劉莉莉,郭愛偉,李青青,2,吳培福,楊亞晉,陳粉粉,李素華,郭盤江,張勤
綜 述
泛素化途徑在奶牛乳脂生成過(guò)程中的調(diào)控作用
劉莉莉1,郭愛偉1,李青青1,2,吳培福1,楊亞晉1,陳粉粉1,李素華1,郭盤江1,張勤3
1. 西南林業(yè)大學(xué)生命科學(xué)學(xué)院,昆明 650224 2. 云南昆明翔昊科技有限公司,昆明 650204 3. 山東農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,泰安 271018
泛素化途徑是真核細(xì)胞中主要的蛋白質(zhì)降解途徑,其中泛素–蛋白酶體途徑主要降解細(xì)胞質(zhì)中的蛋白,溶酶體途徑主要降解細(xì)胞膜蛋白。研究表明,泛素化途徑在奶牛乳腺上皮細(xì)胞脂肪酸合成過(guò)程中起著關(guān)鍵的調(diào)控作用。在脂肪酸攝取過(guò)程中,泛素化途徑調(diào)控異??蓪?dǎo)致細(xì)胞膜上脂肪酸轉(zhuǎn)運(yùn)蛋白的泛素化降解受阻,使脂肪酸轉(zhuǎn)運(yùn)增強(qiáng),進(jìn)而增加奶牛乳脂的生成。本文綜述了泛素化途徑在奶牛乳脂生成過(guò)程中對(duì)相關(guān)蛋白的調(diào)控作用,以期為奶牛乳脂性狀后續(xù)相關(guān)研究提供參考和新的思路。
泛素化途徑;泛素–蛋白酶體系統(tǒng);溶酶體系統(tǒng);乳脂生成;脂肪酸
泛素(ubiquitin, Ub)是一種存在于大部分真核細(xì)胞中的多肽,由76個(gè)氨基酸組成,可以標(biāo)記待降解的蛋白質(zhì),然后通過(guò)泛素化–蛋白酶體和溶酶體途徑進(jìn)行降解,即蛋白質(zhì)的泛素化降解[1]。泛素化介導(dǎo)了真核細(xì)胞中約85%的蛋白質(zhì)降解,維持了細(xì)胞內(nèi)環(huán)境的穩(wěn)態(tài)和細(xì)胞器的完整性[2]。已有研究表明,泛素化相關(guān)組件在奶牛()乳脂合成過(guò)程中發(fā)揮重要作用[3,4]。例如,在脂肪酸轉(zhuǎn)運(yùn)過(guò)程中,轉(zhuǎn)運(yùn)膜蛋白的泛素化有助于乳腺上皮細(xì)胞外脂肪酸的轉(zhuǎn)入,使細(xì)胞利用更多的脂肪酸合成乳脂;乳腺上皮細(xì)胞中的高泛素化水平有助于脂肪酸的從頭合成[3];在高糖水平促進(jìn)乳脂合成過(guò)程中,蛋白酶體的活性受限并發(fā)現(xiàn)乳腺上皮細(xì)胞中的泛素化水平顯著上升[5]。研究泛素化在奶牛乳脂生成過(guò)程中的生物學(xué)功能及作用機(jī)制,可為奶牛產(chǎn)奶性狀分子機(jī)理研究和分子育種提供新的理論依據(jù)。本文綜述了泛素化途徑在奶牛乳脂生成過(guò)程中的分子機(jī)制,以期為后期的奶牛乳脂相關(guān)研究奠定基礎(chǔ)。
泛素化是通過(guò)泛素激活酶E1 (ubiquitin-activating enzyme)、泛素結(jié)合酶E2 (ubiquitin-conjugating enz-yme)及泛素連接酶E3 (ubiquitin-protein ligase)的共同作用,將泛素蛋白共價(jià)結(jié)合到靶蛋白質(zhì)的一種翻譯后修飾過(guò)程[6~8](圖1)。泛素分子共含有7個(gè)賴氨酸位點(diǎn)(K):K6、K11、K27、K29、K33、K48和K63,泛素既可以直接連接靶蛋白形成單泛素化和多泛素化,也可以通過(guò)彼此不同的殘基而形成多聚泛素鏈,形成靶蛋白的多聚泛素化[9,10]。研究表明,K48位點(diǎn)多聚泛素化可以介導(dǎo)靶蛋白進(jìn)入蛋白酶體被降解[11~13],K63位點(diǎn)多聚泛素化則參與包括細(xì)胞抗性、DNA損傷修復(fù)和翻譯調(diào)節(jié)等多種生物學(xué)過(guò)程發(fā)揮信號(hào)通路功能而不會(huì)被降解[14~16]。K63位點(diǎn)的單泛素化則可以通過(guò)內(nèi)體蛋白分選轉(zhuǎn)運(yùn)裝置(endo-somal sorting complexes required for transport, ESCRTs)參與胞吞胞吐、蛋白質(zhì)運(yùn)輸及DNA修復(fù)等過(guò)程,最終被溶酶體降解[16,17]。泛素化修飾也是可逆的,去泛素化酶(deubiquitinating enzyme, DUB)可以識(shí)別泛素化蛋白并將泛素單體或多聚體水解出去,使泛素重新進(jìn)入循環(huán)途徑[18,19],因此在免疫調(diào)控、基因轉(zhuǎn)錄激活和內(nèi)吞途徑中都發(fā)揮了重要作用[20~22]。研究表明,泛素化通過(guò)泛素–蛋白酶體途徑和溶酶體途徑在細(xì)胞中的蛋白質(zhì)降解和運(yùn)輸[23,24]、細(xì)胞周期調(diào)控[25]、免疫應(yīng)答[26]、細(xì)胞增殖和凋亡[27,28]以及外泌體[29]等途徑中都發(fā)揮著至關(guān)重要的作用。
