• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fatigue Crack Growth Calculation of a Surface Crack in a Ship Angular Joint

    2017-10-11 05:33:22KONGXiaobingHUANGXiaopingZHAOPengyuanZHANGDaokun
    船舶力學(xué) 2017年9期
    關(guān)鍵詞:折角上海交通大學(xué)波浪

    KONG Xiao-bing,HUANG Xiao-ping,ZHAO Peng-yuan,ZHANG Dao-kun

    (1.Collaborative Innovation Center for Advanced Ship and Deep Sea Exploration,Shanghai Jiao Tong University,Shanghai 200240,China;2.Technology Development&Research Center,China Classification Society,Beijing 100007,China)

    Fatigue Crack Growth Calculation of a Surface Crack in a Ship Angular Joint

    KONG Xiao-bing1,HUANG Xiao-ping1,ZHAO Peng-yuan1,ZHANG Dao-kun2

    (1.Collaborative Innovation Center for Advanced Ship and Deep Sea Exploration,Shanghai Jiao Tong University,Shanghai 200240,China;2.Technology Development&Research Center,China Classification Society,Beijing 100007,China)

    Abstract:An angular joint in a container is taken as the research object.Hydrodynamic response and structural hot spot stress response of a container were forecasted by using the finite element software WALCS and PATRAN respectively.In order to avoid using 3D solid element in the hot spot area in PATRAN finite element model for calculating the stress intensity factor(SIF)of a surface crack,a SIF calculation method for surface cracks in ship structures under wave loads was proposed.The accuracy of the proposed method was validated by comparing the calculated results with those of widely accepted empirical formulas.Then,the method was applied to an angular joint in the bottom at the midship.SIFs of surface cracks with different sizes in the joint under the wave induced pressure were calculated and dimensionless empirical formulas were summarized.The fatigue load spectrums were generated by using a method based on spectrum analysis.Fatigue crack growth was calculated by using the unique crack growth rate curve model.Calculation results showed that the discussed hot spot did not meet the requirement of design life and further modification will be needed.

    Key words:wave load;angular type joint;surface crack;stress intensity factor;unique curve model

    0 Introduction

    Ships and marine structures suffer nearly one hundred million cycles random wave load during their service life.Crack defects,mostly in the form of surface cracks can be traced in the welded toes of key load carrying structures,which is the inevitable result of the structural fatigue damage[1-3].Large-scalization of ships and the wide use of the higher tensile steels in ship hulls make the fatigue problem imminent[4].It is of great significance to conduct fatigue crack propagation analysis on ships and marine structures which containing cracks to ensure the personal safety and property safety.

    Stress intensity factor(SIF)is one of the important parameters in evaluating the crackedcomponent failure.To calculate the SIFs of surface cracks in details under real loading conditions is the basis of forecasting the structural fatigue life accurately.At present,cracks in ship structure details are commonly assumed as semi-elliptical surface cracks.Newman-Raju’s formulas for calculating SIFs of surface cracks in a plate under the tensile and bending loads have been widely recognized[5].On the basis of the formula,Bowness[6]put forward formulas for calculating the toe magnification factors for cracks in the weld toe of T-butt joints and they were adopted by BS7910[7].However,the above formulas for calculating the SIFs are only suitable for relatively simple structures under the simple load conditions.It is clearly not appropriate to apply them to joints in the real ships and marine structures.This is because the actual structures are under wave loads and the stress distribution in most typical fatigue assessment details are very complicated.

    Aiming to solve this problem,Yan et al[8]has proposed a SIF calculation method for cracks in ship structures under wave loads.In that method,the hots pot areas are required to be modeled using 3D solid element in PATRAN,and then a macro-program patran2ansys.mac has been written to achieve the transformation boundary conditions from PATRAN whole model to the ANSYS submodel containing surface cracks.But it is extremely complex to model 3D solid element in the huge PATRAN ship model especially in the multiple plates intersecting joint area.Because of this shortcomings of the above method,this paper proposed a new method need not to model 3D solid element in PATRAN,and its calculation accuracy was validated by comparing the calculated results with those of widely accepted empirical formulas.

    In this paper,the ship hydrodynamic response and hot spot stress response were performed by using the finite element software WALCS and PATRAN respectively.Then the above SIF calculation method was applied to calculate SIFs of surfaces cracks in an angular joint in the middle bottom at the midship.SIFs of surface cracks with different sizes in the joint under the wave induced loads were calculated and dimensionless empirical formulas were summarized.The fatigue load spectrums were generated by using a method based on spectrum analysis.Combined with the unique curve model,the fatigue crack propagation of a surface crack in the detail was calculated.

    1 Hot spot stress response analysis

    1.1 Hydrodynamic response

    Ships and marine structures serve in ocean environment,and the main external load is wave load.The precision of the estimated structural response is depending on the precision of the calculated wave loads.Hydrodynamic software WALCS[9]can forecast the wave load of the ship and marine structures,which is based on three dimensional frequency domain linear hydrodynamics principle.It calculates three-dimensional hydrodynamic coefficient of radiation by combining the surface element method and the source distribution method.The wet surface model of the target ship in WALCS is shown in Fig.1 and the hydrodynamic analysis parame-ters are shown in Tab.1.

    Tab.1 Hydrodynamic analysis parameters

    Fig.1 Wet surface model of a ship

    1.2 Hot spot stress response

    The finite element model of the whole ship is modeled in PATRAN,including the whole hull structure,cargo tank and ship bow,etc.On the basis of the whole ship structure model,the lightweight and deadweight are automatically adjusted to the corresponding node of the structure model,making sure that the quality model is corresponding with the actual weight location in actual ship.The calculated wave pressures are transferred to the surface of the hull structure model,and the inertial release technology is used to make the hull structure in a state of dynamic balance.

