• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      螺旋槳低頻振動(dòng)聲輻射特性研究
      ——水母模態(tài)

      2020-06-29 08:50:16吳崇建王春旭陳志剛杜堃雷智洋
      中國艦船研究 2020年3期
      關(guān)鍵詞:子結(jié)構(gòu)槳葉螺旋槳

      吳崇建,王春旭*,陳志剛,杜堃,雷智洋

      1 中國艦船研究設(shè)計(jì)中心,湖北 武漢430064

      2 船舶振動(dòng)噪聲重點(diǎn)實(shí)驗(yàn)室,湖北 武漢430064

      0 引 言

      隨著機(jī)械噪聲的持續(xù)降低[1-2],艦船推進(jìn)系統(tǒng)噪聲凸顯,成為艦船主要的噪聲源,并呈現(xiàn)出低頻寬帶、低頻線譜突出的特點(diǎn)[3]。推進(jìn)系統(tǒng)噪聲控制涉及的要素較多,如螺旋槳、軸系、船體結(jié)構(gòu)、艉部線型、操縱面等,噪聲機(jī)理復(fù)雜,涉及多學(xué)科與多物理場耦合,噪聲控制難度大。

      螺旋槳是艦船最典型的推進(jìn)器,也是推進(jìn)系統(tǒng)振動(dòng)聲輻射最主要的激勵(lì)源和輻射源。螺旋槳噪聲理論將噪聲主要成分劃分為了空化噪聲、唱音、中高頻噪聲和低頻噪聲,其中低頻噪聲又可細(xì)分為低頻寬帶噪聲和離散譜噪聲[4-5]。在進(jìn)行螺旋槳聲學(xué)研究時(shí),一般將槳葉當(dāng)作剛體處理,而與槳葉彈性有關(guān)的振動(dòng)聲輻射主要是“唱音”,其機(jī)理是槳葉隨邊的局部模態(tài)與該處小尺度規(guī)則渦列結(jié)構(gòu)的自激振動(dòng),該噪聲頻率相對(duì)較高[6]。螺旋槳低頻噪聲由其工作在艦船尾部非均勻、非定常伴流場中的非定常激振力產(chǎn)生,一方面,直接輻射聲;另一方面,激勵(lì)推進(jìn)軸系、船體結(jié)構(gòu)振動(dòng)輻射聲,并成為推進(jìn)系統(tǒng)噪聲的主要成因[7-8]。

      在前期研究基礎(chǔ)上,我們?cè)?011~2012 年將一種量級(jí)突出的低頻窄帶譜輻射噪聲成因與螺旋槳進(jìn)行了關(guān)聯(lián)。與傳統(tǒng)的螺旋槳低頻噪聲特征不同,深入的理論分析和試驗(yàn)驗(yàn)證證明該特征譜由螺旋槳同相模態(tài)產(chǎn)生,將該模態(tài)命名為“水母模態(tài)”,而由該模態(tài)激發(fā)引起的聲輻射則稱為“水母效應(yīng)”。2015~2017 年,又連續(xù)3 次在行業(yè)會(huì)上對(duì)噪聲成分的特征、機(jī)理進(jìn)行了闡釋和補(bǔ)充。

      本文將基于精細(xì)化有限元分析,揭示螺旋槳的低頻模態(tài)特征,然后引用循環(huán)對(duì)稱結(jié)構(gòu)動(dòng)力學(xué)理論對(duì)其動(dòng)力學(xué)特征進(jìn)行理論歸納。

      1 螺旋槳低頻模態(tài)特性精細(xì)化數(shù)值分析

      1.1 對(duì)象及數(shù)值模型

      為了說明螺旋槳的低頻模態(tài)特征,選取圖1所示的意大利船模水池E1619 螺旋槳作為分析對(duì)象。該槳是一個(gè)7 葉大側(cè)斜螺旋槳,直徑0.485 m,盤面比0.608。

