• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation of Fully Nonlinear NWT by DBIEM Method with MTF for the Downstream Boundary

    2017-10-11 05:33:14XUGangBAIXuMAXiaojianZHURenqing
    船舶力學(xué) 2017年9期
    關(guān)鍵詞:工程學(xué)院水池波浪

    XU Gang,BAI Xu,MA Xiao-jian,ZHU Ren-qing

    (School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China)

    Numerical Simulation of Fully Nonlinear NWT by DBIEM Method with MTF for the Downstream Boundary

    XU Gang,BAI Xu,MA Xiao-jian,ZHU Ren-qing

    (School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China)

    Abstract:Wave propagation in a three-dimensional nonlinear numerical wave tank(NWT)is studied based on the fully nonlinear velocity potential theory.The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved by using the indirect desingularized boundary integral equation method(DBIEM).The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme(ABM4)and mixed Eulerian-Lagrangian(MEL)method are used for the timestepping integration of the free surface boundary conditions.A smoothing algorithm,B-spline,is applied to eliminate the possible saw-tooth instabilities.An effective Multi-transmitting Formula method for radiation condition is employed to transmit wave out of computational region.The numerical results are compared with analytical solutions.The results show that MTF method can be used for simulating fully nonlinear wave propagation.

    Key words:NWT;DBIEM;Multi-transmitting formula

    0 Introduction

    When simulating the nonlinear wave propagation through an unbounded domain in the time domain,it is necessary to truncate the computational domain into a finite domain in order to reduce computational costs.Thus,non-reflecting radiation condition is required for the truncated surface,however,there is no exact non-reflecting condition in existence.The Sommerfeld-Orlanski’s condition has been widely used for linear simulation,this condition is local in both time and space and dependent on the phase velocity of out-going wave but cannot ensure good results for irregular wave problem.The global matching or shell function method is very accurate for linear irregular wave radiation but with relatively large computational effort on comparing with the local method and can not satisfy the nonlinear condition.Another common used method is Damping Zone(DZ),which can absorb high frequency waves efficiently.It is limited by the length of DZ and therefore not very efficient for low frequency waves.Clément[1]proposed a coupled method(piston-beach hybrid absorber)to absorb outgoing wave.Boo[2]proposed a numerical scheme,which combines an absorbing beach and the stretching technique,to simulate the open boundary.Wang and Wu[3]imposed a radiation condition via a combination of Damping Zone(DZ)and Sommerfeld-Orlanski equation.However,the efficiency of DZ method strongly depends on the ratio of the length of damping zone and wave length.The longer wave length requires a wider beach.It will result in much more meshes on the free surface,especially when dealing with irregular wave problem.

    In this work,the indirect desingularized boundary integral equation method(DBIEM),which has been successfully used previously in solving nonlinear water wave problems such as in the work by Zhang et al[4-5],is employed to solve the boundary value problem at each time step.Compared with the conventional BEM,the integral kernels of the DBIEM are no longer singular as the singularities are placed slightly outside the fluid domain.This is particularly advantageous when the direct differentiation is applied to the integral equation to obtain the velocity.The fourth-order predictor-corrector Adams-Bashforth-Moulton(ABM4)scheme and mixed Eulerian-Lagrangian(MEL)method are used for the time-stepping integration of the free surface boundary conditions.Since wave breaking is not considered in this work,the position of the nodes on free surface is tracked by applying semi-Lagrangian approach[6],in which the nodes on free surface are allowed to move only in vertical direction,with the horizontal motion of the nodes on the free surface held fixed.This approach has the advantage of avoiding the task of re-gridding the free surface at each time step.For stable time-step simulation,a B-spline smoothing scheme is applied in both longitudinal and transverse directions of the tank to prevent saw-tooth instability.During the simulation,Multi-transmitting Formula method[7-10]is employed as radiation condition to minimize wave reflection on the truncated surface.Numerical results obtained by the present method agree fairly with analytical solution and show that the present model is effective in the simulation for 3D fully nonlinear wave propagation.

    1 Mathematical model

    Fig.1 Sketch of a 3D numerical wave tank(left)and radiation condition(right)

    A Cartesian coordinate system oxyz is defined for 3D wave propagation problem,as shown in Fig.1.The origin of oxyz is placed on the plane of the undisturbed free surface with the x-axis positive in the propagation direction of incident waves prescribed at the vertical upstream boundary,and the z-axis positive in the opposite direction of gravity.In Fig.1,D denotes the fluid domain whiledenote the boundaries of instantaneous free surface,side wall,bottom,upstream and downstream,respectively.

    We assume the fluid is incompressible and inviscid,and the flow irrotational,the fluid motion can be described by a velocity potential φ,which satisfies the Laplace equation within the fluid domain D,

    All the boundary conditions can be desribed as follows:

    (1)On the instantaneous free surface ΓF,the dynamic and kinematic conditions can be written as:

    where g is the gravitational acceleration and η is the wave elevation.

