• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    隨機(jī)時(shí)滯網(wǎng)絡(luò)控制系統(tǒng)的后退時(shí)域估計(jì)

    2020-06-11 13:26:06李超超韓春艷
    控制理論與應(yīng)用 2020年5期
    關(guān)鍵詞:工程學(xué)院時(shí)滯時(shí)域

    李超超,韓春艷,何 芳

    (濟(jì)南大學(xué)自動(dòng)化與電氣工程學(xué)院,山東濟(jì)南 250022)

    1 Introduction

    Recently,significant attention has been paid to networked control systems (NCSs)as they bring numerous benefits,such as reduced system wiring,lower cost in maintenance,increased system agility,ease of information sharing,etc.Along with the advantages,several challenging problems,such as bandwidth allocation,communication delays and packet dropouts,also emerged giving rise to many important research topics[1–4].Transmission delay is now well known to be one of the most often occurred phenomena in NCSs,which may result in deterioration of system performance and even instability.Therefore,it is of great significance to study NCSs with transmission delays where the packet dropout incorporates naturally.

    There is no doubt that state estimation is an important topic in both theoretical research and practical applications.In the past decade,a substantial body of literature has been devoted to state estimation for systems with transmission delays.There existed several techniques for dealing with time delay,such as the classical state augmentation method[5],the linear matrix inequality algorithm[6],the polynomial approach[7],and the reorganization innovation analysis method[8].

    The transmission delay in NCSs may vary with time and is often modeled as a random process.Two stochastic processes:the Bernoulli process[9–13]and the Markov process[14–15],are commonly used to describe the characteristics of the random delays.In [10],the recursive estimation for linear and nonlinear systems with uncertain observations were considered.A binary switching sequence-the Bernoulli distribution process,was used to describe the uncertainty in the observations.An estimator was obtained by the covariance information method.Similar result was also given in [11].In[14],the state estimation with missing measurements was considered,where the missing process was modeled as a Markov chain.A jump linear estimator was introduced to cope with the losses.Further in [12],an optimal filter problem with random delay and packet dropouts was studied,where the random received observations were stored in a possibly infinite-length buffer.In [13],the optimal and suboptimal linear estimators were designed for NCSs with random observation delays,where the random delay was modeled as a set of Bernoulli variables.The measurement reorganization method was employed for treating delay terms.In addition,the Markov type transmission delay was considered in[15]and three different types of filters were designed without state augmentation.

    On the other hand,receding horizon estimation,also called moving horizon estimation,has become as an important research topic and gained much attention[16–19]in recent years.It explains the concept of full information estimation and introduces the moving horizon estimation as a computable approximation of full information.The basic design method for ensuring stability of moving horizon estimation was presented in [16].Further,the moving horizon estimation algorithm was applied to the field of distributed estimation in[17–18].In this paper,we will combine the receding horizon estimation algorithm and the observation reorganization technique to derive the estimator of the systems with random time delays,which reduce the calculation complexity for the design process.

    Based on the aforementioned literature,we investigate the receding horizon estimation for discrete-time linear system with random observation delays.A set of Bernoulli variables are introduced to describe the characteristics of the random delay,and the measurement reorganization technique is employed for dealing with the delay terms.On the basis of the new system model without time-delay,both batch form and iterative form receding horizon estimation are derived afterward without state augmentation,and the stability analysis is supplied.

    The contribution of this paper can be stated as:i)Compared with the Kalman-type estimator developed in[13],the receding horizon estimator developed in this paper,since based on a finite number of system measurements,can make more flexibility to tune weighting parameters and provide a higher estimator precision.The comparison has been shown in Section 4;ii)The Hadamard product is introduced in the derivation of the receding horizon estimator gains.This is the main difference between the receding horizon estimation developed in this paper and the Kalman-type estimator developed in[13];iii)In the derivation of estimator gains,it is difficult to solve a global optimization problem.Then the decomposition method is employed,by which the receding horizon estimation subject to unbiasedness constraint is divided intoNindividual optimization problems.The independent optimization problem is solved by the optimality principle,and the individual estimation gains are obtained.This is one of the technique contribution of this paper.

    The remainder of this paper is organized as follows.Problem description is given in Section 2.Section 3 mainly concerns with the design of the receding horizon estimation and the stability analysis of the proposed method.In Section 4,a simulation example is presented to illustrate the estimator’s performance.Finally,conclusions are drawn in Section 5.

    Notation:Throughout this paper,the superscripts?1andTrepresent the inverse and transpose of the matrix.represents the n-dimensional Euclidean space.Moreover,E{·}means the mathematical expectation,⊙is the Hadamard product,col{·}indicates the column vector,tr{·}means the trace of a matrix and P{·}represents the occurrence probability of an event.