      螺旋槳為中心對(duì)稱結(jié)構(gòu)。為減小數(shù)值模型對(duì)計(jì)算結(jié)果的影響,數(shù)值模型須盡量保證對(duì)稱性。取整個(gè)槳的1/7 幾何結(jié)構(gòu),按照全六面體精細(xì)化網(wǎng)格劃分,然后通過圓周陣列得到完全循環(huán)對(duì)稱的計(jì)算模型。為適應(yīng)螺旋槳復(fù)雜扭曲的外形,提高計(jì)算精度,增加了網(wǎng)格量,并應(yīng)用了二次單元。有限元計(jì)算模型如圖1 所示。分析邊界取為自由邊界,其他計(jì)算參數(shù)設(shè)置:材料密度ρ=8 000 kg/m3,楊氏模量E=1.3×1010Pa,螺旋槳模型重量為9.231 kg。

      圖1 7 葉螺旋槳精細(xì)化有限元計(jì)算模型Fig.1 The refined FE calculation model of a 7-blade propeller

      1.2 空氣介質(zhì)中螺旋槳低頻模態(tài)特性

      1.2.1 7 葉螺旋槳模態(tài)特性

      基于ANSYS 軟件,計(jì)算得到空氣介質(zhì)中7 葉螺旋槳的模態(tài)頻率如表1 所示。螺旋槳的低頻模態(tài)呈現(xiàn)明顯的分組特征,每組7 個(gè)模態(tài)。在第1 組模態(tài)中,每個(gè)槳葉振型為其第1 階彎曲模態(tài)振型,組內(nèi)不同模態(tài)槳葉間相位關(guān)系不同;在第2 組模態(tài)中,每個(gè)槳葉振型為其第2 階模態(tài)振型,組內(nèi)不同模態(tài)槳葉間相位關(guān)系不同。同組內(nèi)的7 個(gè)模態(tài)頻率相近,不同組間的模態(tài)頻率差別較大。

      表1 7 葉螺旋槳彈性模態(tài)頻率對(duì)比Table 1 The elastic modal frequency of a 7-blade propeller

      進(jìn)一步觀察組內(nèi)模態(tài)頻率和振型特征,發(fā)現(xiàn)呈明顯的單頻和重頻特征。7 個(gè)模態(tài)實(shí)際上只有4 個(gè)模態(tài)頻率,其中,有3 個(gè)模態(tài)頻率各自對(duì)應(yīng)2個(gè)模態(tài)振型,屬重頻模態(tài);1 個(gè)模態(tài)頻率對(duì)應(yīng)1 個(gè)振型,屬單頻模態(tài)。

      為進(jìn)一步說明單頻和重頻模態(tài)的振型特征,給出了其振型圖,如圖2 所示。用N 和P 分別表征同一瞬間槳葉振動(dòng)沿軸線向前與向后的振動(dòng)形態(tài)。由圖可以看出,7 葉螺旋槳的模態(tài)振型按照模態(tài)頻率分為了4 組,其中單頻模態(tài)振型記為NNNNNNN,即7 個(gè)槳葉同相位振動(dòng),振型形似水母運(yùn)動(dòng),故命名為“水母模態(tài)”。其他3 組為重頻模態(tài),其振型分別為NPNPNPN(PNPNPNP),NNPPNNP(PPNNPPN)和NNNPPPN(PPPNNNP),兩兩正交。另外還可以看出,3 組重頻模態(tài)的振型全部為(3,4)組合,即3 個(gè)槳葉振動(dòng)與另外4 個(gè)槳葉振動(dòng)反相,不存在(1,6)組合(即振型為PPPNPPP)和(2,5)組合(即振型為PPNPPNP)等模態(tài)特征。

      圖2 同組內(nèi)7 葉螺旋槳的模態(tài)頻率與振型特征Fig.2 The mode frequency and mode shape characteristics of 7-blade propeller in a modal group

      1.2.2 5 葉螺旋槳模態(tài)特性

      為了揭示螺旋槳模態(tài)特征的普遍性,進(jìn)一步分析了5 葉螺旋槳的模態(tài)特性,如圖3 所示。槳葉計(jì)算模型同圖1,由在周向進(jìn)行72°陣列得到。

      圖3 5 葉螺旋槳精細(xì)化有限元計(jì)算模型Fig.3 The refined FE calculation model of a 5-blade propeller