    Fig.2 Hot spot stress interpolation calculation

    Angular joints widely exist in ship structures and are prone to fatigue failure,which are the key spots for fatigue assessments.In guidelines for fatigue strength of ship structure of CCS[10],hot spot stress method was adopted to assess the fatigue strength,which has clearly stated the requirement for the element size and determinnation of the hot spot stress.Because the shape of the weld toe is not considered in the finite element model,extrapolation method is used to get the stress of the weld toe.The common practice is to use stress at the locations away from the weld toe t/2 and 3t/2 for linear interpolation,as shown in Fig.2.The hot spot stress at the weld toe can be extrapolated using the following formula:

    where σhis hot spot stress, σt/2and σ3t/2are element stresses at a distance t/2 and 3t/2.

    The refine meshed model of an angular joint in the midship bottom is shown in Fig.3,thetransfer function of hot spot stress of the joint is shown in Fig.4.

    Fig.3 Bottom tank angle refine finite element model

    Fig.4 Transfer function of bottom tank angular

    2 Stress intensity factor calculation method validation

    2.1 Shell-to-solid submodel technology

    Ship structure strength analysis is generally conducted based on finite element model using the software PATRAN which is widely used in ship building industry.Shell element,beam element and bar element are always used,but 3D solid element is always avoided to be used.Three-dimensional surface cracks in the structure need to be modeled using 3D solid element and the singular element is needed in the crack tip area where the peak stress exists.There is no singular element in PATRAN,but it is provided in ANSYS.The need of different types element makes the problem difficult,because the node of shell element has three translational degrees and three rotational degrees,but the node of the 3D solid element has three translational degrees only.

    Fig.5 3D solid submodel superimposed on coarse shell model

    Fig.6 Node rotation(a)before cbdof command(b)after cbdof command

    A special submodel technology called shell-to-soild submodel is provided in ANSYS,which can transfer the loads from shell element to the solid element seamlessly.It means the coarse model is shell and the submodel is solid model.A 3D solid submodel superimposed on coarse shell model is shown in Fig.5.In a structural analysis,only the translational displace-ments are calculated for the nodes on the cut-boundary,but their values are based on the translations and rotations of the projected point.Also,the node is rotated such that the nodal UY direction is always perpendicular to shell plane,as shown in Fig.6.A UY constraint is calculated only for nodes that within 10 percent of the average shell element thickness from the shell plane,preventing over_constraint of the submodel in the transverse direction.

    Therefore,we can first transfer the calculated results(translation and rotation degree)into the shell model of ANSYS,then the shell-to-solid submodel technology is used to transfer the calculated results from shell elment to solid model containing semi-elliptical surface crack in ANSYS.

    2.2 Validaton with plate surface crack

    In order to prove the accuracy of the proposed method above,SIFs of semi-elliptical surface crack with different size in a plate are calculated,and the results are compared with those of Newman-Raju formulas which are widely accepted.

    A flat plate measures 5 m×2 m×20 mm and there exists a semi-elliptical surface crack in the middle section of the plate.It is subjected to uniformly distributed tensile stress 90(MPa)and bending stress 7(MPa)respectively.The coarse model of the plate modeled in PATRAN is shown in Fig.7.The elements in the crack location areas are refined and the refined plate model is shown in Fig.8.

    Fig.7 Coarse model of the plate(PATRAN)

    Fig.8 Refined plate model(PATRAN)

    Then,a shell model measuring 500 mm×400 mm×20 mm is modeled using four node element in ANSYS.A 3D solid plate model measuring 400 mm×200 mm×20 mm containing a semi-elliptical surface crack is modeled using element solid 95.The 3D solid model superimposed on coarse shell model in ANSYS is shown in Fig.9 and the crack tip element can also be seen.The boundary of the shell model is loaded using the information from PATRAN by the improved macroprogram patran2ansys.mac which can consider both the translation and rotation degree.Shell-to-solid submodel technology can transform the calculated results from shell model to solid model.

    SIFs of surface cracks with different sizes in the middle section of a plate are calculated and compared with those of the widely accepted Newman-Raju formulas which are shown in Figs.10-13.From the figures above,we can find that the calculated results by the above method are in good agreement with those of the empirical formulas under both tensile stress and bending stress.

    Fig.9 3-D solid submodel superimposed on coarse shell model in ANSYS

    Fig.10 Comparison of crack surface under tensile

    Fig.11 Comparison of crack surface under tensile

    Fig.12 Comparison of crack surface under bending

    Fig.13 Comparison of crack deepest point under bending

    3 Fatigue load generation based on spectral analysis

    3.1 Equivalent stress intensity factor

    When calculating the hot spot stress response amplitude of the structure,the method of‘real part and imaginary part’ is always used in the project.The stress response △σrealandcorresponding to 0°and 90°phase angle respectively are calculated and the equivalent stress response can be obtained by using the following formula:

    where△σrealis the dynamic stress response value caused by unit-height wave at the phase angle 0°,△σimageis the dynamic stress response value caused by unit-height wave at the phase angle 90°.

    Depending on the load types,a crack can be extended into three different modes in Fig.14.They are listed as follows:ModeⅠis the opening(tensile)mode where the crack surfaces move directly apart;ModeⅡis the sliding(in-plane shearing)mode where the crack surfaces slide over one another in the direction perpendicular to the leading edge of the crack;ModeⅢis the tearing(anti-plane shear)mode where the crack surfaces move relative to another and parallel to the leading edge of the crack.

    Fig.14 Three basic modes of farcture

    It is dangerous to considerⅠcrack only,so equivalent SIF is used here.The specific formula is as follows:

    where KⅠ,real,KⅠimage,KⅡ,real,KⅡimage,KⅢ,realand KⅢ,imagerespectively represent real part and image part SIF of the three types crack under wave pressure;μ is the material elastic modulus.