    2 Problem description

    Consider the following discrete-time linear system with random delay:

    wherex(t)∈is the state,w(t)∈is the input noise,yr(t)∈is the measurement andv(t)∈is the measurement noise.Through the paper,it is assumed that the constant matricesA,C,Hare known,[C,A]is observable,Ais nonsingular,andr(t)means the random delay.

    Assumption 1w(t)andv(t)are white noises with covariance matrices E{w(t)wT(s)}=Qwδts,E{v(t)vT(s)}=Rvδts,respectively.x0,w(t),andv(t)are mutually independent.

    Assumption 2Measurements in (2)are timestamped.As is well known,time-stamping of measurement information is necessary to reorder packets at the receiver side because there exist random delays in communication.The random delayr(t)is bounded with 0r(t)r,whereris known as the length of memory buffer.If the received measurement is with a delay larger thanr,it will be viewed as the lost packet.The probability distribution ofr(t)is P(r(t)=i)=ρi,i=0,…,r.Obviously,We assume thatr(t)is independent ofx0,w(t),andv(t).

    Since formula (2)contains random delays which can’t be treated directly by the reorganized observation technique,the original system needs to be transformed into a constant delay one first.Based on the above assumption,denote

    withαi,tdefined as a binary random variable indicating the arrival of the observation packet for statex(t ?i)at timet,that is

    Thenαi,t(i=0,1,…,r)has the same stochastic probability as that ofr(t).That means P(αi,t=1)=ρi(i=0,1,…,r),whereρi(i=0,1,…,r)is known.In the real-time control systems,the statex(t)can only be observed at most one time,and thus the following assumption needs to be made.

    Assumption 3The stochastic variableαi,t(i=0,1,…,r)has the following property

    Then the optimal filtering problem considered in this paper can be stated as follows:

    Problem 1(Optimal receding horizon estimation)Given the observation{y(s)|0≤s≤t},find a linear minimum mean square error receding horizon estimator(t)of the statex(t)with the finite horizonN,such thatEw,v[(t)]=Ew,v[x(t)].

    3 Construction of the receding horizon estimation

    In this section,the random delayed system is transformed into a delay-free one by the reorganization observation method used for dealing with the random delay.Then,we will propose a new receding horizon estimator with deterministic gains by minimizing the mean square estimation error.

    3.1 Observation reorganization

    Because the state estimation for time-delay systems cannot be deduced directly,it needs to be transformed into a delay-free one by the reorganization observation method.

    For the given timet,the received observations can be rearranged into a set of delay-free sequences as follows.

    In addition,the covariance matrices ofvr(s)andvt?s(s)are described as follows:

    For convenience,denote

    3.2 Receding horizon estimator

    The problem considered here is how to acquire a receding horizon estimate(s|s ?1)of the state vectorx(s)by using a finite number of measurements of the system output ˉy(s)with weighted matrix.And two forms of receding horizon estimation are derived from the following two theorems.

    In order to simplify the calculation,let us define in Step 1 as

    where⊙means Hadamard product andX(s)satisfies

    It is noted that some definitions of the algorithm for Step 2 are similar to those definitions above,which just need to replace the subscriptrwitht ?s,and thus is omitted here.

    For the given timet,we now develop a batch form receding horizon estimator(t)in the following algorithm.

    Algorithm 1(Batch form receding horizon estimator)

    Step 1For 0st ?r,a receding horizon estimator(s|s ?1)is calculated by

    where the optimal gain matrixFr(s)is determined by

    with

    Step 2Fort ?r

    Step 3Fors=t,set(t)=(t|t?1)in Step 2.

    In the following theorem,we will show that the estimator developed in Step 1–3 is the optimal solution to Problem 1.

    Theorem 1For systems (1)(4)and (5),when(C,A)is observable,the linear minimum mean square error receding horizon estimator(t)with a batch form on the horizon[t ?N,t]can be derived by Algorithm 1,which satisfies the unbiased constraints.

