• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical and Experimental Study on CTOD for Notch Plate Under Low Cycle Fatigue

    2017-10-11 05:33:24XUGengYANRenjunYAOGuoquanDONGQin
    船舶力學(xué) 2017年9期
    關(guān)鍵詞:武漢理工大學(xué)張口尖端

    XU Geng,YAN Ren-jun,YAO Guo-quan,DONG Qin

    (a.Key Laboratory of High Performance Ship Technology;b.School of Transportation,Wuhan University of Technology,Wuhan 430063,China)

    Theoretical and Experimental Study on CTOD for Notch Plate Under Low Cycle Fatigue

    XU Genga,b,YAN Ren-juna,b,YAO Guo-quanb,DONG Qina,b

    (a.Key Laboratory of High Performance Ship Technology;b.School of Transportation,Wuhan University of Technology,Wuhan 430063,China)

    Abstract:This paper aims to study the crack tip opening displacement(CTOD)for notch plate under large scale yielding.An analytical model is presented to determine CTOD for notch plate based on the theory of elastic-plastic fracture mechanics.Moreover,an experimental campaign in high strength steel AH36,performed in the low cycle fatigue regime,was performed on specimens with pre-cracks.The effect of stress ratio,stress amplitude and mean stress on CTOD were investigated.

    Key words:low cycle fatigue;CTOD;experimental study;high strength steel

    0 Introduction

    The fatigue strength of ship’s structure has very important significance on the safety and survivability.Along with the increasing in ship dimensions and more use of high-strength steel in recent years,the stress and deformation of ship structures are so high and large,which result in prominent problem demanding prompt solution in the development of large-scale ships.Crack tip opening displacement(CTOD)and J integral are the major parameters to describe the resistance to crack propagation of ductile structural materials[1].However,at the load controlled experiments the results show that J integral was unable to correlate the low cycle fatigue crack growth rates.Therefore,studying and establishing assessment methods of CTOD under cyclic loading are of great practical significance.

    The CTOD is less frequently used but it holds a direct physical meaning and can be measured directly in an experiment together with the crack opening/closing level.Furthermore,CTOD can be determined numerically for applications.Jiang[2]analyzed CTOD of ship stiffened plate based on Dugdale model and found out the influence rule caused by external load,stiffness ratio and other factors.Finite element method[3-8]is one of the efficient ways in studying elastic-plastic fracture problems,thus it is widely used in various kinds of fracture assessments.It is used to study CTOD and other relative parameters through calculation of crack tip stress-field and displacement-field.The CTOD has in fatigue crack growth investigations often connected with a micro-mechanical examination of the striation spacing on the fracture sur-face.Neumann[9]and Kikukawa et al[10]made quantitative observations on fatigue crack growth rates in combination with CTOD.In 1984,Tanaka et al[11]put forward a thorough investigation on the crack tip displacement as a fatigue crack growth mechanism.Both load and displacement controlled fatigue experiments were conducted for three different materials.However,no direct proportionality was observed between the fatigue crack growth rate and CTOD.

    The present work presents an analytical model to determine the crack tip opening displacement for notch plate subjected to cyclic loading.A series of experiments were conducted to study the effect of stress ratio,stress amplitude and mean stress on CTOD.

    1 Theoretical analysis

    Shih[12]proposed an equation between the cyclic crack tip opening displacement and cyclic J-integral for notch plate subjected to uniaxial loading:

    In the viewpoint of Kumar et al[14]and Heitmann et al[15],△J can be attributed by the sum of an elastic(small scale yielding)and a plastic(large scale yielding)approximately.For I crack with crack length a in a flat specimen under plane stress,one obtains:

    where△σ and△εpare the stress and plastic strain range respectively.Crack closure is taken into account by the use of the effective stress range △σeff=σmax-σopin the elastic part of△J.σmaxand σopare the maximum and crack opening stress,respectively.The crack opening stress σop,which can either be estimated with empirical formulas or taken from numerical calculations.Here,the crack opening stress equation by Newman[16]is used,then the crack opening stress is obtained as follows:

    of the material is usually defined as the average value between the material yielding and ulti-mate strength for convenience.

    2 Experimental investigation

    2.1 Material and campaign overview

    The steel employed for testing is AH36 steel.The steel AH36,is a high strength steel which is widely used in the ship and ocean engineering in China,was employed to the tests,where the basic mechanics properties of material are showed in Tab.1.Chemical composition(in%wt)of this material is:C 0.18,Si 0.43,Mn 1.4,P 0.02,S 0.013 and Nb 0.018.In order to study CTOD for notch plate under low cycle fatigue,three different loading conditions were considered:The first,keep the maximum stress unchanged and take different stress ratio,second,keep the stress amplitude unchanged and take different mean stress,and third,keep mean stress unchanged and take different stress amplitude.

