high-energy ligands bridging metal ions have been demonstrated to be one of the most acceptable strategies to harmonize the above-mentioned con flict between energy and safety performance of energetic materials7,8. On one hand, abundant high-energy ligands are highly aggregated and regularly distributed within limited space by robust coordination bonds to improve the energy density of material and give remarkable heats of detonation9. On the other hand, rich supramolecular interactions (such as H-bonds andππstacking) among the multiple framework components are very beneficial to enhance thermostability and reduce insensitivity10,11. Meanwhile, compared to the 1D and 2D EMOFs, 3D EMOFs generally provide higher structural stability and more superior energetic property owing to their more complicated coordination modes and reinforced structures12.

    However, the assembly process of EMOFs is often controlled by thermodynamics and kinetics, and the resulting structures are always unpredictable. The solvent molecules can randomly diffuse into the channels of EMOFs, occupy the lattice or coordinate to metal centers13. Their existence will undoubtedly reduce the energy density of EMOFs, leading to decreased heats of detonation14. And at the same time, the heat-release of the solvent molecules will easily cause pressure at low temperature region and further reduce the stability of EMOFs15. Therefore,the synthesis of solvent-free EMOF is one of the most efficient ways to obtain energetic materials with excellent performances.

    The latest research of our group has successfully synthesized some solvent-free EMOFs with superior detonation performances and low sensitivity16,17, in which the orthobistetrazole ligands featuring large steric hindrance effect and strong chelation coordination ability play an important role in hindering the solvents to be incorporated in EMOFs. So a nitrogen-rich heterocyclic ligand, 2,3-di(1H-tetrazol-5-yl)pyrazine (H2DTPZ), is designed and synthesized to construct the EMOFs based on the following three reasons: i) a high nitrogen content of 65% provides the energy source of EMOF;ii) the ten nitrogen atoms act as strong multidentate coordination sites to occupy the coordination sphere of metal center and prevent the coordination of solvent molecules; iii) the noncoplanar torsions between pyrazine and tetrazole rings are beneficial to produce large steric hindrance or interpenetration for reducing the available void and impeding lattice solvents.Herein, a 3D solvent-free EMOF, [Ag2(DTPZ)]n(1), is synthesized under hydrothermal conditions by the reaction of H2DTPZ ligand and silver(I) ions. The crystal structure, thermal stability, non-isothermal kinetics analysis of the decomposition process, and corresponding thermodynamic parameter of 1 are discussed in detail. Additionally, the detonation and safety performance show that 1 is insensitive to impact and friction, and the detonation performance is superior to that of TNT. The results suggest that the 3D solvent-free EMOFs are promising high energy density materials and could be used in the field of explosives and propellants.

    2 Experimental section

    2.1 Materials and instruments

    Caution! H2DTPZ and compound 1 are hazardous materials,explosions of which may occur in certain conditions.Appropriate safety precautions such as the use of safety glasses,face shields and plastic spatulas should be taken during the experiments, especially when the compounds are prepared on a large scale.

    All chemicals were of analytical grade, purchased from commercial sources and used without further purification.H2DTPZ was synthesized according to the published procedures18. Elemental analyses of C, H and N were performed on a Vario EL III analyzer (Elementar, Germany). Infrared (IR)spectra were recorded on a Tensor 27 spectrometer (Bruker Optics, Ettlingen, Germany) with KBr pellets (4000-400 cm?1).Powder X-ray diffraction (PXRD) measurements were performed on a Rigaku RU200 diffractometer (Rigaku Corporation, Japan) (CuKα,λ= 0.15406 nm).Thermogravimetric analysis (TGA) was conducted on a Netzsch STA 449C instrument (Germany) under a N2atmosphere with a heating rate of 10 °C·min?1from ambient temperature up to 800 °C. The differential scanning calorimetry (DSC) experiment was performed on a CDR-4P thermal analyzer of Shanghai Balance Instrument factory (calibrated by standard pure indium and zinc) from 30 to 500 °C in a nitrogen flow. The sensitivity to impact stimuli was determined by fall hammer apparatus applying standard staircase method using a 2 kg drop weight and the results were reported in terms of height for 50% probability of explosion (h50%)19. The friction sensitivity was determined on a Julius Peter’s apparatus by following the BAM method20. The constant-volume combustion energy of the compound was determined using a precise rotating-bomb calorimeter (RBC-type II, Mianyang Zhongwu Thermal Analysis Instrument Co.LTD, China)21.

    2.2 Synthesis of [Ag2(DTPZ)]n (1)

    A mixture of H2DTPZ (5.4 mg, 0.025 mmol), AgNO3 (8.5 mg,0.05 mmol) in H2O (8 mL) was sealed in a 15 mL Teflon-liner stainless autoclave and heated at 160 °C for 72 h. After cooling to room temperature at a rate of 5 °C·h?1, yellow rod-shaped crystals were obtained (yield: 51%, based on AgI). Anal. Calcd.for AgC3HN5(%): C, 16.76; H, 0.47; N, 32.58 Found: C, 16.69;H, 0.89; N, 32.78. IR (KBr, cm?1): 3493s, 2270w, 1720w, 1630s,1481w, 1150m, 1020w, 752w, 691m, 514w. The phase purity of the bulk sample of 1 was verified by the PXRD patterns (Fig. S1,in Supporting Information).