    ProofFor 0st ?r,the finite number of measurements on the horizon[s ?N,s]can be expressed in terms of the statex(s),

    Taking expectation on both sides of(10),and to satisfy the unbiased condition,E=Ex,the following relation is obtained

    Based on the definition of estimation error,denote

    So,we can obtain the covariance of estimation error(s|s ?1)as follows:

    By the foregoing definitions,the following results can be drawn:

    From(13)–(14)and(15),we obtain

    The objective is to obtain the optimal gain matrixF(s),subject to the unbiasedness constraint (11),in such a way that the error ?x(s|s ?1)of the estimate(s|s ?1)has minimum variance as follows:

    Before obtaining the solution to(17),we obtain the result on constraint optimization in the first instance.In order to simplify the calculation,usingFrfor a temporary replacementFr(s).Now,suppose that the following trace optimization problem is given

    For convenience,partition the matrixFrin(11)as

    From(19),as a consequence,thes-th unbiasedness constraint can be written as

    In terms of the partitioned vector,the cost function(18)is represented as

    Thus,the optimization problem (18)is reduced toNindependent optimization problems

    subject to

    Obtaining the solutions to each optimization problem (21)and putting them together,we can finally obtain the solution to(17).

    By solving the optimization problem (21),we can firstly establish the cost function

    whereλjis thes-th vector of a Lagrange multiplier,which is associated with thes-th unbiased constraint.

    In order to minimizeΦ,two necessary conditions are obtained

    Putting them together,we can obtain

    Bring(25)into(10),we can reach the batch form of receding horizon estimation

    The derivation of Step 2 is similar to that of Step 1.This completes the proof of Theorem 1.QED.

    Remark 1In the derivation of Theorem 1,the linear minimum mean square error receding horizon estimation subject to unbiasedness constraint is divided intoNindividual optimization problems.Then,by introducing the Lagrange multiplier,the independent optimization problem is solved,and the individual estimation gains are obtained.At last,the total gain is obtained by putting all the components together.The amount of computation meets our requirements.In addition,in(17),Fr(s)should be updated over time.

    In what follows,we will rewrite the batch form estimator in an iterative form for computational advantage.For the given timet,an iterative form receding horizon estimator(t)is developed.

    Algorithm 2(Iterative form receding horizon estimator)

    Step 1For 0st ?r,an iterative form estimator(s|s ?1)with finite horizonNis given by

    where

    Step 2Fort ?r

    Step 3Fors=t,set(t)=(t|t?1)in Step 2.

    It will be shown in Theorem 2 that the iterative estimator developed in Algorithm 2 is the optimal solution to Problem 1 subject to unbiased constraints.

    Theorem 2Assume that (C,A)is observable.Then the linear minimum mean square error receding horizon estimator(t)with an iterative form on the horizon[t ?N,t]is given by Algorithm 2,which satisfies the unbiased constraints.

    ProofFirstly,for 0st ?r,define

    So it can be represented in the following Riccati Equation for 0lN:

    Similarly,it is available for 0lNthat

    From (28)and (29),an iterative form for receding horizon estimation is obtained

    Similarly,We are able to get an iterative form of receding horizon estimation in Step 2.This completes the proof of Theorem 2.QED.

    3.3 Stability analysis

    The stability of the receding-horizon estimator will be investigated below.Thus we just need to analyze the stability of the filter developed in Theorem 2.It needs to require consideration of the filter’s transfer matrix.From Theorem 2,we define the transfer matrix for 0st ?ras

    Under the given assumption,the necessary and sufficient condition subject to asymptotical stability of the proposed filter is that the transfer matrixΓNof the estimator is one stability matrix.It means that all of its eigenvalues are located in the unit circle.The stability of the observer is ensured by the following theorem.

    Theorem 3If(C,A)is observable,andAnonsingular,then the matrixΓNhas all its eigenvalues strictly within the unit circle for all finiteNn ?1 wherenis the dimension of the state vector.

    ProofFor 0st ?r,define[20]

    In view of(28)and(29),we can obtain(30)immediately.This completes the proof of Theorem 3.QED.

    Remark 2Conditions for the stability of the proposed moving horizon estimation is proposed for time-invariant systems.The advantage of this estimation algorithm is that it is easy to implement since the gains can be performed off-line.

    4 Simulation example

    In this section,a simulation example is given to illustrate the efficiency of the proposed receding horizon estimation for random delay system(1)and(2).In this part,we define the time horizon 0t100,the estimator horizon sizeN=5,and the random delay horizon 0r(t)2.The other parameters of the system are as follows

    Fig.1 State trajectories of x1(t)

    Based on the design procedures of Theorem 2 in this paper and Kalman filter in [13],the simulation results are obtained as follows.Fig.1 shows the trace of the real valuex1(t)and its estimate.Fig.2 shows the trace of the real valuex2(t)and its estimate.Fig.3 shows the root of the mean square estimation errors(RMSEEs)ofx1(t)according to the two algorithms,while Fig.4 shows the RMSEEs ofx2(t)according to the two algorithms.Fig.5 shows the summation of the RMSEEs ofx1(t)of the two algorithms.Fig.6 shows the summation of the RMSEEs ofx2(t)of the two algorithms.It can be seen from Figs.3–6 that the obtained receding horizon estimation for systems with observation delays track better than Kalman filter and the estimation scheme produces better performance.On the other hand,it can be seen from Fig.7 and Fig.8 that the tracking performance for the case ofN=5 is better than that ofN=2.It is a suitable choice for the estimator horizon sizeN=5.