    Tab.1 The mechanics properties of AH36

    2.2 Experimental setup

    The fatigue crack growth experiments were made on 12 mm thick low cycle fatigue standard specimen(notch plate)with other dimensions shown in Fig.1.The total length L=360 mm,the total width W=50 mm,the radius of notch R=2.4 mm,the precrack length a=1 mm.In order to remove nucleation time from the experiments,before testing,all the specimens were precracked.

    Fig.1 Geometry of test specimen

    The fatigue crack growth experiments were performed in air and at room temperature by using a computer controlled servo-hydraulic test machine,MTS322 250 kN.The crack lengthwas simultaneously measured by using strain extensometer with a 10 mm gauge length,±1 mm range,and 0.01%extensometer strain control accuracy whose operating temperature ranges from-80℃ to 200℃,as shown in Fig.2.A uniaxial controlled load was used to control the total stress range and a tensile-compression loading with a triangular waveform was used to ensure that the strain rate remained constant in a loop beginning with the tensile load.A 0.5 Hz frequency was chosen based on other low cycle fatigue test results available in the literature.The specimens were tested in cyclic loading,considering the influence of stress ratio,stress amplitude and mean stress.Each test is performed to failure and an average of three measurements under each condition was taken.The real-time information such as time,load,crack tip opening displacement and extensometer strain were recorded.The loading conditions and experimental results of AH36 were summarized in Tab.2.An example of the appearance of the surface was shown in Fig.3.

    Tab.2 The loading condition and experimental results of AH36

    2.3 Experimental result and discussion

    2.3.1 The effect of stress ratio on the CTOD

    The stress controlled low cycle fatigue experiment with constant applied peak stress and various stress ratio was carried out under uniaxial cyclic loading.Keep the maximum stress unchanged and different stress ratio R=-1,0,0.1,0.2,it can be seen from Fig.4 that with the increasing of stress ratio,the CTOD is increasing.It is obvious that the stress ratio apparently influences the relationship between CTOD and fatigue life,i.e.,the CTOD rapidly increases with stress ratio at a constant maximum stress.Meanwhile,when the stress ratio is negative,in the initial cycle the CTOD is small,while the stress amplitude is large,so the trend of CTOD changes rapidly.

    2.3.2 The effect of mean stress on the CTOD

    In order to discuss the impact of mean stress on the CTOD,the stress controlled low cycle fatigue experiment with constant stress amplitude and various mean stress was carried outunder uniaxial cyclic loading.Keep the stress amplitude unchanged and different mean stress σm=10,20,30 MPa,the evolution result of CTOD is shown in Fig.5.Experimental results reveal that for the smaller mean stress applied in the test,the CTOD shows monotonically increasing with the increase of mean stress.The change of CTOD is small in the early cycle,while in the late fatigue life,the CTOD increases violently.

    Fig.5 The crack tip opening displacement vs fatigue life for different mean stress

    2.3.3 The effect of stress amplitude on the CTOD

    In order to discuss the impact of stress amplitude on the CTOD,the stress controlled low cycle fatigue experiment with constant mean stress and various stress amplitude was carried out under uniaxial cyclic loading.Keep the mean stress unchanged and different stress amplitude σa=170,180,190,200 MPa,the evolution results of CTOD is shown in Fig.6.The experimental results show that with the increasing of stress amplitude,the CTOD exhibits monotonically increasing.Tab.2 shows that the stress amplitude has a significant effect on fatigue life under stress controlled cyclic loading,the fatigue life decreases with the increases of stress amplitude.

    Fig.6 The crack tip opening displacement vs fatigue life for different stress amplitude

    3 Conclusions

    In the present work,an analytical model is presented to determine the CTOD for notch plate subjected to cyclic loading.Based on the experimental study of fatigue crack growth of AH36 steel,the following concluding remarks can be drawn:

    (1)The study reveals that stress ratio,mean stress and stress amplitude have obvious influence on the relationship of CTOD vs fatigue life.The experimental results reveals that the increasing stress amplitude and mean stress shorten the fatigue life of the material significantly.

    (2)The experimental results suggest that with the increasing of stress ratio,the CTOD is increasing while the fatigue life is decreasing.