    3.2 Norminal stress

    It is well known that nominal stress is widely used in fracture mechanics,but methods on how to get it from finite element model are still not clearly defined.But there are specific rules and guidelines of the classification society on getting the hot spot stress,so stress concentration coefficient is used to determine norminal stress in this paper.The formula is shown as follows:

    where σnrepresents norminal stress,σhrepresents hot spot stress,kgrepresents stress concentration factor(stress concentration factor of the bottom angular joint is shown in Tab.2)

    Tab.2 Stress concentration factor of the bottom angular joint

    3.3 SIFs calculation of cracks in ship middle angular joints

    In ANSYS,the finite element of an angular joint in the bottom at the midship is modeled,as shown in Fig.15.The boundary of the shell model is loaded using the information getting from PATRAN with the improved macro-program patran2ansys.mac.Shell-to-solid submodel is used to transfer the result from shell model to solid model containing a semi-ellitical surface crack in ANSYS.

    Fig.15 3D solid submodel with crack superimposed on coarse shell model in ANSYS

    SIFs of a surface crack with different size(a/c=0.2,0.4,0.6,0.8)at the weld toe of an angular joint in the bottom at the midship are calculated.The SIFs of the surface point of crack are as shown in Fig.16,and the SIFs of the deepest point of crack as shown in Fig.17(wave direction 0,wave frequency 0.5).

    3.4 Empirical formulas of ship middle angular joints

    The crack tip stress intensity factor generally can be represented as:

    Fig.16 Stress intensity factor of crack surface point

    Fig.17 Stress intensity factor of crack deepest point

    where σnrepresents norminal stress,a represents crack depth,is a dimensionless parameter in terms of the crack geometry and type of load.

    SIFs of surface cracks with different sizes in the weld toe of an angular joint are calculated in different wave direction and wave frequencies.The hot spot stress of the angular joint is calculated according to the guidelines of the classification society above.The dimesionless parameter can be backstepped by using the follow formula:

    Dimensionless parameters of the surface point of the crack are shown in Fig.18 and the dimensionless parameters of the deepest point surface are shown in Fig.19.

    Fig.19 of the crack deepest point

    Through the above calculation,the empirical formulas for calculating SIFs of surface cracks with different sizes in an angular joint at the bottom in the midship are summarized as follows using MATLAB:

    where σhis the hot spot stress amplitude,a is crack depth,c is crack length,T is the thickness of the inner bottom,kgis the stress concentration factor(stress concentration factor of the bottom angular joint is shown in Tab.2).

    4 Fatigue life prediction of a bottom tank angle

    4.1 Crack propagation model

    The crack propagation rate is the core content of fatigue crack propagation analysis,many achievements have been made in this aspect.The Paris law[11]is widely studied and used in linear elastic fracture mechanics.Then,the modified formula of the fatigue crack was proposed by Forman[12],so as to consider the effect of mean stress.The above two formulas are widely used in engineering due to its simplicity.

    Many subsequent studies found residual stress,stress ratio and load sequence also had influence on the fatigue crack propagation rate.As a result,modified formulas and new ones were proposed.Described so far,the formulas of crack propagation rate are not less than one hundred,and a suitable model is needed which has calculating accuracy and can be easily applied to engineering practice.The unique crack growth rate curve method,which is based on the equivalent stress intensity factor range as the driving force under constant amplitude external loading,has been proposed by Huang[13-14].The model has many advantages.On one hand,it can consider the effect of R-ratio including residual stress and loading sequence,on the other hand,it can use constants C and m in Paris law which has been frequently tested for different material.Its basic expression is:

    where a is the crack length;N is the number of applied cycles;C,m are the Paris parameters;△Keq0,△Kth0,respectively are the equivalent SIF range and threshold of SIF range corresponding to the stress ratio R=0;MRis the correction factor for stress ratio; β and β1depend on the material and the environment.Kresis the SIF caused by residual stress;MPis the correction factor for load sequence and can be calculated by:

    where△Kuis the SIF range caused by underload follows an overload cycle;are the minimum SIF ranges of the current cycle and the prior cycle;aOLis the crack size when overload occurs;ryis the size of plastic zone at crack tip;rOLis the size of plastic zone at crack tip when overload occurs;r△is the increment of plastic zone size at crack tip caused by underload towards an overload;α is the plastic zone size factor;n is shaping exponent of plastic zone effect.

    4.2 Generation of the fatigue load spectrum

    To predict the fatigue life of structure accurately,fatigue load spectrums need to be as real as possible.The alternating stresses in ship and marine structures are wave-induced stresses.Huang[15]proposed a method for generating fatigue load spectrums based on spectrum analysis.The method is based on the real sea condition and loading condition,and it can consider the combination of different wave direction and frequency,having higher accuracy.It is used to generate fatigue load spectrums in this paper.

    Double parameters P-M wave spectrum recommended by ISSC is used,the P-M spectrum expression is as follows:

    where Hsis the wave height and Tzis the average cross zero cycle.

    Spectral analysis method is based on the theory of linear system.The wave uses stationary Gaussian random process,and the alternating stress of the structure is also a stationary Gaussian random process.So the alternating stress of the structure can be expressed as:

    In the evaluation of the ship response due to external wave-induced pressures,the effect of wave diffraction and radiation is taken into consideration.

    The long-term state of ocean waves is composed of many short-term sequence sea conditions.Every sea condition is characterized by wave characteristic parameters and the frequency of sea conditions.In practical applications,alternating stress process is considered as a narrow band stationary stochastic process in a certain sea state and wave direction.According to the theory of stochastic process,the peak stress obeys Rayleigh distribution,and the probability density function is

    The transfer function of the angular joint in the middle bottom of the ship is shown in Fig.4.Global wave scatter diagram is used.The probability density of the fatigue load spectrums is shown in Fig.20 and a random load sequence diagram(fragment)is shown in Fig.21.

    Fig.20 Probability density of the fatigue load spectrum

    Fig.21 Random load sequence diagram(fragment)

    4.3 The fatigue life prediction

    In crack growth prediction,the unique curve model was applied and the Paris constants in this model were referred to the recommendation of International Institude of Welding(IIW)[16],namelyWeld radius is 10 mm and weld angle is 45°.