    Fig.2 State trajectories of x2(t)

    Fig.3 The RMSEEs of x1(t)

    Fig.4 The RMSEEs of x2(t)

    Fig.5 Summation of RMSEE trajectories of x1(t)

    Fig.6 Summation of RMSEE trajectories of x2(t)

    Fig.7 Summation of RMSEE trajectories of x1(t)for RHE estimation: N=5,2

    Fig.8 Summation of RMSEE trajectories of x2(t)for RHE estimation: N=5,2

    5 Conclusion

    In this paper,the receding horizon estimators were proposed for discrete-time linear system with random observation delay.The random delay system was transformed into a delay-free one by the reorganization observation method.On the basis of the new observation equation,a batch form and an iterative form for receding horizon estimation were designed.The observation reorganization technique is firstly applied to the receding horizon estimation for discretetime systems with random delays.It is obvious that this method simplifies the computation compared to state augmentation method for dealing with random delays.This is the main technique novelty of this paper.The stability analysis was supplied and the theoretical results were illustrated by a numerical example.

    猜你喜歡
    工程學(xué)院時(shí)滯時(shí)域
    福建工程學(xué)院
    福建工程學(xué)院
    帶有時(shí)滯項(xiàng)的復(fù)Ginzburg-Landau方程的拉回吸引子
    福建工程學(xué)院
    基于時(shí)域信號(hào)的三電平逆變器復(fù)合故障診斷
    福建工程學(xué)院
    基于極大似然準(zhǔn)則與滾動(dòng)時(shí)域估計(jì)的自適應(yīng)UKF算法
    基于時(shí)域逆濾波的寬帶脈沖聲生成技術(shù)
    基于時(shí)域波形特征的輸電線雷擊識(shí)別
    一階非線性時(shí)滯微分方程正周期解的存在性
    欧美xxxx性猛交bbbb| 男的添女的下面高潮视频| 国产精品偷伦视频观看了| 一级毛片 在线播放| 激情 狠狠 欧美| 亚洲国产色片| 成人欧美大片| 天天躁夜夜躁狠狠久久av| 国产精品久久久久久精品电影| a级毛片免费高清观看在线播放| 插阴视频在线观看视频| 高清毛片免费看| 搞女人的毛片| 街头女战士在线观看网站| 国产黄a三级三级三级人| 毛片女人毛片| 国产免费又黄又爽又色| 亚洲第一区二区三区不卡| 99久久精品热视频| 97热精品久久久久久| 亚洲国产成人一精品久久久| 一个人看视频在线观看www免费| 国产极品天堂在线| 国产一区二区亚洲精品在线观看| 最近2019中文字幕mv第一页| 可以在线观看毛片的网站| 