    (2)On side wall ΓWand bottom ΓB,the zero-normal flux condition can be expressed as:

    (3)On upstream boundary ΓU,the fluid motion is prescribed by giving the properties(surface elevation and normal velocity)of known incident wave forms.

    (4)For downstream boundary condition,the fluid domain has to be truncated at a finite downstream boundary of ΓDin the NWT.An appropriate radiation condition should be imposed on the ΓDto minimize the wave reflection during the simulation in time domain.In this work,an effective Multi-transmitting formular method(MTF)is employed to simulate downstream boundary condition.

    The above boundary value problem will be solved by the indirect desingularized boundary integral equation method(DBIEM),the details of this method can be found in Ref.[4].In order to obtain the velocity potential and free surface elevation at each time step,the fourthorder predictor-corrector Adams-Bashforth-Moulton scheme(ABM4)and mixed Eulerian-Lagrangian(MEL)method are used.Using the total derivativethe fully nonlinear free surface conditions can be modified as follows in Lagrangian frame,

    ABM4 scheme[4]is selected for integrating Eq.(7)and Eq.(8)over time.

    2 Desingularized boundary integral equation method

    In this study,the indirect DBIEM is employed to solve the boundary value problem for the unknown velocity potentialat each time step.This method obtains the solution by distributing Rankine sources over a surface S outside the fluid domain D.This surface is at a small distance away from the corresponding real boundary of the fluid.The velocity potential in the fluid domain D can be written as follows:

    For the problem considered in this work,we construct the solution using a constantstrength source point within each element over the integration boundary SFand a constantstrength source point over the integration surface SW,where SFis the integration surface above the free surface ΓF,and SWis the integration surface outside the real boundary of the tank.That is

    By applying the boundary conditions,we obtain boundary integral equations for the unknown strength of the singularities,respectively:

    In the desingularized method,the source distribution is outside the fluid domain so that the source points never coincide with the field points and therefore the integrals are non-singular.In addition,because of the desingularization,we can use simple isolated Rankine sources andobtain the equivalent accuracy.This greatly reduces the complexity of the form of the influence coefficients that make up the elements of the kernel matrix[4].Then the integral equations in Eq.(12)and Eq.(13)can be replaced by a discrete summation of N-isolated singularities located at a small distance away from the corresponding control point on the boundaries,

    The desingularized distance between isolated source point and corresponding control point is given by

    where ldand β are constants and Dmis a measure of the local mesh size(typically the square root of the local mesh area).The accuracy and convergence of the solutions are sensitive to the choices of ldand β.Therefore,appropriate ldand β values need to be determined after numerical test.The recommended values are ld=0.5-1.0 and β=0.5.A detailed study with regard to the performance of DBIEM with the desingularization parameters was reported in Ref.[11].ldis fixed at 0.85 in our work.

    Once the above integral equations using isolated Rankine source are solved at each time step,the fluid velocity in Eq.(2)and Eq.(3)can be calculated from direct derivatives,

    3 Multi-transmitting Formula for radiation condition

    Liao[7]described a general expression of one-way wave propagation and developed a system of local non-reflecting boundary conditions using space-time extrapolation.Its initial aim is to deal with the propagation of earthquake wave out of truncated boundary.

    In this section,the MTF method for treating the velocity potential φ in water wave field will be introduced,as shown in Fig.1.Suppose that point O0is on the truncated surface ΓDand j is the point which is away from point O0along its normal vector to the fluid domain.The distance between point j and point O0is jCaΔt along the normal vector of point O0,where Ca,related to physical wave speed Cx,is the artificial wave speed and Δt is the time interval.Usually,we do not need set Caequal to Cx.

    According to the theory of MTF,the velocity potential on ΓDmay be written as

    where integer p represents the time level,N is the order of the MTF method and C is thebinomial coefficient.

    In order to eliminate the effect of the frequencies,which are near to zero including zero,a constant value γ2is used.Thus,the second order MTF can be written as Eq.(18),where γ2is additional factor and set to 0.025;

    4 Numerical results and discussions

    The present model is applied to simulate the wave propagation for linear incident wave and second-order Stokes wave in a fully nonlinear NWT.In our simulation,the length of NWT(L)is 2 m,depth-length ratio h/L=0.5,and breadth-length ratio B/L=0.25.The NWT is divided in x-direction by Nx=40 intervals,in y-direction by Ny=11 intervals and in z-direction by Nz=10 intervals.