    2.3 X-ray crystallography

    Table 1 Crystallographic data for the compound 1.

    Single-crystal XRD data were collected on a Bruker Smart Apex CCD diffractometer equipped with graphite monochromatized MoKαradiation source (λ= 0.071073 nm)usingωandφscan mode. The crystal structure was solved by direct methods and refined with full-matrix least-squares refinements based onF2using SHELXS-97 and SHELXL-9722,23.All non-hydrogen atoms were located using subsequent Fourierdifference methods and refined anisotropically. Hydrogen atoms were placed in calculated positions. The Crystallographic data of compound 1 are summarized in Table 1, selected bond lengths and angles are shown in Table 2. CCDC 1544023 contains the supplementary crystallographic data of 1. These data can be obtained free of charge from The Cambridge Crystallographic Data Centreviawww.ccdc.cam.ac.uk/data_request/cif; e-mail:deposit@ccdc.cam.ac.uk.

    Table 2 Selected bond lengths (nm) and bond angles (o) for 1.

    Fig. 1 (a) Coordination environment of AgI ions.(b) Coordination model of the DTPZ2? ligand. 3D frameworks of compound 1 viewed along the a axis (c) and b axis (d).

    3 Results and discussion

    3.1 Structural description

    Singe-crystal X-ray diffraction reveals that compound 1 crystallizes in the monoclinic space groupC2/c. The asymmetric unit consists of one crystallographically independent AgIcenter and half deprotonated DTPZ2?anion, and there is no solvent molecule in the structure. As shown in Fig. 1a, each AgIion is coordinated by three N atoms of three independent tetrazole rings from three different DTPZ2?ligands and one N atom of pyrazine ring from another DTPZ2?ligand to furnish a distorted tetrahedral geometry. The Ag-N distances are ranging from 0.2214(3) to 0.2507(3) nm, and the coordination angles around AgIcenters vary from 86.32(11)° to 139.63(12)° (Table 2),which are both within normal ranges and comparable with those observed in the reported AgI-tetrazole compounds24,25.Moreover, the configuration of DTPZ2?twists heavily, and the dihedral angle between two tetrazole rings is 46.7°, the dihedral angle between tetrazole ring and pyrazine plane is 45.5°. Each DTPZ2?ligand links eight AgIcenters with an octadentate mode(Fig. 1b) extending in all three dimensions to form a 3D microporous EMOFs (Fig. 1c). Notably, the strongπ-πstacking interactions [centroid-centroid distance = 0.34461(1) nm]between the parallel distributed tetrazole rings (C1N1N2N3N4)from different DTPZ2?ligands can be observed (Fig. S2), which could benefit the stability of framework. Along theb-axis, 1D rhombus channels with the window size of 3.44 ? × 3.50 ? can be observed. PLATON analysis shows that the effective free volume of EMOFs is 7.8% of the crystal volume26. Such a low porosity value could be interpreted by the flexible torsion of DTPZ2?, and the large steric hindrance occupies the most effective void of 1.

    3.2 Thermal stability

    Thermal stability is an important evaluation index for energetic materials. The thermal decomposition behavior of 1 was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) technology. As shown in Fig. 2a, the solvent-free framework remains stable up to 345.9 °C and then undergoes one-step of fast weight loss within the short temperature range of 346-426 °C, suggesting good thermal stability and potential explosive characteristic of 1. The rapid weight loss can be attributed to the decomposition of the organic ligand and the collapse of framework. The remaining substance still experiences continuous very slow mass losses and does not stop until 800 °C. The high thermal stability of 1 may be due to the solvent-free characteristics of the system and abundant robust coordination bonds and strongπ-πstacking interactions within the 3D framework.

    Fig. 2 The TG (a) and DSC (b) curves of 1.

    For the DSC curve of 1, an intense exothermic process occuring at 345.5 °C and ends at 422.2 °C with a peak temperature of 385.5 °C represents the sharp energy release of the energetic components in 1, which is almost identical to the phenomenon observed on the TG curve (Fig. 2b). The sharp exothermic peak at 385.5 °C on DSC curve corresponds to the fastest decomposition process.

    Table 3 Thermokinetic and apparent thermodynamic parameters of the exothermic decomposition reaction of 1.

