蔡軍 馬德英 郁帆 羌松
摘要 新疆是我國鷹嘴豆主要生產地,然而隨著鷹嘴豆種植面積的擴大,集約化種植模式的發(fā)展以及廣泛從國內外引種,鷹嘴豆殼二孢疫病(Ascochyta blight)開始發(fā)生。由于該病害在新疆發(fā)生歷史較短,相關的研究還甚少。本研究對新疆鷹嘴豆殼二孢疫病病菌Ascochyta rabiei的交配型、致病力及對3種殺菌劑敏感性進行測定,結果表明,A.rabiei的交配型MAT1-1和MAT1-2在新疆木壘地區(qū)的分離頻率明顯偏離1∶1,以MAT1-2為優(yōu)勢種群,但其致病力與MAT1-1無顯著差異,而MAT1-1對30%醚菌酯EC的敏感性顯著低于MAT1-2。
關鍵詞 鷹嘴豆; 殼二孢疫病; Ascochyta rabiei; 交配型; 致病力; 殺菌劑敏感性
中圖分類號: S 432.1
文獻標識碼: A
DOI: 10.16688/j.zwbh.2019086
Determination of mating type, virulence of Ascochyta rabiei
in Xinjiang and its sensitivity to three fungicides
CAI Jun, MA Deying, YU Fan, QIANG Song
(Key Laboratory of the Pest Monitoring and Safety Control on Crop and Forest at Universities of Xinjiang Uygur
Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China)
Abstract
Xinjiang is the main production area of chickpea in China. However, with the expansion of chickpea planting area, the development of intensive planting mode and the wide introduction of chickpea from home and abroad, Ascochyta blight occurred. Because of the short history of the disease in Xinjiang, little is known about this disease. In this study, the mating type and virulence of Ascochyta rabiei were characterized, and its sensitivity to three fungicides was also tested in Xinjiang. The results showed that the separation ratio of two mating types, MAT1-1 and MAT1-2, deviated from 1∶1 obviously in Mulei area of Xinjiang. The MAT1-2 was the dominant population, but its virulence showed no significant difference with that of MAT1-1. The sensitivity of the MAT1-1 mating type to kresoxim-methyl 30% EC was significantly lower than that of MAT1-2.
Key words
chickpea; Ascochyta blight; Ascochyta rabiei; mating type; virulence; fungicide sensitivity
鷹嘴豆Cicer arietinumL.是世界上種植面積居第2位的食用豆類,2017年世界總種植面積為1 456萬hm2,總產量約達1 478萬t[1]。殼二孢疫病(Ascochyta blight,病原菌為Ascochyta rabiei)是世界上危害鷹嘴豆最嚴重的病害[23]。該病原菌致病力變異是影響病害發(fā)生和流行的關鍵因素,而有性生殖是影響致病力變異的重要因素之一。真菌的有性生殖主要是由交配型基因控制[4]。A.rabiei是一種具有二極性交配系統(tǒng)的異宗結合子囊菌[57]。在世界上大多數鷹嘴豆種植地區(qū),病原菌有性態(tài)(Didymella rabiei)在病殘體上越冬,并在病害流行中起著重要作用。與大多數子囊菌一樣,A.rabiei有性繁殖由具有兩個等位基因的單個交配型基因位點(MAT)控制[8]。該位點基因控制雌雄配子配合和兩性親和細胞的激素調節(jié),控制性別分化和有性發(fā)育,以及子囊孢子的大小等[4]。調控有性生殖的兩種交配類型被稱為MAT1-1和MAT1-2[57]。A.rabiei的有性繁殖取決于地理鄰近的兩種交配型的存在。地區(qū)間或地區(qū)內兩種交配型的比例顯著低于1∶1可能阻止有性階段的形成,從而消除病原菌的重要來源并改變該病害的流行病學。缺乏有性階段可能會對真菌在田間的傳播、病害的流行病學或在鷹嘴豆作物間的長期存活產生重大影響[8]。
新疆是我國鷹嘴豆主要產地,然而隨著鷹嘴豆種植面積的擴大和集約化種植模式的發(fā)展以及廣泛從國內外引種,開始出現鷹嘴豆殼二孢疫病。鷹嘴豆殼二孢疫病于2008在我國新疆首次報道[9],之后相繼報道了該病的防治措施、殺菌劑試驗及抗性品種試驗等。由于該病害在我國屬于新入侵病害,因此相關研究工作非常少,主要以田間發(fā)病情況、造成的損失及防治措施為主,對于鷹嘴豆殼二孢疫病病原的生物學特性和基因組學研究較少。有性階段的發(fā)展在病害流行病學和病原多樣性中起著重要作用,增加病原菌群體之間的遺傳變異性可能導致病原菌對殺真菌劑產生抗性和栽培種質喪失抗性。因此,確定鷹嘴豆種植地區(qū)病原菌的交配類型對于病害管理非常重要。雖然交配型測定已廣泛用于確定病原菌群體樣品中的交配型,但是相關研究多集中于交配型的頻率,對于兩種交配型的致病力差異等研究甚少。本試驗通過對新疆鷹嘴豆主要種植區(qū)木壘縣的病害調查,并采集病株樣品進行室內分離純化培養(yǎng),完成交配型鑒定,對兩種交配型的分離物進行致病力的室內人工接種鑒定以及對殺菌劑的敏感性測定,分析其在木壘的地理分布差異和兩種交配型分離物的致病力及對殺菌劑的敏感性差異。
[3] KHAN M S A, RAMSEY M D, CORBIERE R, et al. Ascochyta blight of chickpea in Australia:Identification, pathogenicity and mating type [J]. Plant Pathology, 1999, 48:230234.