圖1 泛素與底物蛋白結(jié)合示意圖
Fig. 1 The basics of the ubiquitin-conjugation pathway
E1:泛素激活酶;E2:泛素結(jié)合酶;E3:泛素連接酶;Ub:泛素蛋白;Substrate:底物蛋白;DUB:去泛素化酶。底物蛋白在泛素激活酶E1、泛素結(jié)合酶E2和泛素連接酶E3的作用下連接上泛素蛋白,完成蛋白質(zhì)的泛素化過(guò)程;又可以在去泛素化酶DUB的作用下完成去泛素化,使得泛素蛋白回到循環(huán)途徑。
泛素–蛋白酶體系統(tǒng)(ubiquitin-proteasome system, UPS)是細(xì)胞內(nèi)蛋白質(zhì)降解的主要途徑,高效地參與了細(xì)胞中至少80%的蛋白質(zhì)降解[30]。26S蛋白酶體存在于細(xì)胞核和細(xì)胞質(zhì)中,是由一個(gè)20S核心蛋白酶體和兩個(gè)19S調(diào)節(jié)蛋白酶體組成的蛋白復(fù)合物。其中,20S核心蛋白酶體是起到主要催化作用的復(fù)合體,它可以發(fā)揮肽基谷氨酰肽水解酶樣、胰蛋白酶樣和糜蛋白酶樣的3種蛋白酶體活性,可將泛素化蛋白質(zhì)水解為7~9個(gè)氨基酸長(zhǎng)度的縮氨酸,泛素則在去泛素化酶的作用下進(jìn)入循環(huán)途徑[31,32]。泛素–蛋白酶體系統(tǒng)可以降解細(xì)胞中調(diào)節(jié)蛋白,參與細(xì)胞凋亡、轉(zhuǎn)錄調(diào)節(jié)及生長(zhǎng)代謝途徑,以控制細(xì)胞的生命活動(dòng)[27,30,33,34];同時(shí)該系統(tǒng)還可以降解細(xì)胞中突變、損傷和錯(cuò)誤折疊的蛋白質(zhì),以維持細(xì)胞的穩(wěn)態(tài)[35]。例如,熱休克蛋白70 (heat shock protein 70, HSP70)在奶牛應(yīng)激過(guò)程中發(fā)揮著非常重要的作用[27,36],該蛋白可以識(shí)別并結(jié)合到錯(cuò)誤折疊的蛋白質(zhì)上并引導(dǎo)泛素蛋白的連接,以促進(jìn)其被泛素–蛋白酶體系統(tǒng)降解。此外,熱休克蛋白HSP27和HSP90也可以通過(guò)引導(dǎo)蛋白質(zhì)I-κBα (NFKB inhibitor alpha)磷酸化后的泛素化降解,激活NF-κB (nuclear factor kappa B)信號(hào)通路,進(jìn)而在奶牛乳房炎等炎癥反應(yīng)中起到重要作用[ 36]。
溶酶體系統(tǒng)是降解細(xì)胞中膜蛋白和細(xì)胞器的主要途徑,又稱為自噬(大自噬),是廣泛存在于真核細(xì)胞中的生物學(xué)過(guò)程。泛素化修飾在膜蛋白和細(xì)胞器的轉(zhuǎn)運(yùn)過(guò)程中可以標(biāo)記需要降解的膜蛋白質(zhì),然 后內(nèi)體蛋白分選轉(zhuǎn)運(yùn)裝置ESCRTs挑選出泛素化的膜蛋白并將其轉(zhuǎn)運(yùn)至多小泡內(nèi)體(multivesicular endosome, MVE),在與周邊的膜結(jié)構(gòu)分離后,最終轉(zhuǎn)運(yùn)至溶酶體進(jìn)行降解[37]。ESCRTs復(fù)合體是由ESCRT 0、ESCRT ?、ESCRT II和ESCRT III共4個(gè)復(fù)合物構(gòu)成(圖2),其中ESCRT 0、ESCRT I和ESCRT II復(fù)合物都含有能與泛素蛋白結(jié)合的亞基,因此它們能直接與泛素化修飾的蛋白結(jié)合。當(dāng)ESCRT 0復(fù)合物識(shí)別泛素化膜蛋白后,即可依次召集ESCRT I和ESCRT II促進(jìn)內(nèi)體膜發(fā)生內(nèi)陷并將膜蛋白進(jìn)行包裹;同時(shí)去泛素化酶DUBs也被召集水解膜蛋白上的泛素分子使其循環(huán)利用[38,39]。研究表明,ESCRTs復(fù)合體聯(lián)合泛素化共同介導(dǎo)細(xì)胞內(nèi)膜蛋白的降解而參與細(xì)胞分化、細(xì)胞因子受體激活和細(xì)胞代謝等途徑[27,40~42]。例如在細(xì)胞面臨致病菌或病毒的入侵時(shí),溶酶體途徑即可通過(guò)識(shí)別、包裹和融合等過(guò)程將其進(jìn)行降解;對(duì)于已經(jīng)入侵宿主細(xì)胞的病毒,宿主細(xì)胞則可以通過(guò)分泌干擾素來(lái)上調(diào)細(xì)胞內(nèi)溶酶體系統(tǒng)信號(hào)通路,進(jìn)而加快對(duì)其的降解水平[43,44]。因此溶酶體系統(tǒng)在細(xì)胞內(nèi)具有非常重要的作用。