    In the MTF method,we need to use an artificial wave speed Cato find the exact position of the inner points corresponding to the control point on the truncated surface,as shown in Fig.1.Normally,we do not need to set Caequal to the physical wave speed Cxand yet we can still get reasonable results when Cais in the certain range of Cx(Ca∈0.8 Cx~1.2Cx).The numerical results for different Caare presented in Fig.2 and Fig.3.We can find that the MTF method is effective to transmit waves out of truncated surface when Cais in the prescribed range.Thus,the MTF method is proposed as radiation condition to also accord greater flexibility for the simulation of fully nonlinear NWT.

    Fig.2 Comparison of wave elevation between linear analytical solution and numerical results with different artificial wave speed(λ=4.0 m)

    Fig.3 Comparison of wave elevation between linear analytical solution and numerical results with different artificial wave speed(λ=8.0 m)

    4.1 Simulation of linear regular incident wave

    The model is next applied to simulate the linear regular incident wave.We consider three cases:wave length λ=1 m,4 m and 8 m.For these simulations,the wave amplitude A is set to 0.02 m,time step Δt is taken as T/100 and Cais equal to Cx[9],where T is wave period.The numerical results are compared with corresponding linearized analytical solution,as shown in Figs.4-6.We can see that the numerical result obtained by present method agrees fairly with the theory after the initial transient effect.This indicates that the method works well with the given problem.It needs to be mentioned that a modulation function is used in the numerical simulation[12].

    Fig.4 Wave elevation for the case of wave length λ=4 m(black solid line:analytical solution;blue solid line:MTF as radiation condition)

    Fig.5 Wave elevation histories for the case of wave length λ=8 m(black solid line:analytical solution;blue solid line:MTF as radiation condition)

    Fig.6 Wave elevation histories for the case of wave length λ=1 m(black solid line:analytical solution;blue solid line:MTF as radiation condition)

    Fig.7 Wave elevation histories at(x=0.475 m,y=0)for λ=1 m and A=0.02 m(black solid line:analytical solution;blue solid line:MTF as radiation condition)

    4.2 Simulation of second-order stokes incident wave

    The model is finally applied to simulate the wave propogation ofsecond-order Stokes waves,which have the basic characteristic of nonlinear waves of higher and sharper crest,lower and flatter trough.The parameters for simulating second-order Stokes waves propagation are taken as λ=1 m,A=0.02 m and Δt=T/100.Fig.7 shows the wave elevation histories at(x=0.475 m,y=0)and the numerical results are compared with second-order analytical solution.We can find that the results agree with the analytical solution and have strong stability.In order to illustrate the wave propagation,snapshots of free surface are shown in Fig.8 at four different times(t=4T,6T,8T and 10T).

    Fig.8 Free surface profiles(a)t=4T;(b)t=6T;(c)t=8T;(d)t=10T

    5 Conclusions

    In this paper,3D fully nonlinear NWT are solved by using a DBIEM coupled with MEL time marching scheme.The position of instantaneous free surface is tracked by applying semi-Lagrangian approach.An effective MTF method is employed as radiation condition to transmit wave out of truncated surface.It is found that the present model is accurate,numerically stable and can be used for the simulation of 3D fully nonlinear wave propagation due to linear incident wave and second-order incident wave.

    [1]Clément A.Coupling of two absorbing boundary conditions for 2D time-domain simulations of free surface gravity waves[J].Journal of Computational Physics,1996,126:139-151.

    [2]Boo S Y.Linear and nonlinear irregular waves and forces in a numerical wave tank[J].Ocean Engineering,2002,29:475-493.

    [3]Wang C Z,Wu G X.Time domain analysis of second-order wave diffraction by an array of vertical cylinders[J].Journal of Fluids and Structures,2007,23(4):605-631.

    [4]Zhang X T,Khoo B C,Lou J.Wave propagation in a fully nonlinear numerical wave tank:a desingularized method[J].O-cean Engineering,2006,33:2310-2331.

    [5]Zhang X T,Khoo B C,Lou J.Application of desingularized approach to water wave propagation over three-dimensional topography[J].Ocean Engineering,2007,34:1449-1458.

    [6]Koo W C,Kim M H.Fully nonlinear wave-body interactions with surface-piercing bodies[J].Ocean Engineering,2007,34:1000-1012.

    [7]Liao Z P.Extrapolation non reflecting boundary conditions[J].Wave Motion,1996,24:117-138.

    [8]Xu G,Duan W Y.Time domain simulation for water wave radiation by floating structures(Part A)[J].Journal of Marine Science and Application,2008;7:226-235.

    [9]Xu G,Duan W Y.Time-domain simulation of wave-structure interaction based on multi-transmitting formula coupled with damping zone method for radiation boundary condition[J].Applied Ocean Research,2013;42:136-143.

    [10]Duan W Y,Zhang T Y.Non-reflecting simulation for fully-nonlinear irregular wave radiation[C]//Proceedings of the 24th International Workshop on Water Wave and Floating Bodies.Bodies,Russia,2009.