    3.3 Non-isothermal thermoanalysis kinetics

    The thermokinetics parameters of the decomposition process of 1 were discussed by the widely used Kissinger and Ozawa-Doyle methods27,28. The Kissinger (Eq. 1) and Ozawa-Doyle(Eq. 2) equations are as follows, respectively:

    whereEis the apparent activation energy (kJ·mol?1),Ais the pre-exponential factor (s?1),βis the linear heating rate (K·min?1),Tpis the peak temperature (K),Ris the gas constant (8.314 J·mol?1·K?1) andCis a constant. Based on the exothermic peak temperatures measured at four different heating rates of 2, 5, 8,and 10 K·min?1(Fig. S3), the apparent activation energiesEkandEo, the pre-exponential factorAk, and the linear correlation coefficientsRkandRoare listed in Table 3. Apparently, the decomposition peak temperatureTpincreases with the increase of heating rate, and the apparent activation energies calculated by the two methods basically agree with each other and both are within the normal range of deviation allowed. The Arrhenius equation can further be expressed by using the obtainedEa(the average ofEkandEo) and the lgAvalues, as follows: lgk= 19.67? 270.52 × l03/(2.303RT), which can be used to estimate the rate constant of the decomposition process of 1.

    The important thermodynamic parameters, the entropy of activation (ΔS≠), the enthalpy of activation (ΔH≠), and the free energy of activation (ΔG≠) of the exothermic decomposition reaction were calculated according to the following Eqs. 3-529.

    wherekBis the Boltzmann constant,Tp0is the peak temperature point corresponding toβ→ 0,his the Planck constant,Ea=EkandA=Ak. The positive values of ΔG≠and ΔH≠indicate that the thermodecomposition reaction of 1 is a non-spontaneous entropy-driven process (Table 3).

    3.4 Critical temperature of thermal explosion

    The critical temperature of thermal explosion (Tb) and the selfaccelerating decomposition temperature (TSADT) are important indicators for the thermal safety of energetic materials during storage and operation30. Therefore, based on the values (Te0orTp0) of the initial temperature point corresponding toβ→ 0 obtained from Eq. 6, the Eqs. 7 and 8 are applied to determine the values ofTbandTSADTfor 131:

    wherea,bandcare coefficients,Te0represents the extrapolated onset temperature corresponding toβ→ 0. The high values(TSADT= 595.8 K andTb= 607.1 K) of 1 indicate that the solventfree Ag-MOF 1 possesses better thermal safety than some common explosives, such as HMX, CL-20 and FOX-7 (Table 4) 29,32-34.

    3.5 Oxygen bomb calorimetry

    The constant-volume combustion energy of 1 was determined with a precise rotating-oxygen bomb calorimeter (RBC-type II)21.Approximately 200 mg of the samples were pressed with an 800 mg of benzoic acid to form a tablet to ensure better combustion.The recorded data are the average of six single measurements.The calorimeter was calibrated by the combustion of certified benzoic acid (Standard Reference Material, 39i, NIST) in an oxygen atmosphere at a pressure of 3.05 × 106Pa. After six tests,the experimental result for the constant-volume combustion energy (Qv) of 1 is ?3509.90 ± 1.22 kJ·mol?1. On the basis of the combustion reaction equation of 1 (Eq. 9), the standard molar enthalpy of combustion (ΔcHm?) of 1 can be calculated to be(?3504.94 ± 1.22) kJ·mol?1according to the following Eq. 10:

    where Δng is the change in the number of gas constituents in the reaction process (Δng= 2),T= 298.15 K. Given the known standard molar enthalpies of formation of Ag2O(s) (?31.00 kJ·mol?1), CO2(g) (?393.51 ± 0.13 kJ·mol?1) and H2O(l)(?285.83 ± 0.04 kJ·mol?1)35, the standard enthalpy of formation(ΔfHm?) of 1 can be derived as being (2165.99 ± 0.81) kJ·mol?1by using the Hess law and the Eq. 11.

    3.6 Detonation properties

    Table 4 The thermal safety parameters of 1 and some common explosives.

    Table 5 Physicochemical properties of 1 and some reported energetic materials.

    On the basis of the largest exothermic principle proposed by Kamlet-Jacobs36, an empirical method is employed to investigate the detonation properties of metal-containing explosives37. In such metal explosive systems, the most stable products of detonation reaction were assumed under the constraints of stoichiometrically available oxygen38. Therefore,for 1, nitrogen, carbon, and ammonia were assumed to be the final products of decomposition of the organic part of the framework and the formation of metallic state was assumed to be governed by the deficiency of oxygen36. The complete detonation reaction considered is described by Eq. 12, and the detonation properties are calculated by Kamlet-Jacobs Eqs. 13-16 as follows:

    whereDis detonation velocity (km·s?1),Pis detonation pressure(GPa),Nis moles of detonation gases per gram of explosive,Mis average molecular weight of the gases,Qis heat of detonation(kJ·g?1),ρis density of explosive (g·cm?3). According to the known enthalpies of formation of NH3(g) (?46.00 kJ·mol?1) and AgC3HN5(s) (2165.99 kJ·mol?1), the heat of detonation of 1 can be calculated as 10.15 kJ·g?1. Based on the above Eqs. 13-15,the detonation velocity and detonation pressure can be further obtained and listed in Table 524,38-42. The results show that the EMOF 1 exhibits comparable detonation velocity and detonation pressure to TNT and much higher detonation heat than those of the common high explosives and some reported solvent-free Agbasd EMOFs.