圖2 內(nèi)體蛋白分選轉(zhuǎn)運(yùn)裝置復(fù)合體ECSRTs的分子結(jié)構(gòu)
Ub:泛素蛋白結(jié)合結(jié)構(gòu)域;DUB:去泛素化酶識(shí)別位點(diǎn);黑色曲線:蛋白質(zhì)的相互連接。內(nèi)體蛋白分選轉(zhuǎn)運(yùn)裝置復(fù)合體ECSRTs由ESCRT 0、ESCRT ?、ESCRT ??和ESCRT ???共4個(gè)復(fù)合體構(gòu)成。圖中用黑色曲線表示4個(gè)復(fù)合體之間通過(guò)蛋白質(zhì)相互作用而召集在一起,并通過(guò)ESCRT 0和ESCR T?的泛素蛋白結(jié)合結(jié)構(gòu)域識(shí)別并結(jié)合泛素化膜蛋白,通過(guò)ESCRT ???的去泛素化酶識(shí)別位點(diǎn)識(shí)別去泛素化酶。
牛奶中乳脂含量約3%~5%,是衡量牛奶品質(zhì)的重要指標(biāo)。乳脂的主要成分是甘油三酯(triglyceride, TG) (約99%)[45],是由奶牛乳腺組織的乳腺上皮細(xì)胞吸收脂肪酸或者利用前體小分子從頭合成脂肪酸后合成脂肪滴,并由磷脂膜包被形成乳脂肪球從乳腺上皮細(xì)胞釋放到牛奶中[46,47]。乳腺上皮細(xì)胞可以直接利用血液中的18~24個(gè)碳原子的游離長(zhǎng)鏈脂肪酸合成甘油三酯形成乳脂小球,該過(guò)程在奶牛泌乳期前30天占主導(dǎo)位置;也可以利用乙酸和丙酸等前體小分子從頭合成4~14個(gè)碳原子的短鏈和中鏈脂肪酸,合成甘油三酯再形成乳脂小球,該過(guò)程在奶牛泌乳期第2個(gè)星期開始,并于第30天達(dá)到主導(dǎo)位置直至泌乳期結(jié)束。除此以外,血液中有少量的短、中鏈游離脂肪酸可被動(dòng)擴(kuò)散進(jìn)入乳腺上皮細(xì)胞,被用于甘油三酯形成乳脂小球[46,48]。無(wú)論是直接吸收的脂肪酸還是從頭合成的短、中鏈脂肪酸,都需要經(jīng)過(guò)細(xì)胞中一系列酶的作用進(jìn)行轉(zhuǎn)運(yùn)、活化、延長(zhǎng)和去飽和等作用,最終才能合成甘油三酯。因此,乳脂的生成過(guò)程需要一系列受體配體結(jié)合、轉(zhuǎn)運(yùn)載體和酶類的精準(zhǔn)調(diào)控,而這些分子的激活和降解則需要泛素化過(guò)程的調(diào)控。
奶牛乳腺上皮細(xì)胞不能合成大于16碳原子的長(zhǎng)鏈脂肪酸,幾乎全部來(lái)源于細(xì)胞外吸收。血液中的極低密度脂蛋白和乳糜微粒通過(guò)脂蛋白脂肪酶LPL (lipoprotein lipase)水解為甘油和游離脂肪酸,其中少量短、中鏈脂肪酸可通過(guò)被動(dòng)擴(kuò)散方式進(jìn)入乳腺上皮細(xì)胞,長(zhǎng)鏈脂肪酸則需要經(jīng)過(guò)乳腺上皮細(xì)胞上的脂肪酸轉(zhuǎn)運(yùn)蛋白將其轉(zhuǎn)運(yùn)進(jìn)細(xì)胞中。反芻動(dòng)物的長(zhǎng)鏈脂肪酸轉(zhuǎn)運(yùn)蛋白主要是脂肪酸轉(zhuǎn)運(yùn)蛋白FAT/CD36,CD36作為細(xì)胞膜上的乳脂球膜蛋白,可以通過(guò)翻轉(zhuǎn)作用將細(xì)胞外游離的長(zhǎng)鏈脂肪酸轉(zhuǎn)運(yùn)進(jìn)細(xì)胞中[46]。進(jìn)入細(xì)胞中的長(zhǎng)鏈脂肪酸則通過(guò)長(zhǎng)鏈酯酰CoA酶ACSL1 (long chain fatty acid CoA ligase 1)與脂肪酸結(jié)合蛋白FABP3 (fatty acid binding protein 3)相結(jié)合[45,46]。脂肪酸結(jié)合酶 FABP3通過(guò)將脂肪酸從細(xì)胞膜運(yùn)輸內(nèi)質(zhì)網(wǎng)中進(jìn)行甘油三酯和磷脂的合成以參與脂肪酸的細(xì)胞內(nèi)轉(zhuǎn)運(yùn)過(guò)程[46]。在脂肪酸轉(zhuǎn)運(yùn)過(guò)程中,CD36,ACSL1及FABP3在調(diào)節(jié)長(zhǎng)鏈脂肪酸轉(zhuǎn)運(yùn)和細(xì)胞內(nèi)長(zhǎng)鏈脂肪酸的濃度時(shí)起著至關(guān)重要的作用[49]。