    [11]Cao Y,Schultz W W,Beck R F.Three dimensional desingularized boundary integral methods for potential problems[J].International Journal for Numerical Methods in Fluids,1991,12:785-803.

    [12]Xu G.Time-domain simulation of second-order hydrodynamic force on floating bodies in irregular waves[D].Harbin:College of Shipbuilding Engineering,Harbin Engineering University,2010.(in Chinese)

    基于多次透射公式和無奇異邊界元法模擬全非線性數(shù)值波浪水池

    徐 剛,白 旭,馬小劍,朱仁慶
    (江蘇科技大學(xué) 船舶與海洋工程學(xué)院,江蘇 鎮(zhèn)江 212003)

    文章基于勢流理論對全非線性的三維數(shù)值水池進(jìn)行了模擬,其控制方程由無奇異邊界積分方程法(Desingularized Boundary Integral Equation Method,DBIEM)進(jìn)行離散求解,在求解全非線性的自由面微分方程時,文中采用混合歐拉—拉格朗日法(Mixed Eulerian-Lagrangian,MEL)和四階Adams-Bashforth-Moulton(ABM4)預(yù)報—修正方法,為了避免結(jié)果發(fā)散即增強數(shù)值穩(wěn)定性,文中采用B樣條法來光順波面。同時,在遠(yuǎn)方輻射控制面上采用多次透射公式方法(Multitransmitting Formula,MTF)來進(jìn)行消波,文中得到的結(jié)果與理論解進(jìn)行了比較,結(jié)果表明該方法可用來有效模擬全非線性的數(shù)值波浪水池。

    數(shù)值波浪水池;無奇異邊界積分法;多次透射公式

    O35 U661.71

    A

    國家自然科學(xué)基金資助項目(51309125,51409128,51379094,51179077);江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項目資助

    徐 剛(1981-),男,博士,江蘇科技大學(xué)船舶與海洋工程學(xué)院副教授;白 旭(1984-),男,博士,江蘇科技大學(xué)船舶與海洋工程學(xué)院講師;馬小劍(1982-),男,博士,江蘇科技大學(xué)船舶與海洋工程學(xué)院講師;朱仁慶(1965-),男,博士,江蘇科技大學(xué)船舶與海洋工程學(xué)院教授。

    10.3969/j.issn.1007-7294.2017.09.002

    Article ID: 1007-7294(2017)09-1062-09

    Received date:2017-03-28

    Foundation item:Supported by the National Natural Science Foundation of China(Grant No.51309125,51409128,51379094,51179077)and the Project Founded by Priority Academic Program Development of Jiangsu Higher Education Institutions

    Biography:XU Gang(1981-),male,Ph.D.,associate prof.of Jiangsu University of Science and Technology,E-mail:me_xug@qq.com;BAI Xu(1984-),male,Ph.D.,lecturer.