在线观看一区二区三区激情| 精品酒店卫生间| 五月伊人婷婷丁香| 久久久久久久精品精品| 成人二区视频| 网址你懂的国产日韩在线| 亚洲精品成人久久久久久| 欧美国产精品一级二级三级 | 精品一区二区免费观看| 性色avwww在线观看| 高清毛片免费看| 女人久久www免费人成看片| 精品久久久久久久久亚洲| 亚洲av一区综合| 热re99久久精品国产66热6| a级一级毛片免费在线观看| 我的老师免费观看完整版| 97超视频在线观看视频| 麻豆成人午夜福利视频| 另类亚洲欧美激情| 亚洲自拍偷在线| 久久影院123| 久久久久性生活片| 国产成人freesex在线| 国产黄频视频在线观看| 欧美性猛交╳xxx乱大交人| 少妇人妻精品综合一区二区| 亚洲人成网站在线观看播放| 国产一区二区三区av在线| av在线天堂中文字幕| 国产精品国产三级国产专区5o| 人人妻人人看人人澡| 亚洲一区二区三区欧美精品 | 天天一区二区日本电影三级| 成人国产麻豆网| 嫩草影院入口| 亚洲在线观看片| 制服丝袜香蕉在线| 久久久久久久午夜电影| 成人鲁丝片一二三区免费| av在线亚洲专区| 国产精品偷伦视频观看了| 免费大片18禁| 亚洲图色成人| 麻豆久久精品国产亚洲av| 777米奇影视久久| 亚洲国产精品成人久久小说| 亚洲人成网站在线观看播放| 精华霜和精华液先用哪个| 亚洲色图综合在线观看| 99热这里只有精品一区| 美女脱内裤让男人舔精品视频| 99热网站在线观看| 国产亚洲av嫩草精品影院| 天堂网av新在线| av在线蜜桃| 各种免费的搞黄视频| 国产成人免费无遮挡视频| 国产永久视频网站| xxx大片免费视频| 色哟哟·www| 丝袜美腿在线中文| 国产在视频线精品| 久久久久久久久久久丰满| 伦理电影大哥的女人| 成人毛片60女人毛片免费| 又大又黄又爽视频免费| 男女边吃奶边做爰视频| 69av精品久久久久久| 99热这里只有是精品在线观看| 国产 一区 欧美 日韩| 亚洲欧美一区二区三区黑人 | 人妻 亚洲 视频| 国产伦在线观看视频一区| 亚洲精品日韩在线中文字幕| 我的女老师完整版在线观看| 亚洲婷婷狠狠爱综合网| 极品教师在线视频| kizo精华| 大话2 男鬼变身卡| 国内揄拍国产精品人妻在线| 免费观看性生交大片5| 国产黄色视频一区二区在线观看| 精品视频人人做人人爽| 在线看a的网站| 美女国产视频在线观看| 嫩草影院新地址| 国产一级毛片在线| 午夜视频国产福利| 亚洲精品aⅴ在线观看| 国产亚洲91精品色在线| 国产精品女同一区二区软件| 国产精品国产三级国产专区5o| 青春草视频在线免费观看| 制服丝袜香蕉在线| 亚洲伊人久久精品综合| 青青草视频在线视频观看| 国产视频内射| 美女被艹到高潮喷水动态| 国产午夜精品一二区理论片| 亚洲激情五月婷婷啪啪| 菩萨蛮人人尽说江南好唐韦庄| 美女xxoo啪啪120秒动态图| 人妻少妇偷人精品九色| 成年av动漫网址| 一个人看的www免费观看视频| 中文欧美无线码| 亚洲美女视频黄频| 亚洲va在线va天堂va国产| 国产一级毛片在线| www.av在线官网国产| 亚洲精品成人久久久久久| 69人妻影院| 日韩一区二区三区影片| 免费人成在线观看视频色| 午夜福利高清视频| 国产成人福利小说| 免费黄色在线免费观看| 精品久久久久久久人妻蜜臀av| 国产毛片a区久久久久| 制服丝袜香蕉在线| 亚洲av.av天堂| 欧美激情在线99| 国产日韩欧美亚洲二区| 国产亚洲5aaaaa淫片| 久久6这里有精品| 亚洲天堂国产精品一区在线| 午夜福利在线在线| 婷婷色综合www| 成人午夜精彩视频在线观看| 亚洲国产av新网站| 国产老妇伦熟女老妇高清| 免费看不卡的av| 久久精品国产自在天天线| 一区二区三区乱码不卡18| 亚洲av中文字字幕乱码综合| 亚洲国产av新网站| 精品人妻熟女av久视频| 日本熟妇午夜| av又黄又爽大尺度在线免费看| 最近2019中文字幕mv第一页| 亚洲成人av在线免费| 男女边吃奶边做爰视频| 亚洲国产精品国产精品| 亚洲真实伦在线观看| 日日摸夜夜添夜夜爱| 涩涩av久久男人的天堂| 国产午夜精品久久久久久一区二区三区| 毛片一级片免费看久久久久| 