      表2 給出了5 葉螺旋槳的低頻模態(tài)計(jì)算結(jié)果。其低頻模態(tài)同樣呈現(xiàn)明顯的分組特征,每組5 個(gè)模態(tài)。在第1 組模態(tài)中,每個(gè)槳葉的振型為其第1 階彎曲模態(tài)振型,組內(nèi)不同模態(tài)槳葉間相位關(guān)系不同;在第2組模態(tài)中,每個(gè)槳葉振型為其第2階模態(tài)振型,組內(nèi)不同模態(tài)槳葉間相位關(guān)系不同。同組內(nèi)5 個(gè)模態(tài)的頻率相近,不同組間的模態(tài)頻率差別較大。

      觀察同組內(nèi)模態(tài)頻率和振型,發(fā)現(xiàn)亦呈現(xiàn)明顯的單頻和重頻特征。5 個(gè)模態(tài)實(shí)際上只有3 個(gè)模態(tài)頻率,其中2 個(gè)模態(tài)頻率各自對(duì)應(yīng)2 個(gè)模態(tài)振型,屬于重頻模態(tài);1 個(gè)模態(tài)對(duì)應(yīng)1 個(gè)振型,屬于單頻模態(tài)。

      在振型特征方面(圖4),單頻模態(tài)振型可描述為NNNNN,即“水母模態(tài)”;2 組重頻模態(tài)的振型可以描述為NPNPN(PNPNP)和NNPPP(PPNNN),兩兩正交。2 組重頻模態(tài)的振型全部為(2,3)組合,即2 個(gè)槳葉振動(dòng)與另外3 個(gè)槳葉振動(dòng)反相,不存在(1,4)組合(即PPPNP)模態(tài)特征。

      1.3 水介質(zhì)中螺旋槳低頻模態(tài)特性

      為了研究介質(zhì)環(huán)境對(duì)螺旋槳低頻模態(tài)特征的影響,以圖1 所示模型為對(duì)象,基于有限元/邊界元(FEM/BEM)耦合模態(tài)分析方法[9],建立螺旋槳數(shù)值計(jì)算模型并分析其在水環(huán)境中的模態(tài)特性。

      圖4 5 葉螺旋槳模態(tài)振型Fig.4 The mode shapes of a 5-blade propeller

      模態(tài)頻率計(jì)算結(jié)果如表3 所示,模態(tài)振型特征如圖5 所示。由于附連水的影響,螺旋槳的模態(tài)頻率大幅降低,如“水母模態(tài)”頻率由109.541 0 Hz降低到了82.051 3 Hz,但仍可觀察到明顯的分組特征;可觀測到組內(nèi)單頻、重頻模態(tài)的特征,亦可觀測到重頻模態(tài)振型僅有(3,4)組合的特點(diǎn)。

      對(duì)比空氣、水介質(zhì)中螺旋槳的模態(tài)特征,以及7 葉、5 葉螺旋槳模態(tài)特征的計(jì)算結(jié)果,發(fā)現(xiàn)螺旋槳的低階模態(tài)特征具有一般性規(guī)律:一是單槳葉模態(tài)的聚集分組特征;二是組內(nèi)單頻、重頻模態(tài)特征。

      表3 7 葉螺旋槳聲-固耦合彈性模態(tài)頻率對(duì)比Table 3 The FEM/BEM coupling modal frequency of a 7-blade propeller

      2 槳葉失諧的影響分析

      上節(jié)的建模分析從幾何模型、單元數(shù)量和單元階次等方面進(jìn)行了精細(xì)化的分析,確保了結(jié)構(gòu)動(dòng)力學(xué)意義上的理想對(duì)稱性。將螺旋槳因加工誤差(外形)、密度不均(質(zhì)量)和微裂紋(剛度)等缺陷而無法保證完全中心對(duì)稱狀態(tài)的情況稱為“失諧”,本節(jié)將研究螺旋槳微失諧狀態(tài)下的模態(tài)特性。