    猜你喜歡
    工程學(xué)院水池波浪
    福建工程學(xué)院
    波浪谷和波浪巖
    福建工程學(xué)院
    小區(qū)的水池
    波浪谷隨想
    福建工程學(xué)院
    去看神奇波浪谷
    福建工程學(xué)院
    把住醫(yī)?;鹚亻l門
    找水池
    最近视频中文字幕2019在线8| 狠狠狠狠99中文字幕| 很黄的视频免费| 欧美成人免费av一区二区三区| 欧美+日韩+精品| 国产成人福利小说| 99国产综合亚洲精品| 国内精品久久久久久久电影| www.熟女人妻精品国产| 精品人妻偷拍中文字幕| 国产黄a三级三级三级人| 亚洲av免费高清在线观看| 99国产精品一区二区三区| www.999成人在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 搞女人的毛片| 91在线观看av| 国产欧美日韩精品一区二区| 国产亚洲精品久久久久久毛片| 女人高潮潮喷娇喘18禁视频| 久久香蕉国产精品| 99国产综合亚洲精品| 久久亚洲真实| 中出人妻视频一区二区| 亚洲中文日韩欧美视频| 熟妇人妻久久中文字幕3abv| 女同久久另类99精品国产91| 国内少妇人妻偷人精品xxx网站| 日韩欧美 国产精品| 国产精品,欧美在线| or卡值多少钱| 久久久国产成人免费| 99久久成人亚洲精品观看| 成人高潮视频无遮挡免费网站| 婷婷精品国产亚洲av在线| 久久久成人免费电影| 亚洲七黄色美女视频| 免费在线观看成人毛片| 国产精品电影一区二区三区| 在线观看免费视频日本深夜| 日本 av在线| 免费大片18禁| 亚洲欧美激情综合另类| 中文字幕人妻熟人妻熟丝袜美 | 国产精品嫩草影院av在线观看 | 最后的刺客免费高清国语| 成熟少妇高潮喷水视频| 搞女人的毛片| 久久国产乱子伦精品免费另类| АⅤ资源中文在线天堂| 欧美成狂野欧美在线观看| 黄色丝袜av网址大全| 国产午夜精品论理片| 精品人妻偷拍中文字幕| 偷拍熟女少妇极品色| 美女 人体艺术 gogo| 亚洲天堂国产精品一区在线| 三级男女做爰猛烈吃奶摸视频| 最新中文字幕久久久久| 18禁裸乳无遮挡免费网站照片| 日韩欧美在线二视频| 麻豆一二三区av精品| 身体一侧抽搐| 长腿黑丝高跟| 禁无遮挡网站| 亚洲人成网站高清观看| 久久精品91蜜桃| 热99在线观看视频| 最近最新免费中文字幕在线| 亚洲国产中文字幕在线视频| 夜夜看夜夜爽夜夜摸| 少妇丰满av| 蜜桃亚洲精品一区二区三区| 搞女人的毛片| 99国产极品粉嫩在线观看| 亚洲内射少妇av| 一本一本综合久久| 亚洲人成网站高清观看| 亚洲色图av天堂| 日本黄色视频三级网站网址| 欧美黑人欧美精品刺激| 亚洲人与动物交配视频| 淫妇啪啪啪对白视频| 亚洲av二区三区四区| 国产主播在线观看一区二区| 国产亚洲av嫩草精品影院| 国产精品久久电影中文字幕| 国产精品一区二区三区四区免费观看 | 国产黄a三级三级三级人| 久久久久国内视频| 欧美国产日韩亚洲一区| 99国产精品一区二区三区| 亚洲成人中文字幕在线播放| 久久久久九九精品影院| 色av中文字幕| 精品福利观看| 男女床上黄色一级片免费看| 无人区码免费观看不卡| 欧美日韩国产亚洲二区| 午夜福利欧美成人| 一夜夜www| 在线看三级毛片| 亚洲中文日韩欧美视频| 欧美+亚洲+日韩+国产| 亚洲无线在线观看| 午夜免费激情av| 日韩欧美在线二视频| 国内精品久久久久精免费| 日本三级黄在线观看| 亚洲国产精品sss在线观看| 身体一侧抽搐| www日本黄色视频网| 亚洲熟妇熟女久久| 黄色视频,在线免费观看| 亚洲五月婷婷丁香| 欧美日韩亚洲国产一区二区在线观看| 嫩草影院精品99| eeuss影院久久| 久久国产乱子伦精品免费另类| 三级国产精品欧美在线观看| 国产激情欧美一区二区| 免费在线观看成人毛片| 国产精品久久视频播放| 国产一区二区在线观看日韩 | 国产伦精品一区二区三区视频9 | 精品国产亚洲在线| 脱女人内裤的视频| 中文字幕人妻熟人妻熟丝袜美 | 日韩欧美免费精品| 国产单亲对白刺激| 国产精品亚洲美女久久久| 亚洲乱码一区二区免费版| 叶爱在线成人免费视频播放| 成熟少妇高潮喷水视频| 亚洲欧美日韩东京热| 他把我摸到了高潮在线观看| av视频在线观看入口| 成年免费大片在线观看| 又黄又粗又硬又大视频| 搡女人真爽免费视频火全软件 | 在线观看66精品国产| 