午夜免费男女啪啪视频观看| 亚洲一级一片aⅴ在线观看| 97精品久久久久久久久久精品| 免费看光身美女| 国产成人91sexporn| 国产成人aa在线观看| 久久鲁丝午夜福利片| 各种免费的搞黄视频| 国产精品国产三级国产专区5o| 人人妻人人澡人人爽人人夜夜| 久久人人爽人人爽人人片va| 久久精品国产a三级三级三级| 欧美精品一区二区大全| 久久午夜福利片| 成人欧美大片| 精品久久久久久久久亚洲| 久久久色成人| 网址你懂的国产日韩在线| 有码 亚洲区| 在线亚洲精品国产二区图片欧美 | 狂野欧美白嫩少妇大欣赏| 国产成人freesex在线| 亚洲精品色激情综合| 美女高潮的动态| 三级男女做爰猛烈吃奶摸视频| 有码 亚洲区| 狠狠精品人妻久久久久久综合| 国产成人精品久久久久久| 欧美一区二区亚洲| 成人一区二区视频在线观看| 亚洲av.av天堂| 免费在线观看成人毛片| 寂寞人妻少妇视频99o| 嫩草影院精品99| 亚洲精品一区蜜桃| 亚洲自拍偷在线| 99久国产av精品国产电影| 色5月婷婷丁香| 亚洲av.av天堂| 国产乱来视频区| 成人亚洲欧美一区二区av| 成人特级av手机在线观看| 亚洲av在线观看美女高潮| 日韩av不卡免费在线播放| 亚洲高清免费不卡视频| kizo精华| 麻豆国产97在线/欧美| 久久久久久久国产电影| 黄片无遮挡物在线观看| 亚洲av免费高清在线观看| 亚洲欧美日韩东京热| 在线观看三级黄色| 亚洲图色成人| 国产精品国产三级专区第一集| 最后的刺客免费高清国语| 亚洲欧美成人精品一区二区| 国产男人的电影天堂91| 又爽又黄a免费视频| 日本与韩国留学比较| 亚洲四区av| 日本熟妇午夜| 一级二级三级毛片免费看| 老师上课跳d突然被开到最大视频| 日产精品乱码卡一卡2卡三| 婷婷色综合www| 天天一区二区日本电影三级| av在线天堂中文字幕| 亚洲av成人精品一区久久| av免费观看日本| 简卡轻食公司| 国产午夜福利久久久久久| 最近中文字幕高清免费大全6| 久久精品熟女亚洲av麻豆精品| 日韩精品有码人妻一区| 美女视频免费永久观看网站| 免费看a级黄色片| 老司机影院成人| 色综合色国产| 久久综合国产亚洲精品| 赤兔流量卡办理| 国内揄拍国产精品人妻在线| 国产精品伦人一区二区| 只有这里有精品99| 国产成人aa在线观看| 插逼视频在线观看| av国产精品久久久久影院| 波多野结衣巨乳人妻| 精品久久久久久电影网| 特大巨黑吊av在线直播| 91aial.com中文字幕在线观看| 国产精品熟女久久久久浪| 人妻制服诱惑在线中文字幕| 少妇裸体淫交视频免费看高清| 精品视频人人做人人爽| 精品午夜福利在线看| 国产欧美日韩一区二区三区在线 | 伊人久久国产一区二区| 少妇人妻一区二区三区视频| 日韩一区二区三区影片| 日韩av在线免费看完整版不卡| 性色avwww在线观看| 亚洲最大成人中文| 国产综合精华液| 可以在线观看毛片的网站| 国产精品一及| 亚洲av在线观看美女高潮| 亚洲熟女精品中文字幕| 欧美高清成人免费视频www| 少妇人妻一区二区三区视频| 王馨瑶露胸无遮挡在线观看| 可以在线观看毛片的网站| 五月伊人婷婷丁香| 亚洲最大成人手机在线| 国产免费又黄又爽又色| 亚洲成人精品中文字幕电影| 久久韩国三级中文字幕| 精品久久久噜噜| 国产精品成人在线| 午夜激情福利司机影院| 国产乱人视频| 黄色视频在线播放观看不卡| 亚洲精品aⅴ在线观看| 一本久久精品| 国产老妇女一区| 亚洲aⅴ乱码一区二区在线播放| 亚洲无线观看免费| 99九九线精品视频在线观看视频| 在线播放无遮挡| 精品久久久久久久久av| 男女无遮挡免费网站观看| 国产精品久久久久久精品电影| 国产精品蜜桃在线观看| av免费观看日本| a级毛色黄片| 日韩av不卡免费在线播放| 男人和女人高潮做爰伦理| 国产高清不卡午夜福利| 亚洲国产最新在线播放| 99视频精品全部免费 在线| 免费观看无遮挡的男女| 久久鲁丝午夜福利片| 欧美一区二区亚洲| 伦精品一区二区三区| 久久ye,这里只有精品| 男人添女人高潮全过程视频| 在线观看三级黄色| 精品一区二区三卡| 久久人人爽人人爽人人片va| 