• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    隨機(jī)時(shí)滯網(wǎng)絡(luò)控制系統(tǒng)的后退時(shí)域估計(jì)

    2020-06-11 13:26:06李超超韓春艷
    控制理論與應(yīng)用 2020年5期
    關(guān)鍵詞:工程學(xué)院時(shí)滯時(shí)域

    李超超,韓春艷,何 芳

    (濟(jì)南大學(xué)自動(dòng)化與電氣工程學(xué)院,山東濟(jì)南 250022)

    1 Introduction

    Recently,significant attention has been paid to networked control systems (NCSs)as they bring numerous benefits,such as reduced system wiring,lower cost in maintenance,increased system agility,ease of information sharing,etc.Along with the advantages,several challenging problems,such as bandwidth allocation,communication delays and packet dropouts,also emerged giving rise to many important research topics[1–4].Transmission delay is now well known to be one of the most often occurred phenomena in NCSs,which may result in deterioration of system performance and even instability.Therefore,it is of great significance to study NCSs with transmission delays where the packet dropout incorporates naturally.

    There is no doubt that state estimation is an important topic in both theoretical research and practical applications.In the past decade,a substantial body of literature has been devoted to state estimation for systems with transmission delays.There existed several techniques for dealing with time delay,such as the classical state augmentation method[5],the linear matrix inequality algorithm[6],the polynomial approach[7],and the reorganization innovation analysis method[8].

    The transmission delay in NCSs may vary with time and is often modeled as a random process.Two stochastic processes:the Bernoulli process[9–13]and the Markov process[14–15],are commonly used to describe the characteristics of the random delays.In [10],the recursive estimation for linear and nonlinear systems with uncertain observations were considered.A binary switching sequence-the Bernoulli distribution process,was used to describe the uncertainty in the observations.An estimator was obtained by the covariance information method.Similar result was also given in [11].In[14],the state estimation with missing measurements was considered,where the missing process was modeled as a Markov chain.A jump linear estimator was introduced to cope with the losses.Further in [12],an optimal filter problem with random delay and packet dropouts was studied,where the random received observations were stored in a possibly infinite-length buffer.In [13],the optimal and suboptimal linear estimators were designed for NCSs with random observation delays,where the random delay was modeled as a set of Bernoulli variables.The measurement reorganization method was employed for treating delay terms.In addition,the Markov type transmission delay was considered in[15]and three different types of filters were designed without state augmentation.

    On the other hand,receding horizon estimation,also called moving horizon estimation,has become as an important research topic and gained much attention[16–19]in recent years.It explains the concept of full information estimation and introduces the moving horizon estimation as a computable approximation of full information.The basic design method for ensuring stability of moving horizon estimation was presented in [16].Further,the moving horizon estimation algorithm was applied to the field of distributed estimation in[17–18].In this paper,we will combine the receding horizon estimation algorithm and the observation reorganization technique to derive the estimator of the systems with random time delays,which reduce the calculation complexity for the design process.

    Based on the aforementioned literature,we investigate the receding horizon estimation for discrete-time linear system with random observation delays.A set of Bernoulli variables are introduced to describe the characteristics of the random delay,and the measurement reorganization technique is employed for dealing with the delay terms.On the basis of the new system model without time-delay,both batch form and iterative form receding horizon estimation are derived afterward without state augmentation,and the stability analysis is supplied.

    The contribution of this paper can be stated as:i)Compared with the Kalman-type estimator developed in[13],the receding horizon estimator developed in this paper,since based on a finite number of system measurements,can make more flexibility to tune weighting parameters and provide a higher estimator precision.The comparison has been shown in Section 4;ii)The Hadamard product is introduced in the derivation of the receding horizon estimator gains.This is the main difference between the receding horizon estimation developed in this paper and the Kalman-type estimator developed in[13];iii)In the derivation of estimator gains,it is difficult to solve a global optimization problem.Then the decomposition method is employed,by which the receding horizon estimation subject to unbiasedness constraint is divided intoNindividual optimization problems.The independent optimization problem is solved by the optimality principle,and the individual estimation gains are obtained.This is one of the technique contribution of this paper.

    The remainder of this paper is organized as follows.Problem description is given in Section 2.Section 3 mainly concerns with the design of the receding horizon estimation and the stability analysis of the proposed method.In Section 4,a simulation example is presented to illustrate the estimator’s performance.Finally,conclusions are drawn in Section 5.

    Notation:Throughout this paper,the superscripts?1andTrepresent the inverse and transpose of the matrix.represents the n-dimensional Euclidean space.Moreover,E{·}means the mathematical expectation,⊙is the Hadamard product,col{·}indicates the column vector,tr{·}means the trace of a matrix and P{·}represents the occurrence probability of an event.