    The initial depth of the surface crack was 0.2 mm,and the initial length was 2 mm.The structure was failure when the surface crack penetrates the thickness of the target plate.SIFs of a surface crack with different sizes of a angular joint in the bottom at the midship were calculated by the empirical formulas summarized above and the fatigue spectrums were generated by the method mentioned above.Fatigue crack growth calculation was conducted usingcycle-by-cycle method using MATLAB program and the calculated crack growth curves are shown in Fig.22.We can know the fatigue life of the joint is only 7 years.

    Fig.22 Crack growth curve

    5 Conclusions

    The paper focused on the fatigue strength assessment of ship angular joint which widely exists in ship structures based on the finite element numerical analysis.The main conclusions are as follows:

    (1)A SIF calculation method for surface cracks in ship structures under wave loads has been proposed which avoids using 3D element in the hot spot area in PATRAN finite element model for calculating the SIFs of a surface crack with different sizes.

    (2)Dimensionless Empirical formulas for calculating SIFs of surface cracks in angular joint in the midship bottom of a container under wave-induced pressure are proposed.

    (3)The results of fatigue life prediction for angular joint in the midship bottom based on crack propagation showed that the fatigue strength did not meet the design requirement.To modify the structure size of the details is needed.

    Acknowledgements

    This work was financially supported by the National Science Foundation of China(Grant No.51279102)and project‘Study on the fatigue strength of Thick High Tensile Steel plate’financially supported by China Classification Society.The support is gratefully acknowledged.

    [1]Huang X,Jia G,Cui W,et al.Unique crack growth rate curve model for fatigue life prediction of marine steel structure[J].Journal of Ship Mechanics,2011,15(1):118-125.(in Chinese)

    [2]Fricke W,Lilienfeld-Toal A V,Paetzold H.Fatigue strength investigations of welded details of stiffened plate structures in steel ships[J].International Journal of Fatigue,2012,34(1):17-26.

    [3]Fricke W,Paetzold H.Full-scale fatigue tests of ship structures to validate the S-N approaches for fatigue strength assessment[J].Marine Structures,2010,23(1):115-130.

    [4]Mao W,Li Z,Ogeman V,et al.A regression and beam theory based approach for fatigue assessment of containership structures including bending and torsion contributions[J].Marine Structures,2015,41(1):244-266.

    [5]Newman J C,Raju I S.Analysis of surface cracks in a finite plate under tension or bending loads[R].NASA TP-1579,1979.

    [6]Bowness D,Lee M M K.Prediction of weld toe magnification factors for semi-elliptical cracks in T-butt joints[J].International Journal of Fatigue,2000,22(5):369-387.

    [7]BS7910.Guide to methods for assessing the acceptability of flaws in metallic structures[M].British Standards Institution,2005.

    [8]Yan X,Huang X,Cui W.Prediction of fatigue crack growth in a ship detail under wave-induced loading[J].Ocean Engineering,2016,113:246-254.

    [9]Tang S,Zhang H,Wu J,et al.Empirical formula for short-term forecast of bulk carriers and oil tanks’vertical wave loads[J].Ocean Engineering,2014,32(3):65-71.(in Chinese)

    [10]CCS.Guidelines for fatigue strength assessment of offshore engineering structures[M].China Classification Society,2014.

    [11]Paris P C,Gomez M,Anderson W.A rational analytic theory of fatigue[J].Trend Engng,1961,13:9-14.

    [12]Forman R G,Kearney V E,Engle R M.Numerical analysis of crack propagation in cyclic-loaded structure[J].Sen-ito Kogyo,1993,49(3):459-464.

    [13]Huang X,Torgeir M.Improved modeling of the effect of R-ratio on crack growth rate[J].International Journal of Fatigue,2007,29(4):591-602.

    [14]Huang X,Moan T,Cui W.An engineering model of fatigue crack growth under variable amplitude loading[J].International Journal of Fatigue,2008,30(1):2-10.

    [15]Yan X,Huang X,Cui W.An engineering method to predict fatigue crack propagation life for marine structures[J].Journal of Ship Mechanics,2016,20(3):323-334.

    [16]IIW.Recommendations for fatigue design of welded joints and components[M].International Institute of Welding,2004.

    船舶折角型節(jié)點(diǎn)的疲勞裂紋擴(kuò)展計(jì)算

    孔小兵1,黃小平1,趙鵬遠(yuǎn)1,張道坤2
    (1.上海交通大學(xué) 高新船舶與深海開發(fā)裝備協(xié)同創(chuàng)新中心,上海 200240;2.中國船級社研發(fā)中心,北京 100007)

    文章以船舶折角型節(jié)點(diǎn)為研究對象,運(yùn)用有限元軟件WALCS和PATRAN分別預(yù)報(bào)某船的水動力響應(yīng)和結(jié)構(gòu)熱點(diǎn)應(yīng)力響應(yīng)。為避免計(jì)算表面裂紋應(yīng)力強(qiáng)度因子時(shí)需要在PATRAN有限元模型中疲勞熱點(diǎn)區(qū)域采用體單元建模,文中提出了一種計(jì)算波浪載荷下船海結(jié)構(gòu)物三維表面裂紋應(yīng)力強(qiáng)度因子而無需在PATRAN中建立體模型的方法,并通過與廣泛認(rèn)可的經(jīng)驗(yàn)公式對比驗(yàn)證其精度。將此方法應(yīng)用于該船船舯底邊艙折角處表面裂紋應(yīng)力強(qiáng)度因子計(jì)算,計(jì)算并總結(jié)出波浪載荷下該類節(jié)點(diǎn)處表面裂紋應(yīng)力強(qiáng)度因子的無量綱計(jì)算經(jīng)驗(yàn)公式。應(yīng)用一種基于譜分析構(gòu)建結(jié)構(gòu)疲勞載荷譜的方法,結(jié)合單一曲線模型對該節(jié)點(diǎn)進(jìn)行裂紋擴(kuò)展計(jì)算。計(jì)算結(jié)果表明:該船船舯底邊艙折角疲勞壽命不滿足設(shè)計(jì)要求,建議對節(jié)點(diǎn)進(jìn)行改進(jìn)。