日韩欧美一区二区三区在线观看| 美女cb高潮喷水在线观看| 中文字幕久久专区| 欧美一区二区精品小视频在线| 亚洲熟妇中文字幕五十中出| www.www免费av| 丰满人妻熟妇乱又伦精品不卡| 成人特级黄色片久久久久久久| 久久久久久久久久黄片| 国产美女午夜福利| 好看av亚洲va欧美ⅴa在| 午夜福利在线在线| 69人妻影院| 一本一本综合久久| 一卡2卡三卡四卡精品乱码亚洲| 成熟少妇高潮喷水视频| 美女被艹到高潮喷水动态| 日本成人三级电影网站| 精品久久久久久,| 天堂√8在线中文| 国产精品久久视频播放| 欧美成人一区二区免费高清观看| 有码 亚洲区| 欧美日韩乱码在线| 男女视频在线观看网站免费| 18禁黄网站禁片午夜丰满| 亚洲在线观看片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品合色在线| 亚洲成a人片在线一区二区| 久久天躁狠狠躁夜夜2o2o| 三级毛片av免费| 亚洲男人的天堂狠狠| 欧美国产日韩亚洲一区| 一本综合久久免费| 日韩欧美国产一区二区入口| 哪里可以看免费的av片| 性色avwww在线观看| 亚洲第一欧美日韩一区二区三区| 久久国产精品影院| 琪琪午夜伦伦电影理论片6080| 亚洲成a人片在线一区二区| 在线十欧美十亚洲十日本专区| 搡女人真爽免费视频火全软件 | 国产欧美日韩精品一区二区| 亚洲片人在线观看| 嫩草影院入口| netflix在线观看网站| 亚洲成人中文字幕在线播放| 国产麻豆成人av免费视频| 国产熟女xx| 色在线成人网| 精品久久久久久久末码| 国产激情欧美一区二区| 亚洲乱码一区二区免费版| 老鸭窝网址在线观看| 中文在线观看免费www的网站| 日韩欧美国产一区二区入口| 午夜免费激情av| 国产探花在线观看一区二区| 色综合亚洲欧美另类图片| 久久久色成人| 亚洲专区国产一区二区| 欧美一区二区国产精品久久精品| 久久伊人香网站| 欧美三级亚洲精品| 噜噜噜噜噜久久久久久91| 日本三级黄在线观看| 欧美日韩黄片免| 国产精品女同一区二区软件 | 久久久国产成人精品二区| 天天一区二区日本电影三级| 成人特级av手机在线观看| 日本黄色片子视频| 精品国产亚洲在线| 国产精品爽爽va在线观看网站| 欧美极品一区二区三区四区| 午夜影院日韩av| 免费搜索国产男女视频| 亚洲国产中文字幕在线视频| 国产毛片a区久久久久| 在线播放国产精品三级| 毛片女人毛片| 亚洲不卡免费看| 中文字幕久久专区| 国产亚洲精品av在线| 国产精品久久电影中文字幕| 日日夜夜操网爽| 免费在线观看影片大全网站| 中文字幕人妻丝袜一区二区| 欧美极品一区二区三区四区| 2021天堂中文幕一二区在线观| 亚洲欧美一区二区三区黑人| 老司机午夜福利在线观看视频| 中文字幕av在线有码专区| 国产视频一区二区在线看| 久久亚洲精品不卡| 中亚洲国语对白在线视频| 日本三级黄在线观看| 日韩国内少妇激情av| 无遮挡黄片免费观看| 中亚洲国语对白在线视频| 宅男免费午夜| 成人亚洲精品av一区二区| 免费无遮挡裸体视频| 国产欧美日韩一区二区三| 麻豆成人午夜福利视频| 欧美日韩瑟瑟在线播放| 国产免费av片在线观看野外av| 国产亚洲欧美98| 国语自产精品视频在线第100页| 宅男免费午夜| 国产精品永久免费网站| 少妇高潮的动态图| 久久亚洲精品不卡| 嫩草影院入口| 内地一区二区视频在线| 国语自产精品视频在线第100页| 美女大奶头视频| 日本免费a在线| 一级黄片播放器| 亚洲成av人片在线播放无| 99久久久亚洲精品蜜臀av| 亚洲av成人av| 色精品久久人妻99蜜桃| 午夜久久久久精精品| 欧美区成人在线视频| 亚洲av美国av| 毛片女人毛片| 脱女人内裤的视频| 大型黄色视频在线免费观看| 少妇丰满av| 俺也久久电影网| 国产又黄又爽又无遮挡在线| 国产99白浆流出| 国产私拍福利视频在线观看| 久久草成人影院| 我的老师免费观看完整版| 亚洲av熟女| 免费观看精品视频网站| 五月伊人婷婷丁香| 在线观看免费午夜福利视频| 日本黄大片高清| 国产精品久久视频播放| 午夜免费男女啪啪视频观看 | 国产av一区在线观看免费| 老汉色∧v一级毛片| 听说在线观看完整版免费高清| 精品午夜福利视频在线观看一区| 国产伦一二天堂av在线观看| 亚洲自拍偷在线| 亚洲熟妇熟女久久| 久久精品91无色码中文字幕| svipshipincom国产片| 动漫黄色视频在线观看| 久久久久久久午夜电影| av女优亚洲男人天堂| 