    [1]Hutchinson J W.Fundamentals of the phenomenological theory of nonlinear fracture mechanics[J].J Appl.Mech.,1982,49:103-197.

    [2]Jiang Cuixiang.Research on fracture and crack arrest in ship structures[D].Wuhan:Huazhong University of Science and Technology,2005.

    [3]Potirniehe G P,Daniewiez S R.Analysis of crack tip plasticity for microstructuralIy small cracks using crystal plasticity theory[J].Eng.Fraet.Meeh.,2003,70:1623-1643.

    [4]Wu F W,Ibrahim R N,Das R,et al.Fracture toughness for CNT specimens from numerieally obtained critical CTOD values[J].Theor.Appl.Fract.Meeh.,2009,52:50-54.

    [5]Chen Jingjie.Strength analysis method research of cracked ship structure[D].Dalian:Dalian University of Technology,2011.

    [6]Chen Jingjie,Huang Yi.A study on evaluation method of crack tip reverse plastic zone size for the center cracked steel plate model under tension-compression cyclic loading[J].Engineering Fracture Mechanics,2015(133):138-151.

    [7]Dong Qin,Yang Ping,Deng Junlin,Wang Dan.The theoretical and numerical research on CTOD for ship plate under cyclic loading considering accumulative plastic strain[J].Journal of Ship Mechanics,2015,19(12):1507-1516.

    [8]Dong Qin,Yang Ping,Xu Geng,Deng Junlin.Mechanisms and modeling of low cycle fatigue crack propagation in a pressure vessel steel Q345[J].International Journal of Fatigue,2016,89:2-10.

    [9]Neumann P.Coarse slip model of fatigue[J].Acta Metall,1969,17(9):1219-1225.

    [10]Kikukawa M,Jono M,Adachi M.Direct observation and mechanisms of fatigue crack propagation[M].In:ASTM STP 675.American Society for Testing and Materials,1979:234-253.

    [11]Tanaka K,Hoshide T,Sakai N.Mechanics of fatigue crack propagation by crack-tip plastic blunting[J].Engng Fract Mech,1984,19(5):805-825.

    [12]Shih C F.Relationship between the J-integral and the crack opening displacement for stationary and extending cracks[J].Mech Phys Solids,1981,29(4):305-326.

    [13]Shih C F.Tables of Hutchinson-Rice-Rosengren singular field quantities[R].Tech.rep.Brown University Report MRL E-147,1983.

    [14]Kumar V,German M D,Shih C F.An engineering approach for elastic-plastic fracture analysis[R].Tech.rep.Report NP-1931 on Project 1237-1 for Electric Power Research Institute,Palo Alto,California,1983.

    [15]Heitmann H H,Vehoff H,Neumann P.Advances in fracture research 84[M].In:Valluri SR,et al.,editor.Proc of ICF6,vol.5.Oxford and New York:Pergamon Press Ltd.,1984:3599-3606.

    [16]Newman J C.A crack opening stress equation for fatigue crack growth[J].International Journal of Fatigue,1984,24:131-135.

    低周疲勞下船體缺口板的裂紋尖端張口位移理論及試驗(yàn)研究

    徐 庚a,b, 嚴(yán)仁軍a,b, 姚國全b, 董 琴a,b
    (武漢理工大學(xué)a.高性能船舶技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室;b.交通學(xué)院,武漢 430063)

    文章旨在研究大范圍屈服下船體缺口板的裂紋尖端張口位移。基于彈塑性斷裂力學(xué)理論,建立了循環(huán)載荷下船體缺口板CTOD理論模型。進(jìn)而,對于船用高強(qiáng)度鋼AH36進(jìn)行低周疲勞試驗(yàn)研究,對于影響裂紋尖端張口位移的參數(shù),如應(yīng)力比、應(yīng)力幅和平均應(yīng)力進(jìn)行了深入探討。

    低周疲勞;CTOD;試驗(yàn)研究;高強(qiáng)度鋼

    U661.4

    A

    國家自然科學(xué)基金資助(51479513);中央高校科研資助基金(2016-YB-014)

    徐 庚(1988-),男,武漢理工大學(xué)交通學(xué)院博士研究生,E-mail:xugeng_1988@163.com;嚴(yán)仁軍(1962-),男,武漢理工大學(xué)交通學(xué)院教授,E-mail:renjun_yan@163.com;姚國全(1986-),男,武漢理工大學(xué)交通學(xué)院實(shí)驗(yàn)研究員;董 琴(1988-),女,武漢理工大學(xué)交通學(xué)院博士研究生,E-mail:dongqin19881022@163.com。

    10.3969/j.issn.1007-7294.2017.09.007

    Article ID: 1007-7294(2017)09-1128-08

    Received date:2017-02-25

    Foundation item:Supported by the National Natural Science Foundation of China(Grant No.51479153);the Fundamental Research Funds for the Central Universities(Grant No.2016-YB-014)

    Biography:XU Geng(1988-),male,doctoral student of Wuhan University of Technology,E-mail:xugeng_1988@163.com;YAN Ren-jun(1962-),male,professor/tutor of Wuhan University of Technology,E-mail:renjun_yan@163.com.