    3.7 Detonation properties

    Impact sensitivity test of 1 was performed on the Fall Hammer Apparatus. 20 mg of 1 was compacted to a copper cap under the press of 39.2 MPa and hit by 2 kg drop hammer. The calculated value ofh50%represents the drop height of 50% initiation probability. The test results show that the EMOF 1 do not fire at the highest point of 200 cm (h50%) corresponding to an impact energy of 40 J, suggesting that 1 has much lower impact sensitivity than that of HMX (7.4 J) (Table 5). Meanwhile, the friction sensitivity of 1 was measured by applying a Julius Peter’s machine using 20 mg sample, and no friction sensitivity was observed up to 360 N. The results reveal that 1 is insensitive to external stimuli, which may be ascribed to the rigid skeleton structure.

    4 Conclusions

    In summary, a new solvent-free energetic MOF [Ag2(DTPZ)]n(1) was synthesized and structurally characterized. The richnitrogen multidentate ligand DTPZ2?adopting special torsion configuration bridges AgIcenters to form 3D framework, in which no solvent molecules coordinate the metal or occupy the free space of channel. The dense structure endow 1 with high thermostability (Tp= 658.7K) and good thermal safety (TSADT=595.8 K,Tb = 607.1 K). Thermal analysis tests show the typical explosive performance of EMOF 1 based on the abrupt one-step decomposition from TG curve and sharp heat release form DSC curve. The heat of detonation and safety of 1 (Q= 10.15 kJ·g?1,IS > 40 J and FS > 360 N) are superior to those of traditional energetic materials (HMX, RDX and TNT) and many reported Ag(I)-EMOFs, indicating that 1 is a promising insensitivity HEDM and can be applied to explosives and propellants.

    Supporting Information: available free of chargeviathe internet at http://www.whxb.pku.edu.cn.