免费av不卡在线播放| 国产黄色小视频在线观看| 午夜免费男女啪啪视频观看 | 欧美+日韩+精品| 欧美黑人巨大hd| 欧美乱色亚洲激情| 久久这里只有精品中国| 午夜精品在线福利| 国产高清三级在线| 悠悠久久av| 舔av片在线| 精品99又大又爽又粗少妇毛片 | 亚洲欧美精品综合久久99| 一个人看的www免费观看视频| 亚洲狠狠婷婷综合久久图片| 天堂影院成人在线观看| 91av网一区二区| 可以在线观看的亚洲视频| 婷婷精品国产亚洲av| 69人妻影院| 好看av亚洲va欧美ⅴa在| www.999成人在线观看| 成年免费大片在线观看| av天堂中文字幕网| 九色成人免费人妻av| 免费在线观看成人毛片| 成人高潮视频无遮挡免费网站| 久久久久久久久久黄片| 很黄的视频免费| 午夜免费男女啪啪视频观看 | 精品人妻一区二区三区麻豆 | 少妇的丰满在线观看| 国产精品影院久久| 可以在线观看的亚洲视频| 欧美日韩精品网址| 99在线人妻在线中文字幕| 免费在线观看成人毛片| h日本视频在线播放| 变态另类丝袜制服| 无人区码免费观看不卡| 在线国产一区二区在线| ponron亚洲| 国产三级黄色录像| 色av中文字幕| 久久国产精品影院| 欧美一区二区国产精品久久精品| 久久人妻av系列| 午夜福利18| 国产精品美女特级片免费视频播放器| 国产高潮美女av| 精品欧美国产一区二区三| h日本视频在线播放| 51午夜福利影视在线观看| 香蕉久久夜色| 久久香蕉国产精品| av片东京热男人的天堂| 麻豆成人av在线观看| 亚洲内射少妇av| aaaaa片日本免费| 搞女人的毛片| 国产精品香港三级国产av潘金莲| 18禁裸乳无遮挡免费网站照片| 18+在线观看网站| 床上黄色一级片| 夜夜躁狠狠躁天天躁| 久久婷婷人人爽人人干人人爱| 成人亚洲精品av一区二区| 99久久久亚洲精品蜜臀av| 一边摸一边抽搐一进一小说| 亚洲av二区三区四区| 俄罗斯特黄特色一大片| av黄色大香蕉| 国产精品久久久久久亚洲av鲁大| 一个人免费在线观看电影| 级片在线观看| av在线蜜桃| 最近最新免费中文字幕在线| 一区二区三区国产精品乱码| 最好的美女福利视频网| 嫩草影院入口| 在线观看舔阴道视频| 国产精品亚洲美女久久久| 亚洲va日本ⅴa欧美va伊人久久| 男人舔奶头视频| 亚洲无线在线观看| 久久人妻av系列| av欧美777| 内地一区二区视频在线| 草草在线视频免费看| 久久久色成人| 日韩国内少妇激情av| 丰满的人妻完整版| 1024手机看黄色片| 久久精品亚洲精品国产色婷小说| 成年女人永久免费观看视频| 在线观看舔阴道视频| 叶爱在线成人免费视频播放| 久久精品国产亚洲av涩爱 | 亚洲七黄色美女视频| 欧美日韩瑟瑟在线播放| 叶爱在线成人免费视频播放| 亚洲va日本ⅴa欧美va伊人久久| 欧美性猛交黑人性爽| 在线国产一区二区在线| 黄片小视频在线播放| 欧美丝袜亚洲另类 | 精品久久久久久久末码| 可以在线观看毛片的网站| 日韩免费av在线播放| 成人无遮挡网站| 欧美日韩精品网址| 成人无遮挡网站| 亚洲电影在线观看av| 亚洲五月天丁香| 日本熟妇午夜| 欧美xxxx黑人xx丫x性爽| 国产亚洲精品久久久久久毛片| 成人午夜高清在线视频| 免费无遮挡裸体视频| 一夜夜www| 色综合婷婷激情| 日韩欧美三级三区| 亚洲人成网站高清观看| www.999成人在线观看| 脱女人内裤的视频| 国产亚洲欧美在线一区二区| 久久久久免费精品人妻一区二区| 搡老妇女老女人老熟妇| 18+在线观看网站| 噜噜噜噜噜久久久久久91| 韩国av一区二区三区四区| 丰满乱子伦码专区| 国产熟女xx| 极品教师在线免费播放| 国产高清videossex| 人人妻人人澡欧美一区二区| 精品欧美国产一区二区三| 99久久99久久久精品蜜桃| 亚洲激情在线av| 国产亚洲欧美98| 亚洲精品一区av在线观看| 18禁黄网站禁片午夜丰满| 神马国产精品三级电影在线观看| 91麻豆av在线| 婷婷六月久久综合丁香| 久久精品国产99精品国产亚洲性色| 日韩欧美精品v在线| 老司机午夜福利在线观看视频| 99久久精品一区二区三区| 一进一出好大好爽视频| 国产精品久久电影中文字幕| 国产主播在线观看一区二区| 国产高清三级在线| 少妇的逼好多水| 午夜视频国产福利| 18禁在线播放成人免费| 免费看光身美女| 欧美成人a在线观看| 久久精品91蜜桃| 国产成人影院久久av| 人妻夜夜爽99麻豆av| 