    猜你喜歡
    武漢理工大學(xué)張口尖端
    猜字謎
    待客之道看張口
    集束化護(hù)理對鼻咽癌放療患者口腔黏膜炎及張口受限的影響
    等待
    牡丹(2020年23期)2020-12-30 14:01:49
    《武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版)》征稿簡則
    《武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版)》征稿簡則
    郭紹?。核枷肱鲎苍炀图舛巳瞬?/a>
    Lanterne-volant
    幾何形態(tài)和視覺感知的探討
    鏡頭看展
    好男人在线观看高清免费视频| 亚洲av中文字字幕乱码综合| 免费观看在线日韩| 日韩制服骚丝袜av| 男女视频在线观看网站免费| 夜夜夜夜夜久久久久| 亚洲人成网站高清观看| 老熟妇乱子伦视频在线观看| 日本五十路高清| 十八禁网站免费在线| 最后的刺客免费高清国语| 国产精品久久久久久久久免| 精品少妇黑人巨大在线播放 | 久久天躁狠狠躁夜夜2o2o| 欧美3d第一页| 熟妇人妻久久中文字幕3abv| 久久久午夜欧美精品| 精品久久国产蜜桃| 99在线视频只有这里精品首页| 精品人妻一区二区三区麻豆 | 欧美不卡视频在线免费观看| 久久精品91蜜桃| 久久精品久久久久久噜噜老黄 | 九色成人免费人妻av| 亚洲欧美清纯卡通| 又黄又爽又刺激的免费视频.| 成年版毛片免费区| 亚洲成人中文字幕在线播放| 成人午夜高清在线视频| 成熟少妇高潮喷水视频| 网址你懂的国产日韩在线| 一级a爱片免费观看的视频| 欧美性感艳星| 亚洲欧美精品综合久久99| 91狼人影院| 日产精品乱码卡一卡2卡三| 国产一区二区亚洲精品在线观看| 国产麻豆成人av免费视频| 亚洲天堂国产精品一区在线| 人人妻人人澡人人爽人人夜夜 | 欧美丝袜亚洲另类| 国产伦一二天堂av在线观看| 久久人人精品亚洲av| 在线观看一区二区三区| 亚洲精品国产成人久久av| 六月丁香七月| 少妇熟女欧美另类| 国产午夜精品论理片| 午夜福利在线在线| 免费大片18禁| 极品教师在线视频| 国语自产精品视频在线第100页| 欧美bdsm另类| 99riav亚洲国产免费| 亚洲国产精品国产精品| 久久精品91蜜桃| 在线免费观看的www视频| 亚洲高清免费不卡视频| 观看免费一级毛片| 国产一级毛片七仙女欲春2| 国产精品国产三级国产av玫瑰| 97热精品久久久久久| 直男gayav资源| 欧美不卡视频在线免费观看| 99热网站在线观看| 精品欧美国产一区二区三| 国产 一区 欧美 日韩| 亚洲专区国产一区二区| 久久人人爽人人爽人人片va| 少妇人妻精品综合一区二区 | 欧美不卡视频在线免费观看| 免费电影在线观看免费观看| 成人性生交大片免费视频hd| 在线播放无遮挡| 免费看a级黄色片| 欧美性猛交╳xxx乱大交人| 在线看三级毛片| 日韩在线高清观看一区二区三区| 日本色播在线视频| 欧美在线一区亚洲| 男女那种视频在线观看| 中文字幕av成人在线电影| 麻豆国产97在线/欧美| 麻豆国产av国片精品| 青春草视频在线免费观看| 成人av一区二区三区在线看| 少妇裸体淫交视频免费看高清| 最新在线观看一区二区三区| 看十八女毛片水多多多| 天堂√8在线中文| 简卡轻食公司| 亚洲人成网站在线观看播放| 在线天堂最新版资源| 3wmmmm亚洲av在线观看| 国产成年人精品一区二区| 久久人人爽人人爽人人片va| 免费人成视频x8x8入口观看| 一本一本综合久久| 啦啦啦啦在线视频资源| av黄色大香蕉| 