    波浪載荷;折角型節(jié)點(diǎn);表面裂紋;應(yīng)力強(qiáng)度因子;單一曲線模型

    U661.4

    A

    國家自然科學(xué)基金資助項(xiàng)目(51279102)和中國船級社高強(qiáng)度鋼超厚板疲勞強(qiáng)度研究項(xiàng)目

    孔小兵(1991-),男,上海交通大學(xué)碩士研究生;黃小平(1963-),男,通訊作者,上海交通大學(xué)副教授,E-mail:xphuang@sjtu.edu.cn;趙鵬遠(yuǎn)(1992-),男,上海交通大學(xué)碩士研究生;張道坤(1978-),男,工程師。

    10.3969/j.issn.1007-7294.2017.09.006

    Article ID: 1007-7294(2017)09-1114-14

    Received date:2017-05-19

    Foundation item:Supported by National Natural Science Foundation of China(Project No.51279102)

    Biography:KONG Xiao-bing(1991-),male,master student of Shanghai Jiao Tong University;HUANG Xiao-ping(1963-),male,Ph.D.,associate professor of Shanghai Jiao Tong University,corresponding author,E-mail:xphuang@sjtu.edu.cn;ZHAO Peng-yuan(1992-),male,master student of Shanghai Jiao Tong University.