研究發(fā)現(xiàn),倉(cāng)鼠()卵巢細(xì)胞CHO和人()胚腎293細(xì)胞中脂肪酸的含量可以顯著促進(jìn)CD36蛋白第48和63位賴氨酸的泛素化過(guò)程[50],這說(shuō)明CD36蛋白可直接受泛素化信號(hào)通路調(diào)控。Liu等[3]證實(shí),敲降內(nèi)體蛋白分選轉(zhuǎn)運(yùn)裝置復(fù)合體ESCRTs中的亞單位VPS28 (vacuolar protein sorting 28),可導(dǎo)致奶牛乳腺上皮細(xì)胞中CD36蛋白的泛素化水平升高。這表明蛋白CD36作為細(xì)胞膜蛋白是通過(guò)溶酶體途徑調(diào)控降解,同時(shí)也說(shuō)明細(xì)胞膜蛋白CD36可以通過(guò)溶酶體途徑調(diào)控長(zhǎng)鏈脂肪 酸的轉(zhuǎn)運(yùn)。Kan等[51]在肝癌細(xì)胞HepG2細(xì)胞中發(fā) 現(xiàn)花生四烯酸可以促進(jìn)長(zhǎng)鏈酯酰CoA酶ACSL4 (long chain fatty acid CoA ligase 4)的泛素化和蛋白酶體降解過(guò)程。Chung等[52]在小鼠()骨骼肌C2C12細(xì)胞中發(fā)現(xiàn)脂肪酸結(jié)合蛋白FABP3是類泛素化SUMO化(small ubiquitin-like modifier)調(diào)控的目標(biāo);劉莉莉等[4]發(fā)現(xiàn),抑制奶牛乳腺上皮細(xì)胞中蛋白酶體活性而提高細(xì)胞中泛素化水平后,和兩個(gè)基因的mRNA表達(dá)水平顯著上升(<0.05),同時(shí)還發(fā)現(xiàn)細(xì)胞中長(zhǎng)鏈脂肪酸的含量顯著上升。這些研究表明奶牛乳腺上皮細(xì)胞中的長(zhǎng)鏈酯酰CoA酶ACSL1和脂肪酸結(jié)合蛋白FABP3受泛素–蛋白酶體系統(tǒng)調(diào)控,同時(shí)也說(shuō)明ACSL1和FABP3可以通過(guò)泛素化途徑調(diào)節(jié)細(xì)胞內(nèi)長(zhǎng)鏈脂肪酸的濃度。因此,在長(zhǎng)鏈脂肪酸的轉(zhuǎn)運(yùn)過(guò)程中,泛素化首先通過(guò)溶酶體途徑調(diào)控長(zhǎng)鏈脂肪酸的轉(zhuǎn)入,再通過(guò)泛素–蛋白酶體途徑調(diào)控細(xì)胞內(nèi)脂肪酸的轉(zhuǎn)運(yùn),進(jìn)而影響長(zhǎng)鏈脂肪酸生成甘油三酯的能力。具體過(guò)程見圖3泛素化與長(zhǎng)鏈脂肪酸轉(zhuǎn)運(yùn)部分。
乳腺上皮細(xì)胞中約50%的中、短脂肪酸是利用乙酸和丁酸等前體小分子進(jìn)行從頭合成的[53]。脂肪酸從頭合成主要是在乙酰輔酶A羧化酶ACACA (acetyl-CoA carboxylase)和脂肪酸合成酶FASN (fatty acid synthase)的作用下完成[46]。乙酰輔酶A羧化酶ACACA作為脂肪酸從頭合成的限速酶,主要催化乙酰輔酶A羧化合成丙二酸單酰輔酶A,由此開啟脂肪酸的合成。脂肪酸合成酶FASN則主要負(fù)責(zé)將丙二酸單酰輔酶A繼續(xù)延長(zhǎng)合成中/長(zhǎng)鏈飽和脂肪酸(C4:0-C16:0)[54]。這些從頭合成的脂肪酸又在酯酰CoA酶ACSL和脂肪酸結(jié)合蛋白FABP3等酶系的作用下被轉(zhuǎn)運(yùn)至內(nèi)質(zhì)網(wǎng)中進(jìn)行甘油三酯和磷脂的合成。甘油二酯?;D(zhuǎn)移酶DGAT1 (diacylglycerol acyltransferase 1)和酰基輔酶A去飽和酶SCD (Stearoyl-CoA desaturase)是內(nèi)質(zhì)網(wǎng)中合成甘油三酯的限速酶,可以通過(guò)變構(gòu)效應(yīng)被甘油二酯特異激活[46,55]。在內(nèi)質(zhì)網(wǎng)中,脂肪酸逐步通過(guò)甘油二酯?;D(zhuǎn)移酶DGAT1和?;o酶A去飽和酶SCD等酶系的作用合成甘油三酯,隨后在內(nèi)質(zhì)網(wǎng)小葉中形成并累積成脂肪滴,在質(zhì)膜包被及脂肪分化相關(guān)蛋白ADFP (adipose differentiation-related protein)等協(xié)助下被分泌到腺泡中,脂肪分化相關(guān)蛋白ADFP是細(xì)胞中脂肪滴表面蛋白,不僅是脂質(zhì)蓄積的特異性標(biāo)志[56,57],還可以促進(jìn)脂肪滴與細(xì)胞膜上受體的結(jié)合,最后通過(guò)細(xì)胞的頂漿膜將脂肪滴釋放到細(xì)胞外形成乳脂[46,47,58,59]。