      在圖1 所示槳模的任意葉尖設(shè)置集中質(zhì)量,取值為槳葉質(zhì)量1/1 000,以模擬螺旋槳的微小質(zhì)量失諧??諝饨橘|(zhì)中的模態(tài)頻率如表4 所示。對(duì)照表1 可見,在微失諧情況下,模態(tài)頻率依然呈現(xiàn)分組的特征,每7 階模態(tài)一組,第1 組模態(tài)仍以單槳葉第1 階模態(tài)聚集;第2 組模態(tài)以單槳葉第2 階模態(tài)聚集。此時(shí),重頻模態(tài)特征不再出現(xiàn)(或者不明顯),7 個(gè)模態(tài)頻率對(duì)應(yīng)7 個(gè)振型,但“水母模態(tài)”仍然存在,模態(tài)頻率有輕微的改變,模態(tài)振型基本不變(圖6)。這表明微失諧對(duì)重頻模態(tài)影響較大,對(duì)同相的單頻模態(tài)影響較小??蓳?jù)此推斷,螺旋槳的“水母模態(tài)”特征比較穩(wěn)定,不會(huì)因?yàn)闃~外形、質(zhì)量和剛度輕微的差別或者變化而改變。

      表4 7 葉螺旋槳單槳葉失諧模態(tài)頻率對(duì)比Table 4 The mode frequency of a 7-blade propeller withstructural detuning

      圖6 失諧狀態(tài)下同相單頻模態(tài)的模態(tài)頻率與模態(tài)振型Fig.6 The mode frequency and mode shape comparison of the single frequency mode between the propeller with structural detuning and the propeller with cyclic symmetry

      3 基于循環(huán)對(duì)稱結(jié)構(gòu)振動(dòng)理論的解讀

      為進(jìn)一步驗(yàn)證基于數(shù)值計(jì)算得到的螺旋槳結(jié)構(gòu)模態(tài)特征規(guī)律,揭示其內(nèi)在特征,本節(jié)引用循環(huán)對(duì)稱結(jié)構(gòu)(指結(jié)構(gòu)定軸旋轉(zhuǎn)某一角度后自身及外部條件無宏觀差異的結(jié)構(gòu)[10])振動(dòng)理論,分析螺旋槳的模態(tài)特性。

      胡海巖等[10-11]基于Cn群表示論(n 為子結(jié)構(gòu)數(shù),結(jié)構(gòu)具有2πn的中心對(duì)稱性)和模態(tài)綜合法,提出了一般循環(huán)對(duì)稱結(jié)構(gòu)振動(dòng)分析方法,從數(shù)學(xué)上揭示了循環(huán)對(duì)稱結(jié)構(gòu)的動(dòng)力學(xué)特性和模態(tài)變化規(guī)律。該方法沒有引入針對(duì)子結(jié)構(gòu)的任何假設(shè),具有普適性,同時(shí)根據(jù)工程分析精度的要求,還可實(shí)現(xiàn)降維,能大幅縮減計(jì)算量。

      基于Cn群表示論,將子結(jié)構(gòu)模態(tài)轉(zhuǎn)化為Cn群表示空間的廣義模態(tài),進(jìn)行子結(jié)構(gòu)界面的調(diào)諧變換,對(duì)控制方程進(jìn)行分組解耦,得到固有振動(dòng)特征值問題的控制方程為

      式中:Mj,Kj分別為對(duì)應(yīng)結(jié)構(gòu)第j組廣義模態(tài)坐標(biāo)的質(zhì)量和剛度矩陣,其由基本子結(jié)構(gòu)(0)S在(0)CS坐標(biāo)系中的質(zhì)量矩陣M和剛度矩陣K形成,其中(0)CS為基本子結(jié)構(gòu)坐標(biāo)系;Re 為取實(shí)部運(yùn)算;Im 為取虛部運(yùn)算;為Cn群第j 個(gè)子空間中結(jié)構(gòu)廣義模態(tài)坐標(biāo)向量;[]表示取整。