    2 Problem description

    Consider the following discrete-time linear system with random delay:

    wherex(t)∈is the state,w(t)∈is the input noise,yr(t)∈is the measurement andv(t)∈is the measurement noise.Through the paper,it is assumed that the constant matricesA,C,Hare known,[C,A]is observable,Ais nonsingular,andr(t)means the random delay.

    Assumption 1w(t)andv(t)are white noises with covariance matrices E{w(t)wT(s)}=Qwδts,E{v(t)vT(s)}=Rvδts,respectively.x0,w(t),andv(t)are mutually independent.

    Assumption 2Measurements in (2)are timestamped.As is well known,time-stamping of measurement information is necessary to reorder packets at the receiver side because there exist random delays in communication.The random delayr(t)is bounded with 0r(t)r,whereris known as the length of memory buffer.If the received measurement is with a delay larger thanr,it will be viewed as the lost packet.The probability distribution ofr(t)is P(r(t)=i)=ρi,i=0,…,r.Obviously,We assume thatr(t)is independent ofx0,w(t),andv(t).

    Since formula (2)contains random delays which can’t be treated directly by the reorganized observation technique,the original system needs to be transformed into a constant delay one first.Based on the above assumption,denote

    withαi,tdefined as a binary random variable indicating the arrival of the observation packet for statex(t ?i)at timet,that is

    Thenαi,t(i=0,1,…,r)has the same stochastic probability as that ofr(t).That means P(αi,t=1)=ρi(i=0,1,…,r),whereρi(i=0,1,…,r)is known.In the real-time control systems,the statex(t)can only be observed at most one time,and thus the following assumption needs to be made.

    Assumption 3The stochastic variableαi,t(i=0,1,…,r)has the following property

    Then the optimal filtering problem considered in this paper can be stated as follows:

    Problem 1(Optimal receding horizon estimation)Given the observation{y(s)|0≤s≤t},find a linear minimum mean square error receding horizon estimator(t)of the statex(t)with the finite horizonN,such thatEw,v[(t)]=Ew,v[x(t)].

    3 Construction of the receding horizon estimation

    In this section,the random delayed system is transformed into a delay-free one by the reorganization observation method used for dealing with the random delay.Then,we will propose a new receding horizon estimator with deterministic gains by minimizing the mean square estimation error.

    3.1 Observation reorganization

    Because the state estimation for time-delay systems cannot be deduced directly,it needs to be transformed into a delay-free one by the reorganization observation method.

    For the given timet,the received observations can be rearranged into a set of delay-free sequences as follows.

    In addition,the covariance matrices ofvr(s)andvt?s(s)are described as follows:

    For convenience,denote

    3.2 Receding horizon estimator

    The problem considered here is how to acquire a receding horizon estimate(s|s ?1)of the state vectorx(s)by using a finite number of measurements of the system output ˉy(s)with weighted matrix.And two forms of receding horizon estimation are derived from the following two theorems.

    In order to simplify the calculation,let us define in Step 1 as

    where⊙means Hadamard product andX(s)satisfies

    It is noted that some definitions of the algorithm for Step 2 are similar to those definitions above,which just need to replace the subscriptrwitht ?s,and thus is omitted here.

    For the given timet,we now develop a batch form receding horizon estimator(t)in the following algorithm.

    Algorithm 1(Batch form receding horizon estimator)

    Step 1For 0st ?r,a receding horizon estimator(s|s ?1)is calculated by

    where the optimal gain matrixFr(s)is determined by

    with

    Step 2Fort ?r

    Step 3Fors=t,set(t)=(t|t?1)in Step 2.

    In the following theorem,we will show that the estimator developed in Step 1–3 is the optimal solution to Problem 1.

    Theorem 1For systems (1)(4)and (5),when(C,A)is observable,the linear minimum mean square error receding horizon estimator(t)with a batch form on the horizon[t ?N,t]can be derived by Algorithm 1,which satisfies the unbiased constraints.

    ProofFor 0st ?r,the finite number of measurements on the horizon[s ?N,s]can be expressed in terms of the statex(s),

    Taking expectation on both sides of(10),and to satisfy the unbiased condition,E=Ex,the following relation is obtained

    Based on the definition of estimation error,denote

    So,we can obtain the covariance of estimation error(s|s ?1)as follows:

    By the foregoing definitions,the following results can be drawn:

    From(13)–(14)and(15),we obtain

    The objective is to obtain the optimal gain matrixF(s),subject to the unbiasedness constraint (11),in such a way that the error ?x(s|s ?1)of the estimate(s|s ?1)has minimum variance as follows:

    Before obtaining the solution to(17),we obtain the result on constraint optimization in the first instance.In order to simplify the calculation,usingFrfor a temporary replacementFr(s).Now,suppose that the following trace optimization problem is given

    For convenience,partition the matrixFrin(11)as

    From(19),as a consequence,thes-th unbiasedness constraint can be written as

    In terms of the partitioned vector,the cost function(18)is represented as

    Thus,the optimization problem (18)is reduced toNindependent optimization problems

    subject to

    Obtaining the solutions to each optimization problem (21)and putting them together,we can finally obtain the solution to(17).