精品久久久久久久人妻蜜臀av| 欧美不卡视频在线免费观看| 一区二区三区高清视频在线| 精品人妻视频免费看| 国产私拍福利视频在线观看| 男女边吃奶边做爰视频| 欧美成人a在线观看| 国产淫片久久久久久久久| 日本三级黄在线观看| 色av中文字幕| 蜜桃久久精品国产亚洲av| 丰满人妻一区二区三区视频av| 成人午夜高清在线视频| av女优亚洲男人天堂| 精品欧美国产一区二区三| 老女人水多毛片| 看免费成人av毛片| 97碰自拍视频| 久久人人爽人人爽人人片va| 一本久久中文字幕| 校园春色视频在线观看| 精品久久久久久久久久免费视频| 亚洲人成网站在线观看播放| 国产白丝娇喘喷水9色精品| 91久久精品电影网| 欧美日韩一区二区视频在线观看视频在线 | 国产综合懂色| 欧美日本视频| 国产女主播在线喷水免费视频网站 | 亚洲精品一区av在线观看| 日韩欧美免费精品| 真实男女啪啪啪动态图| 国产三级在线视频| 欧美激情在线99| 直男gayav资源| 日本-黄色视频高清免费观看| 亚洲av成人av| 桃色一区二区三区在线观看| 中文资源天堂在线| 日日撸夜夜添| 给我免费播放毛片高清在线观看| 嫩草影院入口| 最好的美女福利视频网| 中文字幕av成人在线电影| 12—13女人毛片做爰片一| 人人妻,人人澡人人爽秒播| 亚洲欧美成人综合另类久久久 | 人妻丰满熟妇av一区二区三区| 免费看光身美女| av在线蜜桃| 欧美bdsm另类| 亚洲精品国产成人久久av| 亚洲va在线va天堂va国产| 久久久国产成人精品二区| 精品国内亚洲2022精品成人| 国产精品久久久久久久电影| 男人舔女人下体高潮全视频| 超碰av人人做人人爽久久| 午夜福利成人在线免费观看| 亚洲第一区二区三区不卡| 国产一区二区激情短视频| 夜夜夜夜夜久久久久| 看免费成人av毛片| 精品久久久久久久久av| 午夜精品国产一区二区电影 | 91午夜精品亚洲一区二区三区| 免费看美女性在线毛片视频| 中文字幕人妻熟人妻熟丝袜美| 人妻夜夜爽99麻豆av| 最近视频中文字幕2019在线8| 国产aⅴ精品一区二区三区波| 伦精品一区二区三区| 亚洲欧美成人综合另类久久久 | 亚洲无线在线观看| 亚洲久久久久久中文字幕| 成年女人看的毛片在线观看| 91在线精品国自产拍蜜月| 国产在视频线在精品| 22中文网久久字幕| 18禁在线无遮挡免费观看视频 | 成人漫画全彩无遮挡| 成年av动漫网址| 不卡一级毛片| 欧美在线一区亚洲| 少妇的逼水好多| 国产午夜精品久久久久久一区二区三区 | 一级av片app| 欧美最新免费一区二区三区| 美女xxoo啪啪120秒动态图| 在线播放国产精品三级| 久久人人精品亚洲av| 亚洲精品久久国产高清桃花| 欧美日韩国产亚洲二区| 午夜视频国产福利| 久久亚洲精品不卡| 51国产日韩欧美| 国内精品一区二区在线观看| 深夜精品福利| 老司机午夜福利在线观看视频| 亚洲国产精品合色在线| 国产高潮美女av| 99精品在免费线老司机午夜| 国产精品乱码一区二三区的特点| 男人舔奶头视频| 高清日韩中文字幕在线| 亚洲七黄色美女视频| 干丝袜人妻中文字幕| 中文字幕av在线有码专区| 亚洲国产高清在线一区二区三| 久久这里只有精品中国| 嫩草影院新地址| 99热这里只有是精品在线观看| 亚洲欧美日韩高清在线视频| 一级黄色大片毛片| 日韩中字成人| 狠狠狠狠99中文字幕| 成年女人毛片免费观看观看9| 亚洲av第一区精品v没综合| 久久久久九九精品影院| 亚洲美女搞黄在线观看 | 十八禁网站免费在线| 麻豆成人午夜福利视频| 亚洲人成网站在线观看播放| 午夜福利在线在线| 成人漫画全彩无遮挡| 成人鲁丝片一二三区免费| 国产精品国产高清国产av| 在线观看一区二区三区| 