    猜你喜歡
    折角上海交通大學(xué)波浪
    上海交通大學(xué)
    電氣自動化(2022年2期)2023-01-07 03:51:56
    波浪谷和波浪巖
    鈍角區(qū)腰線折角為零的月牙肋岔管研究
    GFRP箍筋彎折強(qiáng)度試驗(yàn)及理論研究*
    大管徑大折角熱水供熱管道設(shè)計(jì)方案
    煤氣與熱力(2021年5期)2021-07-22 09:02:02
    波浪谷隨想
    上海交通大學(xué)參加機(jī)器人比賽
    去看神奇波浪谷
    Z字型百葉窗翅片折角對汽車空調(diào)冷凝器換熱性能的影響
    波浪中并靠兩船相對運(yùn)動的短時(shí)預(yù)報(bào)
    中國航海(2014年1期)2014-05-09 07:54:24
    1024手机看黄色片| 国产淫片久久久久久久久| а√天堂www在线а√下载| 狂野欧美激情性xxxx在线观看| 久久人人爽人人爽人人片va| 有码 亚洲区| 国产一区二区在线av高清观看| 国产一区亚洲一区在线观看| 五月玫瑰六月丁香| 听说在线观看完整版免费高清| 欧美性猛交黑人性爽| 午夜亚洲福利在线播放| 欧美一区二区亚洲| 两个人视频免费观看高清| 99国产精品一区二区蜜桃av| 午夜福利在线观看吧| 欧美成人a在线观看| 性色avwww在线观看| 春色校园在线视频观看| 午夜爱爱视频在线播放| 一级黄片播放器| 如何舔出高潮| 老女人水多毛片| 高清在线视频一区二区三区 | 变态另类丝袜制服| а√天堂www在线а√下载| 亚洲四区av| 色视频www国产| 精品久久久久久久久久免费视频| 麻豆一二三区av精品| 中国美白少妇内射xxxbb| 九草在线视频观看| 高清午夜精品一区二区三区 | 国产亚洲av嫩草精品影院| 给我免费播放毛片高清在线观看| 一本一本综合久久| 国产黄色视频一区二区在线观看 | 人妻少妇偷人精品九色| 日本撒尿小便嘘嘘汇集6| 午夜激情福利司机影院| 日韩一区二区三区影片| 久久草成人影院| 亚洲人成网站在线播| 国产综合懂色| 国产精品电影一区二区三区| 中国美白少妇内射xxxbb| 亚洲成人av在线免费| 精品熟女少妇av免费看| 日韩av不卡免费在线播放| 国产一区二区在线观看日韩| 国产精品av视频在线免费观看| 日日撸夜夜添| 99在线人妻在线中文字幕| 青春草亚洲视频在线观看| 国产亚洲精品久久久com| 国产日本99.免费观看| 99热这里只有是精品50| 18+在线观看网站| 亚洲性久久影院| 欧美最新免费一区二区三区| 日韩欧美 国产精品| 男女啪啪激烈高潮av片| 精华霜和精华液先用哪个| 丰满的人妻完整版| 国产成人福利小说| 一夜夜www| 一本久久中文字幕| 51国产日韩欧美| 成年免费大片在线观看| 亚洲欧美精品综合久久99| av黄色大香蕉| 波多野结衣巨乳人妻| 久久鲁丝午夜福利片| 婷婷精品国产亚洲av| 永久网站在线| 波多野结衣高清无吗| www日本黄色视频网| 国产精品av视频在线免费观看| 亚州av有码| 亚洲无线在线观看| 日本爱情动作片www.在线观看| 一级毛片我不卡| 久99久视频精品免费| 免费看日本二区| 99久久成人亚洲精品观看| 亚洲丝袜综合中文字幕| 久久久久久久久久成人| 婷婷精品国产亚洲av| 色5月婷婷丁香| 精品久久久久久久人妻蜜臀av| 青春草视频在线免费观看| 欧美+日韩+精品| 99视频精品全部免费 在线| 12—13女人毛片做爰片一| 精华霜和精华液先用哪个| 久久精品影院6| 日韩av在线大香蕉| 欧美xxxx性猛交bbbb| 亚洲图色成人| 国产午夜精品一二区理论片| 成人亚洲欧美一区二区av| 欧美精品一区二区大全| 精品人妻视频免费看| 爱豆传媒免费全集在线观看| 最近视频中文字幕2019在线8| 欧美zozozo另类| 久久久久网色| 欧美极品一区二区三区四区| 亚洲三级黄色毛片| 少妇高潮的动态图| 日韩人妻高清精品专区| 精品国产三级普通话版| 91久久精品国产一区二区三区| 亚洲婷婷狠狠爱综合网| 国产美女午夜福利| 在线播放国产精品三级| 国产成人午夜福利电影在线观看| 三级男女做爰猛烈吃奶摸视频| 2022亚洲国产成人精品| 久久久久久久久大av| 免费看美女性在线毛片视频| 亚洲四区av| 国产单亲对白刺激| 日韩一区二区视频免费看| 波野结衣二区三区在线| 亚洲av中文av极速乱| 国产私拍福利视频在线观看| 在线观看美女被高潮喷水网站| 男插女下体视频免费在线播放| 国产精品蜜桃在线观看 | 欧美精品一区二区大全| 搡女人真爽免费视频火全软件| a级毛片免费高清观看在线播放| 18禁在线无遮挡免费观看视频| 三级毛片av免费| 久久久久久久久久久丰满| 久久亚洲国产成人精品v| 欧美日韩一区二区视频在线观看视频在线 | 给我免费播放毛片高清在线观看| 国产v大片淫在线免费观看| 国产av麻豆久久久久久久| 在线观看免费视频日本深夜| 免费观看a级毛片全部| 亚洲国产欧美人成| 国模一区二区三区四区视频| 嘟嘟电影网在线观看| a级一级毛片免费在线观看| 亚洲av二区三区四区| 免费看a级黄色片| 国产一区亚洲一区在线观看| 久久韩国三级中文字幕| 99热全是精品| 日韩视频在线欧美| 国产熟女欧美一区二区| 欧美日本亚洲视频在线播放| 国产精品一区二区三区四区久久| 岛国在线免费视频观看| 亚洲人与动物交配视频| 国产成人a区在线观看| 网址你懂的国产日韩在线| 大型黄色视频在线免费观看| 国产精品免费一区二区三区在线| 一夜夜www| 日韩 亚洲 欧美在线| 日韩欧美国产在线观看| 国产探花极品一区二区| 此物有八面人人有两片| 波多野结衣高清作品| 久久中文看片网| 久久久精品欧美日韩精品| 亚洲av免费高清在线观看| 免费黄网站久久成人精品| 伦精品一区二区三区| 91午夜精品亚洲一区二区三区| 国产一区亚洲一区在线观看| 高清毛片免费观看视频网站| 校园春色视频在线观看| 久久鲁丝午夜福利片| 亚洲精品亚洲一区二区| 日韩欧美三级三区| 久久午夜福利片| 色视频www国产| 成人午夜精彩视频在线观看| 美女脱内裤让男人舔精品视频 | 综合色丁香网| 国产美女午夜福利| 