一级毛片aaaaaa免费看小| 各种免费的搞黄视频| av黄色大香蕉| 国产成人91sexporn| 狠狠精品人妻久久久久久综合| 亚洲欧美日韩无卡精品| 男人狂女人下面高潮的视频| 欧美日韩视频精品一区| 美女视频免费永久观看网站| 五月伊人婷婷丁香| 狠狠精品人妻久久久久久综合| 亚洲熟女精品中文字幕| 18禁动态无遮挡网站| 国产 一区精品| 三级国产精品片| 日韩av不卡免费在线播放| 简卡轻食公司| 亚洲精品自拍成人| 99热6这里只有精品| 天天躁夜夜躁狠狠久久av| 在线免费十八禁| 在线a可以看的网站| 久久韩国三级中文字幕| 亚洲性久久影院| 七月丁香在线播放| 国产久久久一区二区三区| 国产精品国产三级专区第一集| 亚洲国产精品成人综合色| 免费av观看视频| 亚洲精品国产成人久久av| 国产欧美日韩精品一区二区| 亚洲国产欧美人成| 欧美变态另类bdsm刘玥| 国产一区二区亚洲精品在线观看| 国产又色又爽无遮挡免| 成人漫画全彩无遮挡| 国产精品国产av在线观看| 97在线视频观看| 久久这里有精品视频免费| 国产男女内射视频| 少妇的逼水好多| 男女国产视频网站| 国产成人一区二区在线| 久久99热这里只频精品6学生| 伊人久久精品亚洲午夜| 亚洲,一卡二卡三卡| 国产毛片a区久久久久| 亚洲aⅴ乱码一区二区在线播放| 岛国毛片在线播放| 嫩草影院入口| 日本免费在线观看一区| 亚洲av免费高清在线观看| 日本黄大片高清| 成年人午夜在线观看视频| 三级国产精品欧美在线观看| 国产精品99久久99久久久不卡 | 成年av动漫网址| 欧美bdsm另类| 少妇人妻精品综合一区二区| 国产日韩欧美在线精品| 亚洲久久久久久中文字幕| 人妻夜夜爽99麻豆av| 久久午夜福利片| 国产免费又黄又爽又色| 日本色播在线视频| 69人妻影院| 欧美老熟妇乱子伦牲交| 五月玫瑰六月丁香| 国产69精品久久久久777片| 免费av不卡在线播放| 午夜亚洲福利在线播放| www.av在线官网国产| 少妇猛男粗大的猛烈进出视频 | 国产黄片视频在线免费观看| 岛国毛片在线播放| 18禁裸乳无遮挡免费网站照片| 亚洲国产高清在线一区二区三| 禁无遮挡网站| 男女啪啪激烈高潮av片| 国产69精品久久久久777片| 少妇人妻一区二区三区视频| 别揉我奶头 嗯啊视频| 高清日韩中文字幕在线| 欧美潮喷喷水| 久久综合国产亚洲精品| 亚洲色图av天堂| 国模一区二区三区四区视频| 亚洲欧美精品自产自拍| 水蜜桃什么品种好| 欧美日韩在线观看h| 中文字幕亚洲精品专区| 亚洲怡红院男人天堂| 最近最新中文字幕大全电影3| 国产精品人妻久久久影院| 夜夜爽夜夜爽视频| 在线观看国产h片| 内射极品少妇av片p| 久久97久久精品| 国产精品一区二区在线观看99| 亚洲国产最新在线播放| 欧美精品一区二区大全| 性色av一级| 久久久久精品久久久久真实原创| 又爽又黄a免费视频| 在线观看三级黄色| 91精品一卡2卡3卡4卡| 日本av手机在线免费观看| 99久久九九国产精品国产免费| 最后的刺客免费高清国语| 三级国产精品欧美在线观看| 人妻系列 视频| 成人黄色视频免费在线看| 99热这里只有精品一区| 大码成人一级视频| 国产精品国产av在线观看| 午夜免费鲁丝| 免费av不卡在线播放| 亚洲四区av| 亚洲一区二区三区欧美精品 | 成人国产av品久久久| 高清av免费在线| 日韩在线高清观看一区二区三区| 免费观看无遮挡的男女| 永久网站在线| 日韩一区二区三区影片| 视频区图区小说| 乱码一卡2卡4卡精品| 中文精品一卡2卡3卡4更新| 国产午夜精品一二区理论片| 欧美激情在线99| 国产精品久久久久久久电影| 亚洲精品第二区| 五月伊人婷婷丁香| 国产一区有黄有色的免费视频| 97在线视频观看| 国产探花极品一区二区| 久久久久九九精品影院| 亚洲av国产av综合av卡| 久久久久性生活片| 日韩av不卡免费在线播放| 国产成人免费无遮挡视频| 国产精品嫩草影院av在线观看| 99re6热这里在线精品视频| 日产精品乱码卡一卡2卡三| 下体分泌物呈黄色| 男女啪啪激烈高潮av片| 少妇熟女欧美另类| 日本与韩国留学比较| 亚洲成人一二三区av| 女人十人毛片免费观看3o分钟| 