    By solving the optimization problem (21),we can firstly establish the cost function

    whereλjis thes-th vector of a Lagrange multiplier,which is associated with thes-th unbiased constraint.

    In order to minimizeΦ,two necessary conditions are obtained

    Putting them together,we can obtain

    Bring(25)into(10),we can reach the batch form of receding horizon estimation

    The derivation of Step 2 is similar to that of Step 1.This completes the proof of Theorem 1.QED.

    Remark 1In the derivation of Theorem 1,the linear minimum mean square error receding horizon estimation subject to unbiasedness constraint is divided intoNindividual optimization problems.Then,by introducing the Lagrange multiplier,the independent optimization problem is solved,and the individual estimation gains are obtained.At last,the total gain is obtained by putting all the components together.The amount of computation meets our requirements.In addition,in(17),Fr(s)should be updated over time.

    In what follows,we will rewrite the batch form estimator in an iterative form for computational advantage.For the given timet,an iterative form receding horizon estimator(t)is developed.

    Algorithm 2(Iterative form receding horizon estimator)

    Step 1For 0st ?r,an iterative form estimator(s|s ?1)with finite horizonNis given by

    where

    Step 2Fort ?r

    Step 3Fors=t,set(t)=(t|t?1)in Step 2.

    It will be shown in Theorem 2 that the iterative estimator developed in Algorithm 2 is the optimal solution to Problem 1 subject to unbiased constraints.

    Theorem 2Assume that (C,A)is observable.Then the linear minimum mean square error receding horizon estimator(t)with an iterative form on the horizon[t ?N,t]is given by Algorithm 2,which satisfies the unbiased constraints.

    ProofFirstly,for 0st ?r,define

    So it can be represented in the following Riccati Equation for 0lN:

    Similarly,it is available for 0lNthat

    From (28)and (29),an iterative form for receding horizon estimation is obtained

    Similarly,We are able to get an iterative form of receding horizon estimation in Step 2.This completes the proof of Theorem 2.QED.

    3.3 Stability analysis

    The stability of the receding-horizon estimator will be investigated below.Thus we just need to analyze the stability of the filter developed in Theorem 2.It needs to require consideration of the filter’s transfer matrix.From Theorem 2,we define the transfer matrix for 0st ?ras

    Under the given assumption,the necessary and sufficient condition subject to asymptotical stability of the proposed filter is that the transfer matrixΓNof the estimator is one stability matrix.It means that all of its eigenvalues are located in the unit circle.The stability of the observer is ensured by the following theorem.

    Theorem 3If(C,A)is observable,andAnonsingular,then the matrixΓNhas all its eigenvalues strictly within the unit circle for all finiteNn ?1 wherenis the dimension of the state vector.

    ProofFor 0st ?r,define[20]

    In view of(28)and(29),we can obtain(30)immediately.This completes the proof of Theorem 3.QED.

    Remark 2Conditions for the stability of the proposed moving horizon estimation is proposed for time-invariant systems.The advantage of this estimation algorithm is that it is easy to implement since the gains can be performed off-line.

    4 Simulation example

    In this section,a simulation example is given to illustrate the efficiency of the proposed receding horizon estimation for random delay system(1)and(2).In this part,we define the time horizon 0t100,the estimator horizon sizeN=5,and the random delay horizon 0r(t)2.The other parameters of the system are as follows

    Fig.1 State trajectories of x1(t)

    Based on the design procedures of Theorem 2 in this paper and Kalman filter in [13],the simulation results are obtained as follows.Fig.1 shows the trace of the real valuex1(t)and its estimate.Fig.2 shows the trace of the real valuex2(t)and its estimate.Fig.3 shows the root of the mean square estimation errors(RMSEEs)ofx1(t)according to the two algorithms,while Fig.4 shows the RMSEEs ofx2(t)according to the two algorithms.Fig.5 shows the summation of the RMSEEs ofx1(t)of the two algorithms.Fig.6 shows the summation of the RMSEEs ofx2(t)of the two algorithms.It can be seen from Figs.3–6 that the obtained receding horizon estimation for systems with observation delays track better than Kalman filter and the estimation scheme produces better performance.On the other hand,it can be seen from Fig.7 and Fig.8 that the tracking performance for the case ofN=5 is better than that ofN=2.It is a suitable choice for the estimator horizon sizeN=5.