超碰av人人做人人爽久久| 精品午夜福利视频在线观看一区| 欧美最新免费一区二区三区| 亚洲自偷自拍三级| 99久久精品国产国产毛片| 国产欧美日韩精品一区二区| 又粗又爽又猛毛片免费看| 久久人人爽人人爽人人片va| 国产人妻一区二区三区在| 亚洲成av人片在线播放无| 亚洲成人久久性| 黑人高潮一二区| 久久九九热精品免费| 亚洲欧美日韩高清在线视频| 我的老师免费观看完整版| 亚洲熟妇熟女久久| 成人性生交大片免费视频hd| 99热精品在线国产| 国产高清视频在线播放一区| 久久久久久大精品| 国产美女午夜福利| 日韩在线高清观看一区二区三区| ponron亚洲| 一级毛片电影观看 | 在线观看66精品国产| 日韩中字成人| 精品久久久久久久末码| 尤物成人国产欧美一区二区三区| 中文亚洲av片在线观看爽| 五月玫瑰六月丁香| 在现免费观看毛片| 精品久久久噜噜| 99久久久亚洲精品蜜臀av| 亚洲av成人av| 在线免费观看不下载黄p国产| 亚洲,欧美,日韩| 精品国产三级普通话版| av在线播放精品| 亚洲三级黄色毛片| 国产高清激情床上av| 中文字幕精品亚洲无线码一区| 亚洲专区国产一区二区| 女人十人毛片免费观看3o分钟| 成人欧美大片| 亚洲精品色激情综合| 如何舔出高潮| 久久人人精品亚洲av| 好男人在线观看高清免费视频| 成年版毛片免费区| 日本a在线网址| 麻豆一二三区av精品| 久久久久久伊人网av| 麻豆乱淫一区二区| 日本免费一区二区三区高清不卡| 国产淫片久久久久久久久| 亚洲精品一卡2卡三卡4卡5卡| 最近视频中文字幕2019在线8| 精品久久久久久久久久免费视频| 免费av毛片视频| 最新在线观看一区二区三区| av天堂在线播放| 亚洲av免费高清在线观看| 国产白丝娇喘喷水9色精品| 激情 狠狠 欧美| 成人美女网站在线观看视频| 国产精品免费一区二区三区在线| 蜜桃久久精品国产亚洲av| 免费看a级黄色片| 国产片特级美女逼逼视频| 一级黄色大片毛片| 国产精品久久久久久av不卡| 黄色配什么色好看| 天美传媒精品一区二区| 91狼人影院| 有码 亚洲区| 99久久成人亚洲精品观看| 搡老岳熟女国产| 秋霞在线观看毛片| 九九爱精品视频在线观看| 嫩草影视91久久| 有码 亚洲区| 老司机福利观看| 国产在视频线在精品| 欧美三级亚洲精品| 少妇被粗大猛烈的视频| 简卡轻食公司| 欧美三级亚洲精品| 免费观看人在逋| 免费人成在线观看视频色| 国产一区二区在线观看日韩| 干丝袜人妻中文字幕| 99久久久亚洲精品蜜臀av| av视频在线观看入口| a级一级毛片免费在线观看| 国产精品av视频在线免费观看| 午夜激情欧美在线| 成年女人看的毛片在线观看| 最近手机中文字幕大全| 久久久久久久久久成人| 中文字幕熟女人妻在线| 国产精品野战在线观看| 美女黄网站色视频| 晚上一个人看的免费电影| 亚洲av中文av极速乱| 久久久久国内视频| 国产精品一区二区三区四区免费观看 | 国产精品爽爽va在线观看网站| 男女那种视频在线观看| 精品国产三级普通话版| 成人亚洲精品av一区二区| 国内少妇人妻偷人精品xxx网站| 欧美成人一区二区免费高清观看| 国产白丝娇喘喷水9色精品| 国产精品精品国产色婷婷| 精品国内亚洲2022精品成人| 国产蜜桃级精品一区二区三区| 日本黄色片子视频| 亚洲美女黄片视频| a级毛色黄片| 亚洲中文字幕一区二区三区有码在线看| 99久久无色码亚洲精品果冻| 人妻制服诱惑在线中文字幕| 综合色丁香网| 久久久久免费精品人妻一区二区| 亚洲熟妇熟女久久| 啦啦啦观看免费观看视频高清| 色综合亚洲欧美另类图片| 成人亚洲精品av一区二区| 亚洲乱码一区二区免费版| 