国产探花在线观看一区二区| 国产精品一区二区三区四区久久| 99久久无色码亚洲精品果冻| 久久精品久久久久久久性| 成人一区二区视频在线观看| 天堂中文最新版在线下载 | 国产精品无大码| 久久久精品94久久精品| 亚洲av免费高清在线观看| 亚洲美女搞黄在线观看| 亚洲性久久影院| 亚洲精品乱码久久久久久按摩| 国产精品免费一区二区三区在线| 美女内射精品一级片tv| 特大巨黑吊av在线直播| 久久久久久久久久成人| 神马国产精品三级电影在线观看| 国产一区二区亚洲精品在线观看| 国内精品宾馆在线| 又爽又黄a免费视频| 欧美激情久久久久久爽电影| 村上凉子中文字幕在线| 最近视频中文字幕2019在线8| 国产成人aa在线观看| 天堂网av新在线| 欧美日韩综合久久久久久| 五月伊人婷婷丁香| 亚洲av一区综合| 免费在线观看成人毛片| av专区在线播放| 久久精品91蜜桃| 国产精品免费一区二区三区在线| 一本久久精品| 观看免费一级毛片| 精品不卡国产一区二区三区| 九九久久精品国产亚洲av麻豆| 欧美在线一区亚洲| 男人狂女人下面高潮的视频| 欧美日韩国产亚洲二区| 91aial.com中文字幕在线观看| 深爱激情五月婷婷| 秋霞在线观看毛片| 波多野结衣巨乳人妻| 蜜臀久久99精品久久宅男| 日本免费a在线| 国产精品久久电影中文字幕| 你懂的网址亚洲精品在线观看 | 日日撸夜夜添| 最后的刺客免费高清国语| 尤物成人国产欧美一区二区三区| 人体艺术视频欧美日本| 国产精品免费一区二区三区在线| 男人和女人高潮做爰伦理| 国产日韩欧美在线精品| 边亲边吃奶的免费视频| 成人特级av手机在线观看| 99热6这里只有精品| 成人永久免费在线观看视频| 国产真实伦视频高清在线观看| 免费观看人在逋| 国产成人a区在线观看| 欧美日韩精品成人综合77777| 久久久国产成人免费| 岛国毛片在线播放| 听说在线观看完整版免费高清| 又黄又爽又刺激的免费视频.| 18禁黄网站禁片免费观看直播| 好男人在线观看高清免费视频| 国产成人freesex在线| 麻豆国产97在线/欧美| 欧美高清性xxxxhd video| 亚洲av中文av极速乱| 高清毛片免费观看视频网站| 国语自产精品视频在线第100页| 国产一区二区三区在线臀色熟女| 天堂av国产一区二区熟女人妻| 国产成人91sexporn| 干丝袜人妻中文字幕| 一进一出抽搐gif免费好疼| 少妇猛男粗大的猛烈进出视频 | 观看美女的网站| 啦啦啦观看免费观看视频高清| 26uuu在线亚洲综合色| 午夜激情福利司机影院| 免费观看在线日韩| 日日摸夜夜添夜夜爱| kizo精华| 波多野结衣高清作品| 蜜桃久久精品国产亚洲av| 自拍偷自拍亚洲精品老妇| 麻豆成人午夜福利视频| 国内精品美女久久久久久| 六月丁香七月| 看十八女毛片水多多多| 69av精品久久久久久| 亚洲欧美成人精品一区二区| 欧美性猛交黑人性爽| 亚洲在线自拍视频| 精品一区二区免费观看| 精品99又大又爽又粗少妇毛片| 国产亚洲5aaaaa淫片| 好男人在线观看高清免费视频| 夫妻性生交免费视频一级片| 性插视频无遮挡在线免费观看| 久久亚洲国产成人精品v| 亚洲内射少妇av| 久久人妻av系列| avwww免费| 亚洲一区高清亚洲精品| 人人妻人人澡欧美一区二区| 日韩亚洲欧美综合| 免费观看在线日韩| 久久国内精品自在自线图片| 成人亚洲欧美一区二区av| 国产高清有码在线观看视频| 内射极品少妇av片p| a级毛片免费高清观看在线播放| 午夜精品一区二区三区免费看| 丰满的人妻完整版| 尤物成人国产欧美一区二区三区| 精品久久久久久久久亚洲| 免费在线观看成人毛片| 国产极品天堂在线| 99热6这里只有精品| 悠悠久久av| 美女cb高潮喷水在线观看| 黄色日韩在线| 六月丁香七月| 成人亚洲欧美一区二区av| 欧美在线一区亚洲| 免费看光身美女| 听说在线观看完整版免费高清| 国产av麻豆久久久久久久| 亚洲熟妇中文字幕五十中出| 啦啦啦观看免费观看视频高清| 免费电影在线观看免费观看| 天堂影院成人在线观看| 91麻豆精品激情在线观看国产| 亚洲av电影不卡..在线观看| 少妇被粗大猛烈的视频| 国产精品伦人一区二区| 欧美日韩精品成人综合77777| 成年免费大片在线观看| 国产一区二区三区av在线 | 国产精品av视频在线免费观看| 国产v大片淫在线免费观看| 久久人人精品亚洲av| 久久综合国产亚洲精品| 人人妻人人看人人澡| 久久精品影院6| 99热这里只有是精品50| 国产成人精品婷婷| 免费观看精品视频网站| 中文精品一卡2卡3卡4更新| 男女那种视频在线观看| 日韩欧美一区二区三区在线观看| 亚洲欧美精品综合久久99| 国产一区二区三区av在线 | 国产成人91sexporn| 久久精品国产99精品国产亚洲性色| 亚洲精品久久久久久婷婷小说 | 女的被弄到高潮叫床怎么办| 美女大奶头视频| 成人鲁丝片一二三区免费| 免费看a级黄色片| 久久精品国产亚洲网站| 久久99精品国语久久久| 日韩 亚洲 欧美在线| 亚洲国产高清在线一区二区三| 日日干狠狠操夜夜爽| 国产午夜精品一二区理论片| 亚洲成人精品中文字幕电影| 在线播放无遮挡| 五月伊人婷婷丁香| 久久久久网色| 亚洲人成网站在线播| 日韩av不卡免费在线播放| 男插女下体视频免费在线播放| 国内精品一区二区在线观看| 亚洲自偷自拍三级| 午夜激情欧美在线| 岛国毛片在线播放| 草草在线视频免费看| 狂野欧美激情性xxxx在线观看| 欧美色欧美亚洲另类二区| 久久久久国产网址| 精品久久久久久久久av| 国产精品久久久久久久久免| 三级男女做爰猛烈吃奶摸视频| 亚洲熟妇中文字幕五十中出| 少妇人妻精品综合一区二区 | 国产亚洲精品久久久久久毛片| 亚洲欧洲日产国产| 亚洲人成网站在线播| 此物有八面人人有两片| 久久九九热精品免费| 国产精品99久久久久久久久| 国产一区二区在线av高清观看| 精品无人区乱码1区二区| 免费一级毛片在线播放高清视频| 人人妻人人澡欧美一区二区| 简卡轻食公司| 欧美最新免费一区二区三区| 我要搜黄色片| 午夜免费男女啪啪视频观看| 久久中文看片网| 精品久久久久久成人av| 午夜福利在线在线| 久久久久网色| 美女脱内裤让男人舔精品视频 | 美女cb高潮喷水在线观看| 