      螺旋槳是一種典型的循環(huán)對(duì)稱結(jié)構(gòu),且是弱耦合循環(huán)對(duì)稱結(jié)構(gòu)。引用循環(huán)對(duì)稱結(jié)構(gòu)振動(dòng)理論的主要結(jié)論進(jìn)一步闡釋本文對(duì)螺旋槳模態(tài)特征數(shù)值計(jì)算呈現(xiàn)的規(guī)律:

      1)根據(jù)循環(huán)對(duì)稱結(jié)構(gòu)模態(tài)理論,對(duì)于弱耦合Cn循環(huán)對(duì)稱結(jié)構(gòu),總體模態(tài)特征呈現(xiàn)出按照子結(jié)構(gòu)模態(tài)階次聚集成組的特征,每組n 階模態(tài),其中[(n-1)/2]個(gè)模態(tài)為重頻模態(tài)。

      對(duì)于7 葉螺旋槳,其數(shù)值計(jì)算體現(xiàn)了模態(tài)分組的特征,每組7 個(gè)模態(tài)(與子結(jié)構(gòu)數(shù)相同),有3個(gè)重頻模態(tài),模態(tài)頻率小數(shù)點(diǎn)后的4 位數(shù)完全相同。對(duì)于5 葉螺旋槳,數(shù)值計(jì)算也體現(xiàn)了模態(tài)分組的特征,每組5 個(gè)模態(tài),其中2 個(gè)重頻模態(tài)。

      2)根據(jù)循環(huán)對(duì)稱結(jié)構(gòu)模態(tài)理論,Cn循環(huán)對(duì)稱結(jié)構(gòu)單頻模態(tài)是且僅是子結(jié)構(gòu)同相或者相鄰子結(jié)構(gòu)反相振動(dòng)。這表明,當(dāng)n 為奇數(shù)時(shí),單頻模態(tài)即為所有子結(jié)構(gòu)的同相振動(dòng)模態(tài),也即7 葉螺旋槳的“水母模態(tài)”;當(dāng)n 為偶數(shù)時(shí),單頻模態(tài)有2 種情況,第1 種為子結(jié)構(gòu)的同相模態(tài)(“水母模態(tài)”),第2 種為相鄰槳葉反相模態(tài)。本文7 葉和5 葉螺旋槳計(jì)算得到的單頻模態(tài)均體現(xiàn)為同相模態(tài)。

      3)Cn循環(huán)對(duì)稱結(jié)構(gòu)重頻模態(tài)振型按以下條件滿足自身周期重復(fù)性:若有正整數(shù)q(0 <q<j),使p=qn j(0 <j<n2)為正整數(shù),則Cn結(jié)構(gòu)存在重頻模態(tài),以p個(gè)子結(jié)構(gòu)周期重復(fù)。

      分析這一結(jié)論發(fā)現(xiàn),若n 為質(zhì)數(shù),就找不到滿足條件的q,重頻模態(tài)的振型就不具備周期性。圖2、圖5 的計(jì)算結(jié)果表明,7 葉螺旋槳的重頻模態(tài)振型均不具備周期性特征。

      4)根據(jù)循環(huán)對(duì)稱結(jié)構(gòu)理論,失諧對(duì)重頻模態(tài)影響較大,頻率和振動(dòng)的特征規(guī)律會(huì)被破壞;輕微失諧對(duì)單頻模態(tài)影響小,模態(tài)頻率和振動(dòng)變化均較小。

      該分析表明,由于槳葉存在微小的質(zhì)量失諧,7 葉螺旋槳的重頻模態(tài)特征消失,同組內(nèi)7 階模態(tài)頻率/振型各不相同,均表現(xiàn)為單頻模態(tài);從模態(tài)振型上看,NNNNNNN 模態(tài)依然存在,說明槳葉微小失諧會(huì)改變單頻同相模態(tài)頻率,但不會(huì)改變模態(tài)振型,這說明同相單頻模態(tài)(即“水母模態(tài)”)是穩(wěn)定的。