    猜你喜歡
    無溶劑商洛陜西省
    陜西省自強中等專業(yè)學(xué)校簡介
    陜西商洛:創(chuàng)出菌蔬輪種發(fā)展新模式
    陜西省抓黨建促脫貧攻堅的實踐與思考
    聚焦兩會
    陜西畫報(2018年1期)2018-11-17 19:33:14
    陜西省閱讀文化節(jié)
    商洛水源地生態(tài)經(jīng)濟區(qū)劃分析
    SO42-/TiO2-SnO2固體超強酸無溶劑催化合成季戊四醇硬脂酸酯
    淡水艙無溶劑環(huán)氧施工工藝研究
    商洛加快培育千億元新能源汽車產(chǎn)業(yè)集群
    2015中國國際合成革展覽會刮起“無溶劑合成革”風(fēng)暴
    西部皮革(2015年15期)2015-02-28 18:14:36
    毛片一级片免费看久久久久| 美女大奶头视频| 三级男女做爰猛烈吃奶摸视频| 中文字幕av在线有码专区| 男女那种视频在线观看| 99热这里只有精品一区| 久久久国产成人精品二区| 国产美女午夜福利| 男人和女人高潮做爰伦理| 丝袜美腿在线中文| 欧美性猛交黑人性爽| 亚洲国产欧美人成| 国内精品宾馆在线| 亚洲自拍偷在线| 2021天堂中文幕一二区在线观| 啦啦啦韩国在线观看视频| 亚洲不卡免费看| 午夜精品国产一区二区电影 | 成人av在线播放网站| 亚洲婷婷狠狠爱综合网| 最近手机中文字幕大全| av视频在线观看入口| 日本免费a在线| 免费观看人在逋| 性插视频无遮挡在线免费观看| 嫩草影院精品99| 国产精品日韩av在线免费观看| 国产精品国产三级国产av玫瑰| 看十八女毛片水多多多| 国产亚洲av片在线观看秒播厂 | 久久久午夜欧美精品| 伦理电影大哥的女人| 成人综合一区亚洲| 久热久热在线精品观看| 国产精华一区二区三区| 舔av片在线| 亚洲av男天堂| 午夜福利在线在线| 亚洲成色77777| 国产成人午夜福利电影在线观看| 国产一级毛片在线| 精品欧美国产一区二区三| 欧美一区二区亚洲| 美女黄网站色视频| 国产三级在线视频| 你懂的网址亚洲精品在线观看 | 国产精品国产三级国产av玫瑰| 午夜福利高清视频| 久久久久国产网址| 精品国内亚洲2022精品成人| 免费看日本二区| 久久久久网色| 亚洲国产精品成人综合色| 99在线人妻在线中文字幕| 婷婷色综合大香蕉| 一区二区三区高清视频在线| 亚洲最大成人中文| 国产探花在线观看一区二区| 特大巨黑吊av在线直播| 水蜜桃什么品种好| 亚洲高清免费不卡视频| 听说在线观看完整版免费高清| 黑人高潮一二区| 我要搜黄色片| 99久久无色码亚洲精品果冻| 日韩制服骚丝袜av| 亚洲精品,欧美精品| 亚洲,欧美,日韩| 久久亚洲国产成人精品v| 看免费成人av毛片| 精品国产露脸久久av麻豆 | 精品久久久久久成人av| 亚洲久久久久久中文字幕| 一级毛片aaaaaa免费看小| 国产精品99久久久久久久久| 网址你懂的国产日韩在线| 一个人看的www免费观看视频| 少妇高潮的动态图| 精品一区二区三区人妻视频| 亚洲中文字幕日韩| 麻豆久久精品国产亚洲av| 高清午夜精品一区二区三区| 夜夜看夜夜爽夜夜摸| 久久精品国产亚洲av涩爱| 欧美激情久久久久久爽电影| 欧美最新免费一区二区三区| av天堂中文字幕网| 亚洲第一区二区三区不卡| 午夜福利在线观看免费完整高清在| 天堂中文最新版在线下载 | 亚洲精品aⅴ在线观看| 亚洲成人中文字幕在线播放| 久久久久久国产a免费观看| 少妇裸体淫交视频免费看高清| 卡戴珊不雅视频在线播放| 亚洲精品国产av成人精品| 能在线免费看毛片的网站| 99热全是精品| 久久久久久久亚洲中文字幕| 女人久久www免费人成看片 | 免费看美女性在线毛片视频| 我要看日韩黄色一级片| 欧美性感艳星| 国产成人aa在线观看| 我要看日韩黄色一级片| av在线播放精品| 国产老妇伦熟女老妇高清| 午夜福利成人在线免费观看| 午夜精品国产一区二区电影 | 久久久久久久亚洲中文字幕| 欧美一级a爱片免费观看看| 久久久精品大字幕| 成人一区二区视频在线观看| 91狼人影院| 少妇的逼水好多| 日韩成人伦理影院| 网址你懂的国产日韩在线| 小说图片视频综合网站| 国产午夜福利久久久久久| 高清午夜精品一区二区三区| 人妻夜夜爽99麻豆av| 久久精品人妻少妇| 99视频精品全部免费 在线| 久久鲁丝午夜福利片| 女人久久www免费人成看片 | 日本猛色少妇xxxxx猛交久久| 久久精品夜夜夜夜夜久久蜜豆| 免费播放大片免费观看视频在线观看 | 日本一本二区三区精品| 晚上一个人看的免费电影| 毛片女人毛片| 美女xxoo啪啪120秒动态图| 