99久久精品一区二区三区| 高清日韩中文字幕在线| 99久国产av精品| 日韩欧美 国产精品| 亚洲欧美日韩卡通动漫| 美女被艹到高潮喷水动态| 精品国产三级普通话版| 美女高潮的动态| 悠悠久久av| 99riav亚洲国产免费| 久久久久久久久久成人| 国国产精品蜜臀av免费| 久久久久久久久久久丰满| 少妇人妻一区二区三区视频| 麻豆成人午夜福利视频| 全区人妻精品视频| 女人十人毛片免费观看3o分钟| 日韩欧美在线乱码| 国产精品一区二区三区四区久久| 亚洲精品乱码久久久v下载方式| 久久99精品国语久久久| 麻豆国产av国片精品| 变态另类成人亚洲欧美熟女| av视频在线观看入口| 亚洲成av人片在线播放无| 变态另类丝袜制服| 国产日韩欧美在线精品| 99久久精品热视频| 精品日产1卡2卡| 人人妻人人澡欧美一区二区| 免费人成视频x8x8入口观看| 日本黄色片子视频| 蜜臀久久99精品久久宅男| 国产人妻一区二区三区在| 人妻夜夜爽99麻豆av| 国国产精品蜜臀av免费| 国产成人精品一,二区 | 午夜福利在线观看吧| 伊人久久精品亚洲午夜| 国产黄色小视频在线观看| 99精品在免费线老司机午夜| 五月伊人婷婷丁香| 国内精品宾馆在线| 国产精品1区2区在线观看.| or卡值多少钱| 欧美潮喷喷水| 哪里可以看免费的av片| 色综合亚洲欧美另类图片| 性插视频无遮挡在线免费观看| 国产伦一二天堂av在线观看| 欧美一区二区亚洲| 麻豆成人av视频| 乱人视频在线观看| 亚洲无线观看免费| 亚洲国产欧美人成| 老女人水多毛片| 久久精品国产亚洲av香蕉五月| 免费看日本二区| 亚洲av中文av极速乱| 99在线视频只有这里精品首页| 永久网站在线| 99久久无色码亚洲精品果冻| 少妇熟女aⅴ在线视频| or卡值多少钱| 国产在线精品亚洲第一网站| 看非洲黑人一级黄片| 国产精品蜜桃在线观看 | 99国产精品一区二区蜜桃av| 18+在线观看网站| 亚洲精品国产成人久久av| 精品国内亚洲2022精品成人| 亚洲内射少妇av| 国产欧美日韩精品一区二区| 国产一区亚洲一区在线观看| 精品久久久久久久久久久久久| 久久人人精品亚洲av| 国产美女午夜福利| 国产精品久久久久久久电影| 亚洲综合色惰| 久久人人爽人人片av| 久久久久久久久久久免费av| 国产私拍福利视频在线观看| 成人鲁丝片一二三区免费| 日韩一本色道免费dvd| 日韩亚洲欧美综合| 成人毛片a级毛片在线播放| 可以在线观看的亚洲视频| 日韩一本色道免费dvd| 国产中年淑女户外野战色| 久久久久久九九精品二区国产| 99久国产av精品国产电影| 成人特级黄色片久久久久久久| 午夜福利视频1000在线观看| 三级经典国产精品| 免费搜索国产男女视频| 欧美不卡视频在线免费观看| 91在线精品国自产拍蜜月| 三级经典国产精品| 性色avwww在线观看| 欧美激情国产日韩精品一区| 亚洲av男天堂| 国产成人精品一,二区 | 最近最新中文字幕大全电影3| 黑人高潮一二区| 精品国内亚洲2022精品成人| 长腿黑丝高跟| 中文字幕av在线有码专区| 18禁在线播放成人免费| 国产亚洲精品av在线| 变态另类丝袜制服| 丝袜喷水一区| 成人国产麻豆网| 亚洲精品乱码久久久v下载方式| 美女黄网站色视频| 十八禁国产超污无遮挡网站| 国产精品,欧美在线| 国产日韩欧美在线精品| 国产一区二区在线av高清观看| 看片在线看免费视频| 国产精品精品国产色婷婷| 国产成人一区二区在线| 我要看日韩黄色一级片| 天天一区二区日本电影三级| 一区二区三区四区激情视频 | 69人妻影院| 熟妇人妻久久中文字幕3abv| 嫩草影院精品99| 亚洲无线观看免费| 综合色av麻豆| 免费人成在线观看视频色| 久久精品影院6| 亚洲av成人精品一区久久| 国产精品国产三级国产av玫瑰| 亚洲在线自拍视频| 亚洲国产欧美在线一区| 啦啦啦观看免费观看视频高清| 日日撸夜夜添| 亚洲国产精品久久男人天堂| 精品人妻视频免费看| 美女高潮的动态| 亚洲精品日韩在线中文字幕 | 黄色日韩在线| 99国产精品一区二区蜜桃av| 国产免费男女视频| 综合色av麻豆| 精品久久久久久久人妻蜜臀av| 国产高清视频在线观看网站| 级片在线观看| 午夜a级毛片| 中出人妻视频一区二区| 免费观看在线日韩| 一级毛片我不卡| 精品不卡国产一区二区三区| 日韩av在线大香蕉| 不卡视频在线观看欧美| 一级二级三级毛片免费看| 人人妻人人看人人澡| 国产精品三级大全| 一级毛片aaaaaa免费看小| 91久久精品国产一区二区三区| 日韩一区二区视频免费看| 国产国拍精品亚洲av在线观看| 精品久久久久久久久久免费视频| 国产成人91sexporn| 色尼玛亚洲综合影院| 欧美bdsm另类| 午夜福利成人在线免费观看| 亚洲成人中文字幕在线播放| 国产亚洲欧美98| 2021天堂中文幕一二区在线观| 99热全是精品| 日本五十路高清| 青春草国产在线视频 | 亚洲av成人av| 免费人成在线观看视频色| 国产亚洲91精品色在线| 久久久精品大字幕| 亚州av有码| 亚洲欧美日韩高清在线视频| 免费电影在线观看免费观看| av在线老鸭窝| 国产精品国产三级国产av玫瑰| 中文字幕人妻熟人妻熟丝袜美| 菩萨蛮人人尽说江南好唐韦庄 | 免费人成视频x8x8入口观看| 久久久久国产网址| 亚洲国产精品成人综合色| 三级经典国产精品| 毛片一级片免费看久久久久| 欧美激情久久久久久爽电影| 亚洲国产精品成人综合色| 三级经典国产精品| 成人无遮挡网站| 欧美区成人在线视频| 一区二区三区免费毛片| 国产亚洲精品久久久久久毛片| 国产成人影院久久av| 1000部很黄的大片| 性欧美人与动物交配| 日本色播在线视频| 中文字幕免费在线视频6| 最新中文字幕久久久久| 别揉我奶头 嗯啊视频| 久久婷婷人人爽人人干人人爱| 精品人妻一区二区三区麻豆| 色吧在线观看| 大又大粗又爽又黄少妇毛片口| 中文精品一卡2卡3卡4更新| 免费人成在线观看视频色| 精品久久国产蜜桃| 久久久欧美国产精品| 久久综合国产亚洲精品| 亚洲国产精品合色在线| 毛片一级片免费看久久久久| 日本成人三级电影网站| 国产精华一区二区三区| 麻豆久久精品国产亚洲av| 国产精品美女特级片免费视频播放器|