研究表明,乙酰輔酶A羧化酶ACACA和脂肪酸合成酶FASN兩個(gè)基因的轉(zhuǎn)錄因子是固醇調(diào)節(jié)元件結(jié)合蛋白SREBP-1 (sterol regulatory element bin-ding protein 1)[60,61]。固醇調(diào)節(jié)元件結(jié)合蛋白SREBP-1在連接靶基因后,可以通過(guò)招募糖原合成酶激酶GSK3 (glycogen synthase kinase 3)發(fā)生磷酸化,進(jìn)而可以招募泛素連接酶SCF-Fbw7,使其被泛素化并通過(guò)泛素–蛋白酶體系統(tǒng)進(jìn)行降解[62~64]。這也提示了泛素化可以間接影響乙酰輔酶A羧化酶ACACA和脂肪酸合成酶FASN的表達(dá)而調(diào)控脂肪酸的從頭合成。脂肪分化相關(guān)蛋白ADFP是脂肪滴表面蛋白,在腎透明細(xì)胞癌中研究中發(fā)現(xiàn)泛素連接酶Mul1可以識(shí)別ADFP并調(diào)控其進(jìn)行泛素化降解[65]。Liu等[3]和劉莉莉等[4]發(fā)現(xiàn)抑制奶牛乳腺上皮細(xì)胞中蛋白酶體活性后,乙酰輔酶A羧化酶的mRNA表達(dá)量顯著下調(diào)(<0.05),但脂肪酸合成酶的mRNA表達(dá)量顯著上調(diào)(<0.05),這也在一定程度上證實(shí)了泛素化可以通過(guò)影響乙酰輔酶A羧化酶ACACA和脂肪酸合成酶FASN的表達(dá)而調(diào)控脂肪酸的從頭合成;Liu等[3]和劉莉莉等[4]還通過(guò)干擾奶牛乳腺上皮細(xì)胞中VPS28的表達(dá)而影響內(nèi)體蛋白分選轉(zhuǎn)運(yùn)裝置復(fù)合體ESCRTs的穩(wěn)定性,進(jìn)而發(fā)現(xiàn)細(xì)胞中的ADFP有明顯的蓄積,同時(shí)通過(guò)電子顯微鏡觀察到細(xì)胞中有大量脂肪滴蓄積,這也說(shuō)明脂肪分化相關(guān)蛋白ADFP是受泛素–溶酶體系統(tǒng)調(diào)控降解。因此,在脂肪酸從頭合成過(guò)程中,泛素化可以通過(guò)泛素–蛋白酶體途徑調(diào)控轉(zhuǎn)錄因子SREBP-1而影響乙酰輔酶A羧化酶ACACA和脂肪酸合成酶FASN的表達(dá),從而影響乙酸或丁酸等前體小分子生成脂肪酸的過(guò)程,然后再通過(guò)泛素–蛋白酶體途徑調(diào)控細(xì)胞內(nèi)長(zhǎng)鏈脂肪酸的生成和轉(zhuǎn)運(yùn),以及最后長(zhǎng)鏈脂肪酸生成甘油三酯的過(guò)程。具體過(guò)程見圖3泛素化與脂肪酸從頭合成部分。
圖3 泛素化與乳脂合成的分子調(diào)控
奶牛乳腺上皮細(xì)胞中甘油三酯的合成過(guò)程主要有兩個(gè)過(guò)程:長(zhǎng)鏈脂肪酸的直接合成和脂肪酸從頭合成。在長(zhǎng)鏈脂肪酸合成乳脂過(guò)程中,泛素化通過(guò)溶酶體途徑調(diào)控長(zhǎng)鏈脂肪酸的轉(zhuǎn)入,并通過(guò)類泛素化SUMO化影響長(zhǎng)鏈脂肪酸的細(xì)胞內(nèi)轉(zhuǎn)運(yùn);在脂肪酸從頭合成過(guò)程中,泛素化通過(guò)泛素–蛋白酶體途徑調(diào)控乙酸或丁酸等小分子生成脂肪酸的過(guò)程,并影響細(xì)胞中脂肪酸鏈的延長(zhǎng)和轉(zhuǎn)運(yùn);在乳脂生成的最后過(guò)程中,泛素化通過(guò)泛素–蛋白酶體系統(tǒng)影響乳脂滴的最后形成。
泛素化途徑在脂肪酸代謝和甘油三酯合成過(guò)程中都發(fā)揮重要作用。泛素化–蛋白酶體和溶酶體途徑中的相關(guān)組件或調(diào)控發(fā)生異常都可導(dǎo)致奶牛乳腺上皮細(xì)胞中泛素化水平的改變進(jìn)而直接影響脂肪酸的轉(zhuǎn)運(yùn)和從頭合成、脂肪滴的形成和乳脂的最后生成。然而,目前對(duì)泛素化是如何誘導(dǎo)乳脂相關(guān)蛋白質(zhì)的泛素化降解、這些蛋白質(zhì)的泛素化類型以及泛素化涉及的酶的生化特性和亞細(xì)胞定位及其底物都知之甚少,而這些都是闡明泛素化介導(dǎo)的乳脂生成調(diào)控機(jī)制的基礎(chǔ),需要大量的研究。因此,深入研究泛素化途徑在奶牛乳脂生成過(guò)程中發(fā)揮的生物學(xué)功能及其具體作用方式和機(jī)制,有望揭示泛素化信號(hào)通路調(diào)控乳脂合成的新機(jī)制,并為泛素化信號(hào)通路在其他奶牛生產(chǎn)性狀或其他畜禽生產(chǎn)性狀的作用機(jī)制研究提供參考。
[1] Metin C, Luccardini C. Neuroscience. Ubiquitination inhibits neuronal exit., 2010, 330(6012): 1754–1755.