一个人免费在线观看电影| 欧美日韩精品成人综合77777| 人体艺术视频欧美日本| 我的老师免费观看完整版| 国产亚洲精品av在线| 天堂影院成人在线观看| av在线老鸭窝| 国产亚洲一区二区精品| 91精品国产九色| 亚洲最大成人手机在线| 嫩草影院新地址| 六月丁香七月| 色综合站精品国产| 亚洲伊人久久精品综合 | 国产一区二区三区av在线| 看非洲黑人一级黄片| 亚洲中文字幕一区二区三区有码在线看| 国产精品电影一区二区三区| 亚洲,欧美,日韩| 国产高清三级在线| 国产色爽女视频免费观看| 国产精品久久电影中文字幕| 国产美女午夜福利| 中文字幕免费在线视频6| 老司机影院成人| 欧美色视频一区免费| 国模一区二区三区四区视频| 久久综合国产亚洲精品| 国产成人a∨麻豆精品| 男女边吃奶边做爰视频| 亚洲av福利一区| 在线免费观看的www视频| 日本与韩国留学比较| 免费电影在线观看免费观看| 波多野结衣高清无吗| 午夜福利高清视频| 精品一区二区三区人妻视频| 伦理电影大哥的女人| 日韩av在线免费看完整版不卡| 久久精品久久久久久噜噜老黄 | 两个人视频免费观看高清| 最后的刺客免费高清国语| 欧美性感艳星| 久久久久久国产a免费观看| 舔av片在线| 中文精品一卡2卡3卡4更新| 18禁在线播放成人免费| av又黄又爽大尺度在线免费看 | 偷拍熟女少妇极品色| 爱豆传媒免费全集在线观看| 狂野欧美激情性xxxx在线观看| 91av网一区二区| 只有这里有精品99| 日韩中字成人| 国产av在哪里看| 99热网站在线观看| 久久国产乱子免费精品| 日产精品乱码卡一卡2卡三| 久久99精品国语久久久| 国产免费一级a男人的天堂| www日本黄色视频网| 日本免费一区二区三区高清不卡| 亚洲经典国产精华液单| 最近最新中文字幕大全电影3| 亚洲精品影视一区二区三区av| 欧美一区二区国产精品久久精品| 久久久精品94久久精品| 在线免费观看的www视频| 草草在线视频免费看| 亚洲一级一片aⅴ在线观看| 日韩中字成人| 国产成人福利小说| 国产成人免费观看mmmm| 草草在线视频免费看| 国产精品一及| 亚洲国产精品专区欧美| 日韩强制内射视频| 国产精品一区二区三区四区久久| 九色成人免费人妻av| 身体一侧抽搐| 国语自产精品视频在线第100页| 国产av一区在线观看免费| 亚洲精品456在线播放app| 国产成人精品一,二区| 国产精品久久电影中文字幕| 亚洲国产精品久久男人天堂| 一级黄色大片毛片| www.色视频.com| 性色avwww在线观看| 亚洲人成网站高清观看| 一级爰片在线观看| 天堂影院成人在线观看| 特级一级黄色大片| 18+在线观看网站| 国产女主播在线喷水免费视频网站 | 18禁裸乳无遮挡免费网站照片| 精品人妻熟女av久视频| 午夜福利视频1000在线观看| 婷婷色av中文字幕| 久久精品久久久久久久性| 亚洲av电影不卡..在线观看| 亚洲欧美精品综合久久99| 免费av观看视频| 超碰97精品在线观看| 99热这里只有精品一区| 直男gayav资源| 直男gayav资源| 国产伦理片在线播放av一区| 97超碰精品成人国产| 在线观看av片永久免费下载| 边亲边吃奶的免费视频| 久久这里只有精品中国| 精品国产三级普通话版| 美女黄网站色视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产高清国产精品国产三级 | 亚洲在线自拍视频| 欧美3d第一页| 国产乱来视频区| 三级毛片av免费| 国产精品国产高清国产av| 国产精品av视频在线免费观看| 中国国产av一级| 亚洲精品乱码久久久v下载方式| 欧美日韩国产亚洲二区| 国内揄拍国产精品人妻在线| 亚洲欧美中文字幕日韩二区| 黄色日韩在线| 久久久成人免费电影| 精品人妻偷拍中文字幕| 精品久久久久久久人妻蜜臀av| 中文字幕免费在线视频6| 狂野欧美激情性xxxx在线观看| 成年女人看的毛片在线观看| 在线观看av片永久免费下载| 三级毛片av免费| 亚洲国产成人一精品久久久| 如何舔出高潮| 99热这里只有是精品50| 日本熟妇午夜| 夫妻性生交免费视频一级片| 国产女主播在线喷水免费视频网站 | 中文字幕熟女人妻在线| 最近手机中文字幕大全| 九九爱精品视频在线观看| 欧美日本视频| 在线天堂最新版资源| 村上凉子中文字幕在线| 九色成人免费人妻av| 男人和女人高潮做爰伦理| 看免费成人av毛片| 深爱激情五月婷婷| 麻豆一二三区av精品| 亚洲综合色惰| 九九爱精品视频在线观看| 2021天堂中文幕一二区在线观| 毛片一级片免费看久久久久| 精品久久久久久久人妻蜜臀av| 亚洲欧美成人综合另类久久久 | 村上凉子中文字幕在线| 午夜激情福利司机影院| 日韩人妻高清精品专区| 老司机影院成人| 老司机影院毛片| 一夜夜www| 天堂av国产一区二区熟女人妻| 精品久久久久久电影网 | 色噜噜av男人的天堂激情| 国产麻豆成人av免费视频| 最近中文字幕2019免费版| 在线观看美女被高潮喷水网站| 真实男女啪啪啪动态图| 99久久精品热视频| 成人亚洲精品av一区二区| 日韩av不卡免费在线播放| 久久久久九九精品影院| .