      本節(jié)引用循環(huán)對(duì)稱結(jié)構(gòu)理論對(duì)螺旋槳的模態(tài)特性進(jìn)行分析,并從理論上解釋了螺旋槳循環(huán)對(duì)稱結(jié)構(gòu)的分組特征,以及組內(nèi)單頻模態(tài)、重頻模態(tài)特性,分析了槳葉失諧對(duì)模態(tài)特性的影響。結(jié)果顯示精細(xì)化有限元計(jì)算結(jié)果與循環(huán)對(duì)稱結(jié)構(gòu)理論分析一致,驗(yàn)證了數(shù)值計(jì)算解釋的螺旋槳模態(tài)特征的正確性。

      4 結(jié) 論

      為掌握螺旋槳的低頻模態(tài)特性,對(duì)螺旋槳開展了精細(xì)化有限元數(shù)值分析,并引用循環(huán)對(duì)稱結(jié)構(gòu)動(dòng)力學(xué)理論對(duì)數(shù)值計(jì)算結(jié)果進(jìn)行了驗(yàn)證,揭示了螺旋槳低頻模態(tài)特征規(guī)律的一般性。主要得到如下結(jié)論:

      1)不同介質(zhì)環(huán)境、不同葉數(shù)螺旋槳低頻模態(tài)計(jì)算分析表明,作為一種弱耦合循環(huán)對(duì)稱結(jié)構(gòu),其低頻模態(tài)具有按子結(jié)構(gòu)模態(tài)聚集分組的特征;組內(nèi)模態(tài)數(shù)與子結(jié)構(gòu)數(shù)相同;組內(nèi)模態(tài)有重頻模態(tài)和單頻模態(tài);若槳葉數(shù)為奇數(shù),單頻模態(tài)為全部槳葉同相振動(dòng)模態(tài),也即工程實(shí)踐中觀測到的“水母模態(tài)”。

      2)槳葉輕微失諧對(duì)螺旋槳重頻模態(tài)影響較大,對(duì)單頻同相模態(tài)影響較小,表明“水母模態(tài)”具有確定性和穩(wěn)定性。

      3)循環(huán)對(duì)稱結(jié)構(gòu)動(dòng)力學(xué)理論分析結(jié)果表明,數(shù)值計(jì)算揭示的螺旋槳低頻模態(tài)特征分組、單頻和重頻等規(guī)律具有一般性。

      本文通過精細(xì)化數(shù)值仿真并引用循環(huán)對(duì)稱結(jié)構(gòu)動(dòng)力學(xué)理論,揭示了螺旋槳低頻模態(tài)特征的一般規(guī)律,為螺旋槳低頻噪聲機(jī)理分析與控制提供了理論和技術(shù)支撐,具有重要的工程意義。

      猜你喜歡
      子結(jié)構(gòu)槳葉螺旋槳
      探究奇偶旋翼對(duì)雷達(dá)回波的影響
      完全對(duì)換網(wǎng)絡(luò)的結(jié)構(gòu)連通度和子結(jié)構(gòu)連通度
      基于CFD的螺旋槳拉力確定方法
      立式捏合機(jī)槳葉結(jié)構(gòu)與槳葉變形量的CFD仿真*
      鋼框架腹板雙角鋼連接梁柱子結(jié)構(gòu)抗倒塌性能分析
      基于子結(jié)構(gòu)的柴油機(jī)曲軸有限元建模方法研究
      直升機(jī)槳葉/吸振器系統(tǒng)的組合共振研究
      3800DWT加油船螺旋槳諧鳴分析及消除方法
      廣東造船(2015年6期)2015-02-27 10:52:46
      螺旋槳轂帽鰭節(jié)能性能的數(shù)值模擬
      立式捏合機(jī)槳葉型面設(shè)計(jì)與優(yōu)化①
      习水县| 瑞安市| 青川县| 寻甸| 合作市| 宿松县| 屏东县| 蒙阴县| 报价| 临武县| 合江县| 黔西| 怀柔区| 泰顺县| 利川市| 兴山县| 奉新县| 中山市| 商城县| 库车县| 陵川县| 延吉市| 尤溪县| 广宁县| 永修县| 峡江县| 中方县| 双辽市| 梅河口市| 苏尼特左旗| 丹棱县| 大兴区| 鄂伦春自治旗| 遂昌县| 家居| 温宿县| 隆化县| 陇川县| 永丰县| 山西省| 天柱县|