[2] Shi Y, Chan DW, Jung SY, Malovannaya A, Wang Y, Qin J. A data set of human endogenous protein ubiquitination sites., 2011, 10(5): M110.002089.
[3] Liu L, Zhang Q. Identification and functional analysis of candidate gene VPS28 for milk fat in bovine mammary epithelial cells., 2019, 510(4): 606–613.
[4] Liu LL, Guo AW, Wu PF, Chen FF, Yang YJ, Zhang Q. Regulation of VPS28 gene knockdown on the milk fat synthesis in Chinese Holstein dairy.,2018, 40(12): 1092–1100.劉莉莉, 郭愛偉, 吳培福, 陳粉粉, 楊亞晉, 張勤. 敲降VPS28基因?qū)χ袊?guó)荷斯坦奶牛乳脂合成的調(diào)控. 遺傳, 2018, 40(12): 1092–1100.
[5] Liu L, Jiang L, Ding XD, Liu JF, Zhang. The regulation of glucose on milk fat synthesis is mediated by the ubiquitin- proteasome system in bovine mammary epithelial cells., 2015, 465(1): 59–63.
[6] Yu Y, Hayward GS. The ubiquitin E3 ligase RAUL negatively regulates type i interferon through ubiquitination of the transcription factors IRF7 and IRF3., 2010, 33(6): 863–877.
[7] Strack B, Calistri A, Accola MA, Palù G, G?ttlinger HG. A role for ubiquitin ligase recruitment in retrovirus release., 2000, 97(24): 13063–13068.
[8] Bhoj VG, Chen ZJ. Ubiquitylation in innate and adaptive immunity., 2009, 458(7237): 430–437.
[9] Ikeda F, Dikic I. Atypical ubiquitin chains: new molecular signals. ‘Protein Modifications: Beyond the Usual Suspects’ review series., 2008, 9(6): 536–542.
[10] Tanno H, Komada M. The ubiquitin code and its decoding machinery in the endocytic pathway., 2013, 153(6): 497–504.
[11] Mallette FA, Richard S. K48-linked ubiquitination and protein degradation regulate 53BP1 recruitment at DNA damage sites., 2012, 22(8): 1221–1223.
[12] Hao ZY, Sheng Y, Duncan GS, Li WY, Dominguez C, Sylvester J, Su YW, Lin GH, Snow BE, Brenner D, You-Ten A, Haight J, Inoue S, Wakeham A, Elford A, Hamilton S, Liang Y, Zú?iga-Pflücker JC, He HH, Ohashi PS, Mak TW. K48-linked KLF4 ubiquitination by E3 ligase Mule controls T-cell proliferation and cell cycle progression., 2017, 8: 14003.
[13] He S, Zhang LQ. Research progress in linear ubiquitin modification.,2015, 37(9): 911–917.何珊, 張令強(qiáng). 線性泛素化修飾研究進(jìn)展. 遺傳, 2015, 37(9): 911–917.
[14] Tang Y, Tu HL, Zhang J, Zhao XQ, Wang YN, Qin J, Lin X. K63-linked ubiquitination regulates RIPK1 kinase activity to prevent cell death during embryogenesis and inflammation., 2019, 10(1): 4157.
[15] Liu CS, Yang-Yen HF, Suen CS, Hwang MJ, Yen JJY. Cbl-mediated K63-linked ubiquitination of JAK2 enhances JAK2 phosphorylation and signal transduction., 2017, 7(1): 4613.
[16] Zhang QY, Zhang YZ, Shen K, Zhang SY, Cao JP. Histone ubiquitylation and its roles in DNA damage response., 2019, 41(1): 29–40.張卿義, 張櫻子, 沈凱, 張舒羽, 曹建平. 組蛋白泛素化修飾及其在DNA損傷應(yīng)答中的作用. 遺傳, 2019, 41(1): 29–40.
[17] Ray DM, Rogers BA, Sunman JA, Akiyama SK, Olden K, Roberts JD. Lysine 63-linked ubiquitination is important for arachidonic acid-induced cellular adhesion and migration., 2010, 88(6): 947–956.
[18] Békés M, Okamoto K, Crist SB, Jones MJ, Chapman JR, Brasher BB, Melandri FD, Ueberheide BM, Denchi EL, Huang TT. DUB-resistant ubiquitin to survey ubiquitination switches in mammalian cells., 2013, 5(3): 826– 838.