亚洲人成伊人成综合网2020| 精品久久久久久,| 别揉我奶头~嗯~啊~动态视频| 一级黄色大片毛片| 国产黄色小视频在线观看| 国产伦精品一区二区三区四那| 十八禁网站免费在线| 国产在线精品亚洲第一网站| 亚洲精品在线观看二区| 久久午夜亚洲精品久久| 国产免费一级a男人的天堂| 国产成人aa在线观看| 亚洲自拍偷在线| 成人鲁丝片一二三区免费| 国产主播在线观看一区二区| 看免费av毛片| 香蕉丝袜av| 三级男女做爰猛烈吃奶摸视频| 午夜精品久久久久久毛片777| 国产精品影院久久| 亚洲久久久久久中文字幕| 国产v大片淫在线免费观看| 国产精品影院久久| 一进一出抽搐动态| 精品一区二区三区视频在线观看免费| 久久久久久久精品吃奶| 在线观看66精品国产| 亚洲最大成人手机在线| 2021天堂中文幕一二区在线观| 国产精品 欧美亚洲| 少妇的逼好多水| 搞女人的毛片| 亚洲五月天丁香| 亚洲中文字幕一区二区三区有码在线看| 亚洲人成电影免费在线| 午夜福利欧美成人| 日本一本二区三区精品| 国产精品自产拍在线观看55亚洲| 少妇熟女aⅴ在线视频| 免费大片18禁| 特级一级黄色大片| 性色av乱码一区二区三区2| 在线国产一区二区在线| 天堂√8在线中文| 看免费av毛片| 观看美女的网站| 国产精品亚洲一级av第二区| 麻豆国产av国片精品| 亚洲精品一区av在线观看| 亚洲欧美精品综合久久99| 久久精品国产清高在天天线| 免费在线观看日本一区| 日本免费a在线| 亚洲av五月六月丁香网| 欧美乱妇无乱码| 老熟妇仑乱视频hdxx| 国产成人欧美在线观看| 国产精品一及| 9191精品国产免费久久| 99国产精品一区二区蜜桃av| 欧美乱色亚洲激情| 国产精品日韩av在线免费观看| 午夜激情福利司机影院| 色哟哟哟哟哟哟| 久久6这里有精品| 在线观看舔阴道视频| 免费看美女性在线毛片视频| 日日摸夜夜添夜夜添小说| 香蕉av资源在线| 天堂网av新在线| 日本免费a在线| 国产伦一二天堂av在线观看| 成人无遮挡网站| 国产免费一级a男人的天堂| 99久久综合精品五月天人人| 高清日韩中文字幕在线| 国产精品野战在线观看| 免费观看人在逋| 成年版毛片免费区| 麻豆成人午夜福利视频| avwww免费| 国产aⅴ精品一区二区三区波| 亚洲精品美女久久久久99蜜臀| 两个人看的免费小视频| 超碰av人人做人人爽久久 | 岛国视频午夜一区免费看| 午夜视频国产福利| 亚洲av一区综合| 亚洲中文字幕一区二区三区有码在线看| 亚洲av第一区精品v没综合| 老司机深夜福利视频在线观看| 老汉色av国产亚洲站长工具| 18禁黄网站禁片午夜丰满| 97碰自拍视频| 别揉我奶头~嗯~啊~动态视频| 男人舔奶头视频| 精品久久久久久久久久久久久| 国产精品av视频在线免费观看| 看黄色毛片网站| 欧美zozozo另类| 又紧又爽又黄一区二区| 亚洲av免费高清在线观看| xxx96com| 特级一级黄色大片| 欧美一区二区国产精品久久精品| 最新美女视频免费是黄的| 久久精品国产清高在天天线| 亚洲av电影不卡..在线观看| 窝窝影院91人妻| 黄色视频,在线免费观看| 香蕉久久夜色| 99精品欧美一区二区三区四区| 久久久久久久亚洲中文字幕 | 亚洲中文字幕日韩| 中亚洲国语对白在线视频| 成年女人看的毛片在线观看| 青草久久国产| 亚洲中文字幕一区二区三区有码在线看| 狠狠狠狠99中文字幕| 日日夜夜操网爽| 亚洲国产欧洲综合997久久,| 99久久精品一区二区三区| 久久香蕉国产精品| 国产成人av教育| 男人舔奶头视频| 熟女少妇亚洲综合色aaa.| 国产不卡一卡二| 亚洲欧美激情综合另类| av天堂中文字幕网| 亚洲av电影在线进入| 国产亚洲精品av在线| 国产一区二区三区在线臀色熟女| 丁香六月欧美| 狠狠狠狠99中文字幕| 国产精品99久久99久久久不卡| 成人av在线播放网站| 亚洲av成人不卡在线观看播放网| 免费在线观看成人毛片| 国产av在哪里看| 18美女黄网站色大片免费观看| 婷婷精品国产亚洲av| a在线观看视频网站| 国产99白浆流出| 国产成人影院久久av| 国产精品久久久久久亚洲av鲁大| 亚洲人成电影免费在线| 伊人久久大香线蕉亚洲五| x7x7x7水蜜桃| 国产黄片美女视频| 一边摸一边抽搐一进一小说| 亚洲精品一卡2卡三卡4卡5卡| 91久久精品国产一区二区成人 | 伊人久久大香线蕉亚洲五| 女警被强在线播放| 日本五十路高清| 国产成人欧美在线观看|