国产精品久久| 日本爱情动作片www.在线观看| 真实男女啪啪啪动态图| 日韩大片免费观看网站 | 国产精品综合久久久久久久免费| 一区二区三区乱码不卡18| 高清视频免费观看一区二区 | 国内精品宾馆在线| 插逼视频在线观看| 一区二区三区免费毛片| 成年版毛片免费区| 女人十人毛片免费观看3o分钟| 亚洲丝袜综合中文字幕| 中文精品一卡2卡3卡4更新| 久久精品国产亚洲av天美| 精华霜和精华液先用哪个| 少妇人妻精品综合一区二区| 午夜福利高清视频| 亚洲成人久久爱视频| 欧美日韩一区二区视频在线观看视频在线 | 岛国毛片在线播放| 嫩草影院新地址| 国产成人午夜福利电影在线观看| 国产男人的电影天堂91| 亚洲在线自拍视频| 五月玫瑰六月丁香| 国产精品麻豆人妻色哟哟久久 | 精品久久久久久久末码| 大香蕉久久网| 一区二区三区四区激情视频| 伊人久久精品亚洲午夜| 日韩成人av中文字幕在线观看| 99热精品在线国产| 亚洲av成人av| 久久久久久久亚洲中文字幕| 爱豆传媒免费全集在线观看| 丝袜喷水一区| 国产精品国产三级国产av玫瑰| 国产视频内射| 日产精品乱码卡一卡2卡三| 亚洲欧美中文字幕日韩二区| 午夜福利高清视频| 非洲黑人性xxxx精品又粗又长| 亚洲中文字幕日韩| 久久午夜福利片| 色综合色国产| 草草在线视频免费看| 国产视频首页在线观看| www日本黄色视频网| 久久久久久大精品| 国产精品女同一区二区软件| 人妻系列 视频| 国产探花极品一区二区| 久久久久精品久久久久真实原创| 18禁在线播放成人免费| 免费看日本二区| 人妻制服诱惑在线中文字幕| 亚洲国产精品专区欧美| 久久久国产成人免费| 国产午夜精品一二区理论片| 亚洲乱码一区二区免费版| av在线播放精品| 国产在线一区二区三区精 | 国产精品av视频在线免费观看| 又爽又黄无遮挡网站| av在线观看视频网站免费| 午夜激情福利司机影院| 久久99精品国语久久久| 美女高潮的动态| 国产精品无大码| 国产精品伦人一区二区| 五月伊人婷婷丁香| 亚洲av电影不卡..在线观看| 日韩精品有码人妻一区| 直男gayav资源| 久久这里只有精品中国| 精品久久久久久久久久久久久| 寂寞人妻少妇视频99o| 国产伦精品一区二区三区视频9| 国产精品1区2区在线观看.| 日本与韩国留学比较| 丰满乱子伦码专区| 国产精品久久电影中文字幕| 精品一区二区免费观看| 最近最新中文字幕大全电影3| 最新中文字幕久久久久| 亚洲不卡免费看| 搡女人真爽免费视频火全软件| 又爽又黄无遮挡网站| 亚洲成人中文字幕在线播放| 中文字幕免费在线视频6| 亚洲美女视频黄频| 中文字幕人妻熟人妻熟丝袜美| 26uuu在线亚洲综合色| 老司机福利观看| 国产一区二区在线观看日韩| 免费黄网站久久成人精品| 日韩精品有码人妻一区| 国产 一区 欧美 日韩| 日韩大片免费观看网站 | 在线天堂最新版资源| 国产亚洲精品久久久com| 亚洲第一区二区三区不卡| 毛片女人毛片| 亚洲精品亚洲一区二区| 韩国高清视频一区二区三区| 精华霜和精华液先用哪个| 自拍偷自拍亚洲精品老妇| av女优亚洲男人天堂| 国内少妇人妻偷人精品xxx网站| 国产真实乱freesex| 亚洲激情五月婷婷啪啪| 韩国高清视频一区二区三区| 国产真实伦视频高清在线观看| 啦啦啦啦在线视频资源| eeuss影院久久| 国产精品久久电影中文字幕| 看非洲黑人一级黄片| 中文字幕亚洲精品专区| 久久99热这里只有精品18| 国产色爽女视频免费观看| 国产一区亚洲一区在线观看| 国产伦精品一区二区三区四那| 久久精品综合一区二区三区| 尾随美女入室| 欧美成人a在线观看| av.在线天堂| 1024手机看黄色片| 亚洲精品自拍成人| 成人二区视频| 99久久精品热视频| 青春草视频在线免费观看| 久久久久久久午夜电影| 欧美日韩国产亚洲二区| 美女内射精品一级片tv| 日本-黄色视频高清免费观看| 午夜福利在线观看吧| 亚洲精品乱码久久久v下载方式| 人人妻人人澡欧美一区二区| 国产精品蜜桃在线观看| 久久精品夜夜夜夜夜久久蜜豆| 成年av动漫网址| 久久久久久久久大av| 午夜精品一区二区三区免费看| 国产欧美另类精品又又久久亚洲欧美| 国产免费又黄又爽又色| 噜噜噜噜噜久久久久久91| 搞女人的毛片| 美女内射精品一级片tv| 欧美一区二区精品小视频在线| 精品人妻熟女av久视频| 日韩欧美精品v在线| 亚洲av电影不卡..