    Fig.2 State trajectories of x2(t)

    Fig.3 The RMSEEs of x1(t)

    Fig.4 The RMSEEs of x2(t)

    Fig.5 Summation of RMSEE trajectories of x1(t)

    Fig.6 Summation of RMSEE trajectories of x2(t)

    Fig.7 Summation of RMSEE trajectories of x1(t)for RHE estimation: N=5,2

    Fig.8 Summation of RMSEE trajectories of x2(t)for RHE estimation: N=5,2

    5 Conclusion

    In this paper,the receding horizon estimators were proposed for discrete-time linear system with random observation delay.The random delay system was transformed into a delay-free one by the reorganization observation method.On the basis of the new observation equation,a batch form and an iterative form for receding horizon estimation were designed.The observation reorganization technique is firstly applied to the receding horizon estimation for discretetime systems with random delays.It is obvious that this method simplifies the computation compared to state augmentation method for dealing with random delays.This is the main technique novelty of this paper.The stability analysis was supplied and the theoretical results were illustrated by a numerical example.

    猜你喜歡
    工程學(xué)院時(shí)滯時(shí)域
    福建工程學(xué)院
    福建工程學(xué)院
    帶有時(shí)滯項(xiàng)的復(fù)Ginzburg-Landau方程的拉回吸引子
    福建工程學(xué)院
    基于時(shí)域信號(hào)的三電平逆變器復(fù)合故障診斷
    福建工程學(xué)院
    基于極大似然準(zhǔn)則與滾動(dòng)時(shí)域估計(jì)的自適應(yīng)UKF算法
    基于時(shí)域逆濾波的寬帶脈沖聲生成技術(shù)
    基于時(shí)域波形特征的輸電線雷擊識(shí)別
    一階非線性時(shí)滯微分方程正周期解的存在性
    少妇人妻久久综合中文| 亚洲不卡免费看| 国产美女午夜福利| 2021少妇久久久久久久久久久| 精品少妇久久久久久888优播| 久久影院123| 最近中文字幕高清免费大全6| 亚洲高清免费不卡视频| 久久精品久久精品一区二区三区| 亚洲av一区综合| 美女内射精品一级片tv| 国产美女午夜福利| 久久精品国产鲁丝片午夜精品| 中文字幕久久专区| 亚洲av中文字字幕乱码综合| 成人毛片a级毛片在线播放| 日韩伦理黄色片| 久久人人爽av亚洲精品天堂 | 国产人妻一区二区三区在| 中文字幕人妻熟人妻熟丝袜美| 国产一区二区三区综合在线观看 | 国产精品人妻久久久影院| 在线天堂最新版资源| 日韩,欧美,国产一区二区三区| 