国产黄色视频一区二区在线观看 | 免费看av在线观看网站| 日日啪夜夜撸| 99热6这里只有精品| 我的老师免费观看完整版| 亚洲精品国产av成人精品 | 午夜精品在线福利| 全区人妻精品视频| 国产亚洲av嫩草精品影院| 精品不卡国产一区二区三区| 一级毛片我不卡| 变态另类成人亚洲欧美熟女| 亚洲高清免费不卡视频| 国产黄片美女视频| 亚洲精品久久国产高清桃花| 熟女电影av网| 毛片女人毛片| 1000部很黄的大片| 亚洲国产色片| 日韩精品青青久久久久久| 最近2019中文字幕mv第一页| 国产精品久久久久久亚洲av鲁大| 在线看三级毛片| 波多野结衣高清无吗| 亚洲成a人片在线一区二区| 成人特级黄色片久久久久久久| 欧美成人一区二区免费高清观看| 欧美日韩一区二区视频在线观看视频在线 | 97在线视频观看| 欧美最黄视频在线播放免费| 久久久久久国产a免费观看| a级一级毛片免费在线观看| 久久精品国产自在天天线| 欧美成人免费av一区二区三区| 亚洲成人精品中文字幕电影| 特大巨黑吊av在线直播| 午夜a级毛片| 亚洲不卡免费看| 草草在线视频免费看| 亚洲久久久久久中文字幕| 亚洲乱码一区二区免费版| 99久久无色码亚洲精品果冻| 成熟少妇高潮喷水视频| 久久久精品大字幕| 国产 一区 欧美 日韩| 午夜福利在线观看免费完整高清在 | 高清午夜精品一区二区三区 | 亚洲熟妇中文字幕五十中出| 99久久精品国产国产毛片| 中文字幕av在线有码专区| 一区福利在线观看| 亚洲欧美中文字幕日韩二区| 国产免费男女视频| 九九久久精品国产亚洲av麻豆| 一区二区三区免费毛片| 欧美xxxx黑人xx丫x性爽| 国产高清三级在线| 色哟哟哟哟哟哟| 床上黄色一级片| 亚洲欧美清纯卡通| 久久久久久久亚洲中文字幕| 老师上课跳d突然被开到最大视频| 日韩大尺度精品在线看网址| 日韩国内少妇激情av| 国产乱人视频| 亚洲熟妇中文字幕五十中出| 给我免费播放毛片高清在线观看| 蜜桃久久精品国产亚洲av| 欧美绝顶高潮抽搐喷水| 久久国产乱子免费精品| 久久午夜亚洲精品久久| 观看美女的网站| 啦啦啦韩国在线观看视频| 国产精品久久久久久精品电影| 成人二区视频| 日韩成人伦理影院| 国产精品一区二区三区四区久久| 日本在线视频免费播放| 日产精品乱码卡一卡2卡三| 精品欧美国产一区二区三| av天堂中文字幕网| 成人午夜高清在线视频| 国产精品国产高清国产av| 国产国拍精品亚洲av在线观看| 国内久久婷婷六月综合欲色啪| 久久精品国产清高在天天线| 晚上一个人看的免费电影| 日本五十路高清| 美女高潮的动态| 天天躁夜夜躁狠狠久久av| 一本一本综合久久| 全区人妻精品视频| 国产一区二区在线av高清观看| 国产伦精品一区二区三区四那| 国产精品一及| 大又大粗又爽又黄少妇毛片口| 免费电影在线观看免费观看| 亚洲精品乱码久久久v下载方式| 菩萨蛮人人尽说江南好唐韦庄 | 少妇高潮的动态图| 午夜老司机福利剧场| 天天一区二区日本电影三级| 国国产精品蜜臀av免费| 亚洲,欧美,日韩| 噜噜噜噜噜久久久久久91| 色5月婷婷丁香| 国产成年人精品一区二区| 久久99热6这里只有精品| 深夜a级毛片| 99热这里只有是精品在线观看| 无遮挡黄片免费观看| 久久人人爽人人片av| 国产男靠女视频免费网站| 国产美女午夜福利| 日韩一本色道免费dvd| 日韩 亚洲 欧美在线| 亚洲av五月六月丁香网| 女人十人毛片免费观看3o分钟| 伊人久久精品亚洲午夜| 美女内射精品一级片tv| 免费无遮挡裸体视频| 春色校园在线视频观看| 欧美三级亚洲精品| 韩国av在线不卡| 久久精品人妻少妇| 久久韩国三级中文字幕| 一个人看的www免费观看视频| 免费看美女性在线毛片视频| 国产精品1区2区在线观看.