[19] Clague MJ. Biochemistry: Oxidation controls the DUB step., 2013, 497(7447): 49–50.
[20] Wright MH, Berlin I, Nash PD. Regulation of endocytic sorting by ESCRT-DUB-mediated deubiquitination., 2011, 60(1–2): 39–46.
[21] Rathaus M, Lerrer B, Cohen HY. DeubiKuitylation: a novel DUB enzymatic activity for the DNA repair protein, Ku70., 2009, 8(12): 1843–1852.
[22] Zhu Y, Carroll M, Papa FR, Hochstrasser M, D'Andrea AD. DUB-1, a deubiquitinating enzyme with growth-suppressing activity., 1996, 93(8): 3275–3279.
[23] Leestemaker Y, Ovaa H. Tools to investigate the ubiquitin proteasome system., 2017, 26: 25–31.
[24] Hao YH, Doyle JM, Ramanathan S, Gomez TS, Jia D, Xu M, Chen ZJ, Billadeau DD, Rosen MK, Potts PR. Regulation of WASH-dependent actin polymerization and protein trafficking by ubiquitination., 2013, 152(5): 1051–1064.
[25] Nakayama KI, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer., 2006, 6(5): 369–381.
[26] Malynn BA, Ma A. Ubiquitin makes its mark on immune regulation., 2010, 33(6): 843–852.
[27] Chen K, Cheng HH, Zhou RJ. Molecular mechanisms and functions of autophagy and the ubiq-uitin-proteasome pathway., 2012, 34(1): 5–18.陳科, 程漢華, 周榮家. 自噬與泛素化蛋白降解途徑的分子機(jī)制及其功能. 遺傳, 2012, 34(1): 5–18.
[28] Pickart CM. Mechanisms underlying ubiquitination., 2001, 70: 503–533.
[29] Villarroya-Beltri C, Baixauli F, Mittelbrunn M, Fernández- Delgado I, Torralba D, Moreno-Gonzalo O, Baldanta S, Enrich C, Guerra S, Sánchez-Madrid F. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins., 2016, 7: 13588.
[30] Pohl C, Dikic I. Cellular quality control by the ubiquitin- proteasome system and autophagy., 2019, 366(6467): 818–822.
[31] Smalle J, Vierstra RD. The ubiquitin 26S proteasome proteolytic pathway., 2004, 55: 555– 590.
[32] Bard JAM, Goodall EA, Greene ER, Jonsson E, Dong KC, Martin A. Structure and Function of the 26S Proteasome., 2018, 87: 697–724.
[33] Chen YJ, Wu H, Shen XZ. The ubiquitin-proteasome system and its potential application in hepatocellular carcinoma therapy., 2016, 379(2): 245–252.
[34] Dong LH, Ran ML, Li Z, Peng FZ, Chen B. The role of ubiquitin-proteasome pathway in spermatogenesis., 2016, 38(9): 791–800.董蓮花, 冉茂良, 李智, 彭馥芝, 陳斌. 泛素–蛋白酶體途徑在精子生成中的作用. 遺傳, 2016, 38(9): 791–800.
[35] Ross JM, Olson L, Coppotelli G. Mitochondrial and ubiquitin proteasome system dysfunction in ageing and disease: two sides of the same coin., 2015, 16(8): 19458–19476.
[36] Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G. Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties., 2006, 5(22): 2592–2601.
[37] Saksena S, Sun J, Chu T, Emr SD. ESCRTing proteins in the endocytic pathway., 2007, 32(12): 561–573.
[38] Odorizzi G. ESCRTs take on a job in surveillance., 2014, 159(2): 240–241.
[39] Shields SB, Piper RC. How ubiquitin functions with ESCRTs., 2011, 12(10): 1306–1317.
[40] Gutierrez MG, Carlton JG. ESCRTs offer repair service., 2018, 360(6384): 33–34.
[41] Majumder P, Chakrabarti O. ESCRTs and associated proteins in lysosomal fusion with endosomes and autophagosomes., 2016, 94(5): 443–450.
[42] Radulovic M, Stenmark H. ESCRTs in membrane sealing., 2018, 46(4): 773–778.
[43] Zhang S, Yu CM, Yin Y, Chen W. Research progress of the role of autophagy in infectious diseases.,2009, 33(5): 469–472.章晟, 于長(zhǎng)明, 殷瑛, 陳薇. 細(xì)胞自噬在病原體感染過(guò)程中的作用研究進(jìn)展. 軍事醫(yī)學(xué)科學(xué)院院刊, 2009, 33(5): 469–472.
[44] Espert L, Codogno P, Biard-Piechaczyk M. Involvement of autophagy in viral infections: antiviral function and subversion by viruses., 2007, 85(8): 811–823.
[45] Walther TC, Farese RV. The life of lipid droplets., 2009, 1791(6): 459–466.
[46] Bionaz M, Loor JJ. Gene networks driving bovine milk fat synthesis during the lactation cycle., 2008, 9: 366.
[47] Reinhardt TA, Lippolis JD. Bovine milk fat globule membrane proteome., 2006, 73(4): 406–416.
[48] Doege H, Stahl A. Protein-mediated fatty acid uptake: novel insights frommodels., 2006, 21: 259–268.
[49] Bionaz M, Loor JJ. ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation., 2008, 138(6): 1019–1024.