99热这里只有是精品50| 七月丁香在线播放| 亚洲图色成人| 男女下面进入的视频免费午夜| 国产乱来视频区| 亚洲精品自拍成人| 免费黄色在线免费观看| 欧美极品一区二区三区四区| 蜜臀久久99精品久久宅男| 在线免费观看不下载黄p国产| 亚洲精品乱码久久久久久按摩| 五月天丁香电影| av在线蜜桃| 在线 av 中文字幕| 国产精品久久久久久久电影| 91精品伊人久久大香线蕉| 黄色配什么色好看| 夫妻午夜视频| 国产高清有码在线观看视频| 80岁老熟妇乱子伦牲交| 亚洲自偷自拍三级| 成人亚洲精品av一区二区| 亚洲精品日韩在线中文字幕| 亚洲人与动物交配视频| 亚洲精品自拍成人| 午夜激情福利司机影院| 亚洲激情五月婷婷啪啪| 欧美xxxx性猛交bbbb| 亚洲精品自拍成人| 97精品久久久久久久久久精品| 国内少妇人妻偷人精品xxx网站| 中文乱码字字幕精品一区二区三区| 免费观看av网站的网址| 亚洲综合精品二区| 久久女婷五月综合色啪小说 | 国产人妻一区二区三区在| 人妻夜夜爽99麻豆av| 男人爽女人下面视频在线观看| 日本黄大片高清| 日韩亚洲欧美综合| 熟女电影av网| av国产久精品久网站免费入址| 色网站视频免费| 亚洲国产最新在线播放| 日本黄大片高清| 国产精品久久久久久精品古装| 97超视频在线观看视频| 欧美激情国产日韩精品一区| 毛片女人毛片| 哪个播放器可以免费观看大片| 老师上课跳d突然被开到最大视频| 国产高清国产精品国产三级 | 亚洲精品乱久久久久久| 久久久久久久久久成人| 国产精品熟女久久久久浪| 免费看a级黄色片| 亚洲国产精品国产精品| 我要看日韩黄色一级片| 在线天堂最新版资源| 美女高潮的动态| www.色视频.com| 在线播放无遮挡| 亚洲综合精品二区| 国产真实伦视频高清在线观看| 99热这里只有是精品50| 久久精品久久精品一区二区三区| 日韩欧美 国产精品| 中文字幕免费在线视频6| 欧美精品国产亚洲| 大香蕉久久网| 国产精品99久久99久久久不卡 | 久久久欧美国产精品| 国产精品久久久久久av不卡| 日韩av在线免费看完整版不卡| 久久久久久久久久久丰满| 嫩草影院精品99| 全区人妻精品视频| 干丝袜人妻中文字幕| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲国产精品999| 亚洲综合精品二区| 欧美日韩视频精品一区| 成年女人在线观看亚洲视频 | 男的添女的下面高潮视频| 亚洲美女搞黄在线观看| 激情 狠狠 欧美| 国产老妇女一区| 啦啦啦啦在线视频资源| av又黄又爽大尺度在线免费看| 国产一区二区三区综合在线观看 | 欧美一级a爱片免费观看看| 国产av国产精品国产| 国产高潮美女av| 亚洲美女搞黄在线观看| 舔av片在线| 亚洲国产高清在线一区二区三| 嘟嘟电影网在线观看| 有码 亚洲区| 国产男女超爽视频在线观看| 久久精品久久久久久久性| 欧美精品国产亚洲| h日本视频在线播放| 久久人人爽人人片av| 一级毛片 在线播放| 欧美人与善性xxx| 精品一区二区三区视频在线| 日韩精品有码人妻一区| 国产精品不卡视频一区二区| 97热精品久久久久久| 欧美日韩在线观看h| tube8黄色片| 日本av手机在线免费观看| 亚洲av欧美aⅴ国产| 97在线人人人人妻| 日本av手机在线免费观看| 在线观看av片永久免费下载| 中文字幕人妻熟人妻熟丝袜美| 久久综合国产亚洲精品| 成人毛片a级毛片在线播放| 高清在线视频一区二区三区| 视频中文字幕在线观看| 国内少妇人妻偷人精品xxx网站| 精品人妻一区二区三区麻豆| 久久综合国产亚洲精品| 男的添女的下面高潮视频| 精品人妻一区二区三区麻豆| 久久99热这里只频精品6学生| 男女啪啪激烈高潮av片| 又黄又爽又刺激的免费视频.| 国精品久久久久久国模美| 午夜福利在线在线| 欧美一级a爱片免费观看看| 性插视频无遮挡在线免费观看| 中文欧美无线码| 久久这里有精品视频免费| 国产在视频线精品| 在线观看一区二区三区| 中国美白少妇内射xxxbb| 国产精品久久久久久精品电影小说 | 夜夜看夜夜爽夜夜摸| 欧美 日韩 精品 国产| 亚洲最大成人av|