男人爽女人下面视频在线观看| 男人舔奶头视频| 亚洲精品成人av观看孕妇| 一区二区三区免费毛片| 色视频在线一区二区三区| 久久人人爽av亚洲精品天堂 | 永久免费av网站大全| 熟女电影av网| 午夜福利在线观看免费完整高清在| 成人毛片60女人毛片免费| 国产极品天堂在线| 日韩av免费高清视频| 日本欧美国产在线视频| 国产免费又黄又爽又色| 亚洲av日韩在线播放| 我的女老师完整版在线观看| 男插女下体视频免费在线播放| 国产久久久一区二区三区| 成人高潮视频无遮挡免费网站| 国产精品无大码| 久久人人爽av亚洲精品天堂 | 日韩在线高清观看一区二区三区| 精品人妻视频免费看| 黑人高潮一二区| 草草在线视频免费看| 亚洲不卡免费看| 美女国产视频在线观看| 亚洲精品乱码久久久久久按摩| 街头女战士在线观看网站| 成人国产麻豆网| 亚洲av免费在线观看| 国产亚洲午夜精品一区二区久久 | 亚洲天堂国产精品一区在线| .国产精品久久| 亚洲欧洲国产日韩| 亚洲精品国产av成人精品| av在线app专区| 久久女婷五月综合色啪小说 | 国产亚洲一区二区精品| 免费大片黄手机在线观看| 精品人妻视频免费看| 天美传媒精品一区二区| 中文字幕亚洲精品专区| 99精国产麻豆久久婷婷| 国产av不卡久久| 国产 精品1| 美女被艹到高潮喷水动态| 国产高潮美女av| 久久久国产一区二区| 国产老妇伦熟女老妇高清| 天堂网av新在线| 亚洲欧美一区二区三区黑人 | 我的女老师完整版在线观看| 国产精品熟女久久久久浪| 黄色欧美视频在线观看| 蜜臀久久99精品久久宅男| 免费大片18禁| 日本三级黄在线观看| 黄色日韩在线| 少妇人妻 视频| 性插视频无遮挡在线免费观看| 亚洲图色成人| 寂寞人妻少妇视频99o| 中文精品一卡2卡3卡4更新| 男人爽女人下面视频在线观看| 日韩一区二区视频免费看| 精品人妻偷拍中文字幕| 国产精品三级大全| 免费看av在线观看网站| 国产探花极品一区二区| 国产精品av视频在线免费观看| 毛片一级片免费看久久久久| 国产乱人偷精品视频| 精品国产露脸久久av麻豆| 97超视频在线观看视频| 高清欧美精品videossex| 成人鲁丝片一二三区免费| 九九久久精品国产亚洲av麻豆| 精品人妻视频免费看| 日韩伦理黄色片| 又粗又硬又长又爽又黄的视频| 久久久久久国产a免费观看| 亚洲aⅴ乱码一区二区在线播放| 男人爽女人下面视频在线观看| 欧美成人精品欧美一级黄| 日韩一区二区视频免费看| 欧美区成人在线视频| 亚洲色图综合在线观看| 大香蕉97超碰在线| 干丝袜人妻中文字幕| 免费人成在线观看视频色| 国产av码专区亚洲av| av国产免费在线观看| 男女国产视频网站| 日韩亚洲欧美综合| 欧美成人午夜免费资源| 高清在线视频一区二区三区| 免费观看的影片在线观看| 又爽又黄无遮挡网站| 欧美成人精品欧美一级黄| 久久这里有精品视频免费| 成人亚洲精品一区在线观看 | 国产成人午夜福利电影在线观看| av在线蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 黄色怎么调成土黄色| 国产人妻一区二区三区在| 精品亚洲乱码少妇综合久久| 日韩,欧美,国产一区二区三区| 国产精品福利在线免费观看| 久久久成人免费电影| 欧美zozozo另类| 国产精品久久久久久久久免| 国产毛片在线视频| 亚洲精品视频女| 精品久久久久久久久av| 最近手机中文字幕大全| 久久精品国产a三级三级三级| 成年版毛片免费区| 亚洲欧美成人综合另类久久久| 久久精品久久精品一区二区三区| 又爽又黄无遮挡网站| 少妇的逼水好多| 亚洲精品乱码久久久久久按摩| 亚洲国产欧美人成| 亚洲av免费高清在线观看| 国产综合懂色| 女人久久www免费人成看片| 亚洲精品自拍成人| 亚洲怡红院男人天堂| 免费观看性生交大片5| 欧美 日韩 精品 国产| 99re6热这里在线精品视频| 亚洲激情五月婷婷啪啪| 久久久久久久午夜电影| 亚洲精品日本国产第一区| 真实男女啪啪啪动态图| 三级经典国产精品| 亚洲自拍偷在线| 91久久精品国产一区二区三区| 欧美xxxx黑人xx丫x性爽| 色婷婷久久久亚洲欧美| 国产精品蜜桃在线观看| 