[50] Smith J, Su X, El-Maghrabi R, Stahl PD, Abumrad NA. Opposite regulation of CD36 ubiquitination by fatty acids and insulin: effects on fatty acid uptake., 2008, 283(20): 13578–13585.
[51] Kan CF, Singh AB, Stafforini DM, Azhar S, Liu J. Arachidonic acid downregulates acyl-CoA synthetase 4 expression by promoting its ubiquitination and proteasomal degradation., 2014, 55(8): 1657–1667.
[52] Chung SS, Ahn BY, Kim M, Kho JH, Jung HS, Park KS. SUMO modification selectively regulates transcriptional activity of peroxisome-proliferator-activated receptor γ in C2C12 myotubes., 2011, 433(1): 155–161.
[53] Bernard L, Leroux C, Chilliard Y. Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland., 2008, 606: 67–108.
[54] Roy R, Ordovas L, Zaragoza P, Romero A, Moreno C, Altarriba J, Rodellar C. Association of polymorphisms in the bovine FASN gene with milk-fat content., 2006, 37(3): 215–218.
[55] Tao H, Chang GJ, Xu TL, Zhao HJ, Zhang K, Shen XZ. Feeding a high concentrate diet down-regulates expression of ACACA, LPL and SCD and modifies milk composition in lactating goats., 2015, 10(6): e0130525.
[56] McManaman JL, Zabaronick W, Schaack J, Orlicky DJ. Lipid droplet targeting domains of adipophilin., 2003, 44(4): 668–673.
[57] Heid HW, Moll R, Schwetlick I, Rackwitz HR, Keenan TW. Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases., 1998, 294(2): 309–321.
[58] Heid HW, Keenan TW. Intracellular origin and secretion of milk fat globules., 2005, 84(2–3): 245– 258.
[59] McManaman JL, Russell TD, Schaack J, Orlicky DJ, Robenek H. Molecular determinants of milk lipid secretion., 2007, 12(4): 259–268.
[60] Lopez JM, Bennett MK, Sanchez HB, Rosenfeld JM, Osborne TF. Sterol regulation of acetyl coenzyme A carboxylase: a mechanism for coordinate control of cellular lipid., 1996, 93(3): 1049–1053.
[61] Rudolph MC, Monks J, Burns V, Phistry M, Marians R, Foote MR, Bauman DE, Anderson SM, Neville MC. Sterol regulatory element binding protein and dietary lipid regu-lation of fatty acid synthesis in the mammary epithelium., 2010, 299(6): E918–E927.
[62] Punga T, Bengoechea-Alonso MT, Ericsson J. Phosp-horylation and ubiquitination of the transcription factor sterol regulatory element-binding protein-1 in response to DNA binding., 2006, 281(35): 25278–25286.
[63] Bengoechea-Alonso MT, Ericsson J. A phosphorylation cascade controls the degradation of active SREBP1., 2009, 284(9): 5885–5895.
[64] Han YM, Hu ZM, Cui AY, Liu ZS, Ma FG, Xue YQ, Liu YX, Zhang FF, Zhao ZH, Yu YY, Gao J, Wei C, Li JY, Fang J, Li J, Fan JG, Song BL, Li Y. Post-translational regulation of lipogenesisAMPK-dependent phosp-horylation of insulin-induced gene., 2019, 10(1): 623.
[65] Yuan YJ, Li XZ, Xu YY, Zhao HB, Su ZM, Lai DH, Yang WQ, Chen SX, He YZ, Li X, Liu LY, Xu GB. Mito-chondrial E3 ubiquitin ligase 1 promotes autophagy flux to suppress the development of clear cell renal cell carcinomas., 2019, 110(11): 3533–3542.
The regulation of ubiquitination in milk fat synthesis in bovine
Lili Liu1, Aiwei Guo1, Qingqing Li1,2, Peifu Wu1, Yajin Yang1, Fenfen Chen1, Suhua Li1, Panjiang Guo1, Qin Zhang3
Ubiquitination signaling is the main pathway of protein degradation in eukaryotic cells. Ubiquitin-proteasome system degrades the ubiquitinated cytoplasmic proteins and lysosome pathway mainly degrades the ubiquitinated membrane proteins. Previous studies have shown that ubiquitination signaling plays a critical role in fatty acids synthesis. In the process of fatty acids import, disruption of ubiquitination could prevent the degradation of fatty acid transport proteins, thereby promoting fatty acids import and milk fat synthesis in bovine primary mammary epithelial cells. In this review, we summarize the signal transduction and regulation mechanism of ubiquitination signaling in milk fat synthesis, which may provide references and new ideas for future research on milk fat traits in dairy cows.
ubiquitination; ubiquitinated-proteasome system; lysosome pathway; milk fat synthesis; fatty acid
2020-02-10;
2020-04-15
國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):31902152,31872327)資助[Supported by the National Natural Science Foundation of China (Nos. 31902152, 31872327)]
劉莉莉,博士,講師,研究方向:動(dòng)物遺傳育種。E-mail: liulily0518@163.com
張勤,博士,教授,研究方向:動(dòng)物遺傳育種。E-mail: qzhang@sdau.edu.cn
10.16288/j.yczz.20-037
2020/5/8 9:58:23
URI: http://kns.cnki.net/kcms/detail/11.1913.R.20200507.1717.004.html
(責(zé)任編委: 趙要風(fēng))