在线观看| 日韩三级伦理在线观看| 久久亚洲国产成人精品v| 亚洲aⅴ乱码一区二区在线播放| 少妇高潮的动态图| 久久韩国三级中文字幕| 人妻夜夜爽99麻豆av| 一级黄片播放器| 97人妻精品一区二区三区麻豆| 欧美另类亚洲清纯唯美| 亚洲精品乱久久久久久| 欧美日本视频| 18禁在线无遮挡免费观看视频| 最近中文字幕2019免费版| 亚洲欧美中文字幕日韩二区| 免费观看a级毛片全部| 乱码一卡2卡4卡精品| 精品久久久久久久久av| 国产免费男女视频| videossex国产| 22中文网久久字幕| 嘟嘟电影网在线观看| 我的女老师完整版在线观看| 麻豆一二三区av精品| 一区二区三区四区激情视频| 大话2 男鬼变身卡| 久久精品久久久久久久性| 免费播放大片免费观看视频在线观看 | 久久精品国产亚洲av涩爱| 亚洲国产最新在线播放| 国内少妇人妻偷人精品xxx网站| 国产精品国产三级国产专区5o | 国产亚洲av片在线观看秒播厂 | 两个人视频免费观看高清| 国产高清不卡午夜福利| 午夜激情福利司机影院| 亚洲怡红院男人天堂| 亚洲三级黄色毛片| 少妇裸体淫交视频免费看高清| 看免费成人av毛片| 亚洲欧美日韩高清专用| 91av网一区二区| 乱码一卡2卡4卡精品| 国产成年人精品一区二区| 十八禁国产超污无遮挡网站| 国产精品,欧美在线| 69av精品久久久久久| 久久精品熟女亚洲av麻豆精品 | 大香蕉久久网| 成人午夜高清在线视频| 欧美激情久久久久久爽电影| 国国产精品蜜臀av免费| 色5月婷婷丁香| 免费观看人在逋| 国产精品一区二区三区四区免费观看| 最近视频中文字幕2019在线8| 色5月婷婷丁香| 日韩成人av中文字幕在线观看| 日日摸夜夜添夜夜添av毛片| 听说在线观看完整版免费高清| 国产精品电影一区二区三区| 国产亚洲午夜精品一区二区久久 | 国产黄a三级三级三级人| 亚洲在线自拍视频| 亚洲熟妇中文字幕五十中出| 国产探花在线观看一区二区| 中文精品一卡2卡3卡4更新| 欧美潮喷喷水| 国产精品三级大全| 国产又色又爽无遮挡免| 97在线视频观看| av专区在线播放| 国产亚洲午夜精品一区二区久久 | 岛国在线免费视频观看| 少妇熟女aⅴ在线视频| 日日干狠狠操夜夜爽| 岛国毛片在线播放| 欧美xxxx黑人xx丫x性爽| 一级黄色大片毛片| 亚洲综合精品二区| 一级av片app| 亚洲精品自拍成人| 免费看日本二区| 日本wwww免费看| 久久精品国产99精品国产亚洲性色| 国产一级毛片七仙女欲春2| 亚洲国产精品成人综合色| 亚洲国产精品合色在线| 亚洲精品影视一区二区三区av| 岛国毛片在线播放| 少妇猛男粗大的猛烈进出视频 | 亚洲成av人片在线播放无| 美女大奶头视频| 欧美3d第一页| 色噜噜av男人的天堂激情| 99热这里只有精品一区| 国产伦精品一区二区三区视频9| 级片在线观看| av免费在线看不卡| 一级爰片在线观看| 久久精品影院6| 可以在线观看毛片的网站| 日韩欧美三级三区| 黄色欧美视频在线观看| 久久久久久久午夜电影| 亚洲成av人片在线播放无| 最近中文字幕高清免费大全6| 亚洲最大成人中文| 99久久无色码亚洲精品果冻| 亚洲电影在线观看av| 国产美女午夜福利| 黄片无遮挡物在线观看| 如何舔出高潮| 亚洲av男天堂| 中文字幕久久专区| 我要看日韩黄色一级片| 色综合色国产| 国产亚洲av嫩草精品影院| 天天躁夜夜躁狠狠久久av| 久久99热6这里只有精品| 26uuu在线亚洲综合色| 国产综合懂色| 国产精品日韩av在线免费观看| 大又大粗又爽又黄少妇毛片口| 一级毛片电影观看 | 国产乱人偷精品视频| av在线天堂中文字幕| 高清午夜精品一区二区三区| 国产精品久久久久久久久免| 长腿黑丝高跟| 国产精品1区2区在线观看.| 麻豆av噜噜一区二区三区| 久久人人爽人人爽人人片va| 欧美不卡视频在线免费观看| 久久精品夜色国产| 免费不卡的大黄色大毛片视频在线观看 | www.av在线官网国产| 水蜜桃什么品种好| 精品久久久久久电影网 | 精品久久久久久久末码| 日本与韩国留学比较| 一级爰片在线观看| 男女视频在线观看网站免费| 波多野结衣高清无吗| 又黄又爽又刺激的免费视频.| 国产男人的电影天堂91| av在线亚洲专区| 亚洲va在线va天堂va国产| 3wmmmm亚洲av在线观看| 国产成人午夜福利电影在线观看| 我要搜黄色片| 成人亚洲欧美一区二区av| 久久精品夜色国产| 国产精品人妻久久久影院| 女人久久www免费人成看片 |