色5月婷婷丁香| 天天躁夜夜躁狠狠久久av| 精品久久久久久久久亚洲| av又黄又爽大尺度在线免费看| 舔av片在线| 狂野欧美激情性bbbbbb| 国产精品麻豆人妻色哟哟久久| 99久久九九国产精品国产免费| 久久国产乱子免费精品| 如何舔出高潮| 成人亚洲精品av一区二区| 国产精品蜜桃在线观看| 精品人妻一区二区三区麻豆| 亚洲,欧美,日韩| 国内少妇人妻偷人精品xxx网站| 国产欧美日韩精品一区二区| www.av在线官网国产| 男人舔奶头视频| 大码成人一级视频| 亚洲精品影视一区二区三区av| 丝袜脚勾引网站| 亚洲av成人精品一区久久| 成人免费观看视频高清| 欧美日韩在线观看h| 成人漫画全彩无遮挡| 国内精品宾馆在线| 久久精品国产a三级三级三级| 女人久久www免费人成看片| 国产男人的电影天堂91| 在线亚洲精品国产二区图片欧美 | 在线观看免费高清a一片| 免费少妇av软件| 日韩欧美精品v在线| 日韩免费高清中文字幕av| 国产午夜精品一二区理论片| 九九久久精品国产亚洲av麻豆| 精品人妻熟女av久视频| 久久久久久久久久人人人人人人| 亚洲av一区综合| 99热这里只有是精品50| 在线观看一区二区三区| 99热6这里只有精品| 成人亚洲精品一区在线观看 | 欧美激情在线99| 免费人成在线观看视频色| 少妇被粗大猛烈的视频| 一级黄片播放器| 成人亚洲精品一区在线观看 | 国产成人精品婷婷| 美女cb高潮喷水在线观看| 三级国产精品片| 亚洲aⅴ乱码一区二区在线播放| 麻豆精品久久久久久蜜桃| 国产大屁股一区二区在线视频| 搞女人的毛片| 麻豆精品久久久久久蜜桃| 国产 一区 欧美 日韩| 三级男女做爰猛烈吃奶摸视频| 成人国产麻豆网| 国产成人免费观看mmmm| 天天躁夜夜躁狠狠久久av| 91aial.com中文字幕在线观看| 精品一区在线观看国产| 在现免费观看毛片| 免费少妇av软件| 夜夜看夜夜爽夜夜摸| 亚洲国产精品专区欧美| 精品久久久久久久末码| 极品教师在线视频| 欧美激情国产日韩精品一区| av播播在线观看一区| 在线观看美女被高潮喷水网站| 麻豆精品久久久久久蜜桃| 中文资源天堂在线| 亚洲精品,欧美精品| 欧美少妇被猛烈插入视频| 精品人妻熟女av久视频| av黄色大香蕉| 91在线精品国自产拍蜜月| 免费在线观看成人毛片| 精品久久久噜噜| 日本黄大片高清| 久久久久久久久大av| 久久韩国三级中文字幕| 免费黄网站久久成人精品| 久久久久久久久久成人| 亚洲欧美日韩无卡精品| 亚洲av福利一区| 男男h啪啪无遮挡| 香蕉精品网在线| 成人高潮视频无遮挡免费网站| 久久99蜜桃精品久久| 欧美另类一区| 青春草国产在线视频| 亚洲精华国产精华液的使用体验| 午夜福利在线在线| 18禁在线播放成人免费| 秋霞伦理黄片| 国产成年人精品一区二区| 国产欧美日韩一区二区三区在线 | 97热精品久久久久久| kizo精华| 欧美另类一区| 成年女人在线观看亚洲视频 | av专区在线播放| 99热网站在线观看| 丝瓜视频免费看黄片| 街头女战士在线观看网站| 麻豆成人午夜福利视频| 大陆偷拍与自拍| 亚洲精品久久午夜乱码| 欧美日本视频| a级毛片免费高清观看在线播放| 国产日韩欧美亚洲二区| 视频区图区小说| 美女高潮的动态| 国产免费一级a男人的天堂| 国产成人a∨麻豆精品| 国产伦在线观看视频一区| 国产av不卡久久| 97在线人人人人妻| 看非洲黑人一级黄片| 麻豆成人午夜福利视频| 欧美+日韩+精品| 91午夜精品亚洲一区二区三区| 国内精品美女久久久久久| 精品一区二区免费观看| 久久国内精品自在自线图片| 日韩一区二区视频免费看| 成人黄色视频免费在线看| 欧美xxxx黑人xx丫x性爽| 久久久欧美国产精品| 久久精品国产自在天天线| 卡戴珊不雅视频在线播放| 国产探花在线观看一区二区| 亚洲激情五月婷婷啪啪| a级毛片免费高清观看在线播放| 国产黄色视频一区二区在线观看| 免费av观看视频| 亚洲av日韩在线播放| 成人国产av品久久久| 国产亚洲最大av| 国产一级毛片在线| 少妇 在线观看| 精品人妻一区二区三区麻豆| av天堂中文字幕网| 久久久久久国产a免费观看| 日本黄色片子视频| 