[4] 李國福. 新月彎孢菌(Curvularia lunate)交配型基因克隆分析及檢測[D]. 沈陽: 沈陽農業(yè)大學, 2016.
[5] TRAPERO-CASAS A, KAISER W J. Development of Didymella rabiei, the teleomorph of Ascochyta rabiei, on chickpea straw [J]. Phytopathology, 1992, 82(11): 12611266.
[6] WILSON A D, KAISER W J. Cytology and genetics of sexual incompatibility in Didymella rabiei [J]. Mycology, 1995, 87: 795804.
[7] TURGEON B G, YODER O C. Proposed nomenclature for mating type genes of filamentous Ascomycetes [J]. Fungal Genetics and Biology, 2000, 31(1): 15.
[8] BARVE M P, ARIE T, SALIMATH S S, et al. Cloning and characterization of the mating type (MAT) locus from Ascochyta rabiei (teleomorph:Didymella rabiei) and a MAT phylogeny of legume-associated Ascochyta spp. [J]. Fungal Genetics and Biology, 2003, 39(2): 151167.
[9] 馬德成, 魏建華, 曾繁明, 等. 新疆鷹嘴豆褐斑病的發(fā)生[J]. 植物檢疫, 2008, 22(4): 245246.
[10]葉梅, 馬德成, 魏建華, 等. 新疆鷹嘴豆褐斑病發(fā)生初報[J]. 新疆農業(yè)科技, 2008(2): 4344.
[11]馬麗娟, 張巨松, 李利民, 等. 鷹嘴豆種質資源對Ascochyta rabiei的抗性評價及遺傳多態(tài)性分析[J]. 植物遺傳資源學報, 2013, 14(6): 11791184.
[12]PANDE S, SIDDIQUE K H M,KISHORE G K, et al. Ascochyta blight of chickpea (Cicer arietinum L.):A review of biology, pathogenicity, and disease management [J]. Australian Journal of Agricultural Research, 2005, 56(4): 317332.
[13]RHAIEM A, CHERIF M, DYER P S, et al. Distribution of mating types and genetic diversity of Ascochyta rabiei populations in Tunisia revealed by mating-type-specific PCR and random amplified polymorphic DNA markers [J]. Journal of Phytopathology, 2007, 155(10): 596605.
[14]KAISER W J. The teleomorph of Ascochyta rabiei and its significance in breeding chickpea [C]∥UDUPA S, WEIGAND F. DNA markers and breeding for resistance to Ascochyta blight in chickpea-Proceeding of the symposium on application of DNA fingerprinting for crop improvement: marker-assisted selection of chickpea for sustainable agriculture in the dry areas, ICARDA, Aleppo, Syria, 1997: 321.
[15]OMAR A, MICHAEL B, AHMED E A, et al. Chickpea Ascochyta blight: Disease status and pathogen mating type distribution in Syria [J]. Journal of Phytopathology, 2011, 159: 443449.
[16]AZIZPOUR N, ROUHRAZI K. Assessment of genetic diversity of Iranian Ascochyta rabiei isolates using rep-PCR markers [J]. Journal of Phytopathology, 2017, 165(7/8): 508514.
[17]ZHAN Jiasui, TORRIANI S F F, McDONALD B A. Significant difference in pathogenicity between MAT1-1 and MAT1-2 isolates in the wheat pathogen Mycosphaerella graminicola [J]. Fungal Genetics and Biology, 2007, 44(5): 339346.
[18]NAVAS-CORTS J A, PREZ-ARTS E, JIMNEZ-DIAZ R M, et al. Mating type, pathotype and RAPDs analysis in Didymella rabiei, the agent of Ascochyta blight of chickpea [J]. Phytoparasitica, 1998, 26(3): 199212.
[19]PHAN H T T, FORD R, BRETAG T, et al. A rapid and sensitive polymerase chain reaction (PCR) assay for detection of Ascochyta rabiei, the cause of Ascochyta blight of chickpea [J]. Australasian Plant Pathology, 2002, 31(1): 3139.
[20]PHAN H T T, FORD R, TAYLOR P W J. Mapping the mating type locus of Ascochyta rabiei the causal agent of Ascochyta blight of chickpea [J]. Molecular Plant Pathology,2003, 4(5): 373381.
[21]ARMSTRONG C L, CHONGO G, GOSSEN B D, et al. Mating type distribution and incidence of the teleomorph of Ascochyta rabiei (Didymella rabiei) in Canada [J]. Canadian Journal of Plant Pathology, 2001, 23(1): 110113.
[22]PEEVER T L, SALIMATH S S, SU G, et al. Historical and contemporary multilocus population structure of Ascochyta rabiei (teleomorph: Didymella rabiei) in the Pacific Northwest of the United States [J]. Molecular Ecology, 2004, 13(2): 291309.
[23]華乃震. 殺菌劑苯醚甲環(huán)唑的進展和應用[J].世界農藥, 2013, 35(6): 712.
[24]趙平, 嚴秋旭, 李新, 等. 甲氧基丙烯酸酯類殺菌劑的開發(fā)及抗性發(fā)展現狀[J].農藥, 2011, 50(8): 547551.
(責任編輯:楊明麗)
收稿日期: 20190206?? 修訂日期: 20190401
基金項目:國家自然科學基金(31560492)
致? 謝: 參加本試驗部分工作的還有江代禮、譚翰杰、張能和紀燁斌等同學,特此一并致謝。
通信作者E-mail:qse26@163.com
#為并列第一作者