| 亚洲高清免费不卡视频| 91久久精品电影网| 亚洲国产色片| 精品不卡国产一区二区三区| 欧美最黄视频在线播放免费| 欧美性猛交黑人性爽| 亚洲美女黄片视频| 成人三级黄色视频| 国产一区二区在线av高清观看| av视频在线观看入口| 国产精品伦人一区二区| 可以在线观看的亚洲视频| 观看免费一级毛片| 国产单亲对白刺激| 国产熟女欧美一区二区| 91av网一区二区| 黄色视频,在线免费观看| 亚洲第一电影网av| 三级经典国产精品| 精品国产三级普通话版| 亚洲综合色惰| 精品欧美国产一区二区三| av专区在线播放| 国产精品久久久久久亚洲av鲁大| 欧美bdsm另类| 乱系列少妇在线播放| 青春草视频在线免费观看| 欧美日本亚洲视频在线播放| 亚洲精品粉嫩美女一区| 国产亚洲欧美98| 国产精品一区二区三区四区免费观看 | av在线天堂中文字幕| 亚洲欧美日韩高清专用| 91在线观看av| 一进一出好大好爽视频| 在线免费十八禁| 波多野结衣巨乳人妻| 国产精品,欧美在线| 最近在线观看免费完整版| 波多野结衣巨乳人妻| 精品乱码久久久久久99久播| 亚洲四区av| 免费观看精品视频网站| 国产三级中文精品| 日本a在线网址| 日日摸夜夜添夜夜添小说| 自拍偷自拍亚洲精品老妇| 69人妻影院| 成熟少妇高潮喷水视频| 一个人看的www免费观看视频| 草草在线视频免费看| 日本欧美国产在线视频| 内射极品少妇av片p| 欧美精品国产亚洲| 非洲黑人性xxxx精品又粗又长| 精品少妇黑人巨大在线播放 | 熟女电影av网| 国产成人福利小说| 1024手机看黄色片| 亚洲国产精品合色在线| 亚洲精品在线观看二区| 日韩精品青青久久久久久| 免费人成视频x8x8入口观看| 国产麻豆成人av免费视频| 欧美日本视频| .国产精品久久| 午夜福利18| 亚洲av熟女| 国产精品久久久久久久久免| 99久久九九国产精品国产免费| 亚洲综合色惰| 午夜福利视频1000在线观看| 联通29元200g的流量卡| 两个人的视频大全免费| 久久精品综合一区二区三区| 久久人人爽人人片av| 亚洲性久久影院| 97人妻精品一区二区三区麻豆| 一个人免费在线观看电影| 在线看三级毛片| 亚洲色图av天堂| 国产精品国产三级国产av玫瑰| 精品人妻熟女av久视频| 又爽又黄a免费视频| 婷婷精品国产亚洲av| 国产成人91sexporn| 精品一区二区三区视频在线| 国产激情偷乱视频一区二区| 一级a爱片免费观看的视频| 国模一区二区三区四区视频| 日韩大尺度精品在线看网址| 午夜福利18| 深爱激情五月婷婷| 精品久久久噜噜| 免费看a级黄色片| 性插视频无遮挡在线免费观看| 又爽又黄a免费视频| 亚洲精品日韩在线中文字幕 | 国产精品一二三区在线看| 久久久久免费精品人妻一区二区| 一级a爱片免费观看的视频| 欧美成人a在线观看| 亚洲国产精品国产精品| 亚洲精品日韩在线中文字幕 | 无遮挡黄片免费观看| 狠狠狠狠99中文字幕| 淫妇啪啪啪对白视频| 男人舔女人下体高潮全视频| 激情 狠狠 欧美| 赤兔流量卡办理| 久久精品国产亚洲av香蕉五月| 久久精品国产鲁丝片午夜精品| 亚洲国产高清在线一区二区三| 91久久精品国产一区二区三区| 别揉我奶头 嗯啊视频| 亚洲色图av天堂| 卡戴珊不雅视频在线播放| 免费一级毛片在线播放高清视频| 此物有八面人人有两片| 亚洲五月天丁香| 两性午夜刺激爽爽歪歪视频在线观看| 日韩制服骚丝袜av| 99riav亚洲国产免费| 搡老熟女国产l中国老女人| 日本免费a在线| 一卡2卡三卡四卡精品乱码亚洲| 大型黄色视频在线免费观看| 亚洲精品影视一区二区三区av| 午夜久久久久精精品|