国产探花极品一区二区| 日日撸夜夜添| 亚洲四区av| 日韩欧美一区视频在线观看 | 51国产日韩欧美| 伦精品一区二区三区| 免费电影在线观看免费观看| 国产爽快片一区二区三区| 亚洲精品,欧美精品| 亚洲欧美一区二区三区国产| 久久久亚洲精品成人影院| 国内精品宾馆在线| 亚洲av日韩在线播放| 一本久久精品| 亚洲电影在线观看av| 91精品伊人久久大香线蕉| 免费av观看视频| 国产精品一及| 干丝袜人妻中文字幕| 欧美三级亚洲精品| 91在线精品国自产拍蜜月| 秋霞伦理黄片| 日韩不卡一区二区三区视频在线| 99热6这里只有精品| 国产精品一区二区三区四区免费观看| 国产亚洲91精品色在线| 亚洲不卡免费看| 国产精品国产三级专区第一集| 欧美激情在线99| 久久这里有精品视频免费| 3wmmmm亚洲av在线观看| 日本熟妇午夜| 少妇丰满av| 亚洲高清免费不卡视频| 一级二级三级毛片免费看| 女的被弄到高潮叫床怎么办| 五月开心婷婷网| 亚洲自偷自拍三级| 国产乱来视频区| 九草在线视频观看| 免费电影在线观看免费观看| 亚洲av免费高清在线观看| 91狼人影院| av国产久精品久网站免费入址| 岛国毛片在线播放| 大片免费播放器 马上看| 岛国毛片在线播放| 好男人视频免费观看在线| 黄色日韩在线| 国产在视频线精品| 亚洲第一区二区三区不卡| 日韩欧美精品免费久久| 高清午夜精品一区二区三区| 在现免费观看毛片| 国产免费一级a男人的天堂| 在现免费观看毛片| 在线观看av片永久免费下载| 亚洲精品成人av观看孕妇| 中文字幕av成人在线电影| 亚洲欧美一区二区三区国产| 日韩人妻高清精品专区| a级毛色黄片| 自拍偷自拍亚洲精品老妇| 青春草国产在线视频| 2021天堂中文幕一二区在线观| 国产精品一二三区在线看| 久久99精品国语久久久| 国产精品久久久久久久久免| 成人国产麻豆网| av线在线观看网站| 我的女老师完整版在线观看| 国产免费又黄又爽又色| 一级a做视频免费观看| 大又大粗又爽又黄少妇毛片口| 欧美精品国产亚洲| 成人午夜精彩视频在线观看| 99九九线精品视频在线观看视频| 国产成人freesex在线| 一区二区三区四区激情视频| 成年版毛片免费区| 亚洲综合精品二区| 免费观看在线日韩| 国产成人aa在线观看| 国产永久视频网站| 青春草国产在线视频| 黄片无遮挡物在线观看| 亚洲av不卡在线观看| 久久精品久久久久久噜噜老黄| 欧美成人午夜免费资源| 亚洲精品乱久久久久久| 青春草视频在线免费观看| 高清av免费在线| 久热这里只有精品99| 综合色av麻豆| 欧美+日韩+精品| 免费观看性生交大片5| 岛国毛片在线播放| 插阴视频在线观看视频| 制服丝袜香蕉在线| 国产老妇伦熟女老妇高清| 午夜福利高清视频| 热re99久久精品国产66热6| 亚洲欧美日韩无卡精品| 亚洲图色成人| 亚洲精品乱久久久久久| a级一级毛片免费在线观看| 亚洲精品国产色婷婷电影| av在线亚洲专区| 午夜亚洲福利在线播放| 亚洲色图av天堂| 一区二区三区乱码不卡18| 日本免费在线观看一区| 欧美xxxx性猛交bbbb| 午夜福利在线在线| 狠狠精品人妻久久久久久综合| 国产精品秋霞免费鲁丝片| 国产综合懂色| 久久久久久久午夜电影| 内射极品少妇av片p| 色播亚洲综合网| 少妇高潮的动态图| 校园人妻丝袜中文字幕| 久久精品国产亚洲av天美| 涩涩av久久男人的天堂| 国产乱人视频| 亚洲va在线va天堂va国产| 免费看光身美女| 精品一区在线观看国产| 高清毛片免费看| 亚洲激情五月婷婷啪啪| 日韩免费高清中文字幕av| 亚洲国产精品999| 亚洲av男天堂| 亚洲国产成人一精品久久久| 亚洲精品自拍成人| 婷婷色综合www| 欧美激情久久久久久爽电影| 亚洲国产欧美在线一区| 特大巨黑吊av在线直播| 亚洲精品自拍成人| 在现免费观看毛片| 亚洲欧美成人精品一区二区| 一级片'在线观看视频| 伊人久久国产一区二区| 成人黄色视频免费在线看| 久久精品夜色国产| 午夜福利在线观看免费完整高清在| 亚洲自偷自拍三级| 久久久久久久久久久丰满| 各种免费的搞黄视频| 国产色婷婷99| 一级毛片久久久久久久久女| 三级男女做爰猛烈吃奶摸视频| 国产精品嫩草影院av在线观看| av网站免费在线观看视频| 51国产日韩欧美| 少妇的逼好多水| 亚洲国产色片| 男人舔奶头视频| 欧美日韩亚洲高清精品| 亚洲激情五月婷婷啪啪| 亚洲av不卡在线观看| 日韩大片免费观看网站| 80岁老熟妇乱子伦牲交| 日本爱情动作片www.在线观看| 看免费成人av毛片| 国内精品宾馆在线| 日本与韩国留学比较| 日本三级黄在线观看| 国产亚洲91精品色在线| 欧美人与善性xxx| 国产免费一区二区三区四区乱码| 午夜福利高清视频| 欧美成人精品欧美一级黄| 日韩大片免费观看网站| 日韩在线高清观看一区二区三区| 毛片一级片免费看久久久久| 大话2 男鬼变身卡| 成年免费大片在线观看| 亚洲av.av天堂| 可以在线观看毛片的网站| 99九九线精品视频在线观看视频| 三级男女做爰猛烈吃奶摸视频| 丝袜脚勾引网站| 免费观看a级毛片全部| 观看免费一级毛片| 在线观看国产h片| 亚洲色图av天堂| 久久久久网色| 婷婷色综合大香蕉| 国产精品伦人一区二区| 欧美亚洲 丝袜 人妻 在线| 97精品久久久久久久久久精品| 一级毛片黄色毛片免费观看视频| 色播亚洲综合网| 搞女人的毛片| 超碰av人人做人人爽久久| 精品久久久久久久人妻蜜臀av| 亚洲av福利一区| 又黄又爽又刺激的免费视频.| 久久久久久伊人网av| 亚洲图色成人| 亚洲怡红院男人天堂| 九九爱精品视频在线观看| 搡女人真爽免费视频火全软件| 婷婷色av中文字幕| 亚洲精品视频女| 99热6这里只有精品| 国产 精品1| 免费黄色在线免费观看| 人妻夜夜爽99麻豆av| 精品久久久精品久久久| av福利片在线观看| 久久韩国三级中文字幕| 内射极品少妇av片p| 国产黄片视频在线免费观看| 黄色配什么色好看| 一个人观看的视频www高清免费观看| 看免费成人av毛片| 国产成人免费无遮挡视频| 久久女婷五月综合色啪小说 | 国产精品熟女久久久久浪| 精品熟女少妇av免费看| 男人和女人高潮做爰伦理| 亚洲av日韩在线播放| 人妻少妇偷人精品九色| 2022亚洲国产成人精品| 天堂俺去俺来也www色官网| 亚洲精品,欧美精品| 亚洲精品中文字幕在线视频 | 性色av一级| 99久久中文字幕三级久久日本| 欧美老熟妇乱子伦牲交| 国语对白做爰xxxⅹ性视频网站| 欧美亚洲 丝袜 人妻 在线| 亚洲天堂国产精品一区在线| 久久久精品欧美日韩精品| 亚洲经典国产精华液单| 秋霞在线观看毛片| 精品一区二区免费观看| 亚洲欧美成人精品一区二区| 最近手机中文字幕大全| 国产真实伦视频高清在线观看| 国产高清三级在线| 校园人妻丝袜中文字幕| 人妻夜夜爽99麻豆av| 久久久久久久国产电影| 欧美少妇被猛烈插入视频| 亚洲国产日韩一区二区| 亚洲国产色片| 草草在线视频免费看| 国产午夜精品一二区理论片| 日韩欧美精品免费久久| 日本与韩国留学比较| 国产成人精品一,二区| 国产一区二区亚洲精品在线观看| 国产成人午夜福利电影在线观看| 在线观看美女被高潮喷水网站| 精品酒店卫生间| 美女cb高潮喷水在线观看| 国产女主播在线喷水免费视频网站| 99热全是精品| 国产一区二区在线观看日韩| 亚洲天堂国产精品一区在线| 国产亚洲午夜精品一区二区久久 | 久久影院123| 免费看光身美女| 美女内射精品一级片tv| 夜夜看夜夜爽夜夜摸| 丝袜脚勾引网站| 汤姆久久久久久久影院中文字幕| 久久精品久久久久久久性| 男女下面进入的视频免费午夜| 中文在线观看免费www的网站| 国产国拍精品亚洲av在线观看| 免费看不卡的av| 国精品久久久久久国模美| 美女脱内裤让男人舔精品视频| 日本欧美国产在线视频| 免费高清在线观看视频在线观看| 免费黄网站久久成人精品| 亚洲一级一片aⅴ在线观看| 青春草视频在线免费观看| 舔av片在线| 五月开心婷婷网| 禁无遮挡网站| 日日啪夜夜撸| 香蕉精品网在线| 97超视频在线观看视频| 一级毛片aaaaaa免费看小| 亚洲av一区综合| 国产老妇女一区| 国产 精品1| av国产免费在线观看| 久久久a久久爽久久v久久| 久久久久久久午夜电影| 国产欧美亚洲国产| 高清欧美精品videossex| 亚洲精品久久久久久婷婷小说| 中文字幕制服av|