• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fatigue Crack Growth Calculation of a Surface Crack in a Ship Angular Joint

    2017-10-11 05:33:22KONGXiaobingHUANGXiaopingZHAOPengyuanZHANGDaokun
    船舶力學(xué) 2017年9期
    關(guān)鍵詞:折角上海交通大學(xué)波浪

    KONG Xiao-bing,HUANG Xiao-ping,ZHAO Peng-yuan,ZHANG Dao-kun

    (1.Collaborative Innovation Center for Advanced Ship and Deep Sea Exploration,Shanghai Jiao Tong University,Shanghai 200240,China;2.Technology Development&Research Center,China Classification Society,Beijing 100007,China)

    Fatigue Crack Growth Calculation of a Surface Crack in a Ship Angular Joint

    KONG Xiao-bing1,HUANG Xiao-ping1,ZHAO Peng-yuan1,ZHANG Dao-kun2

    (1.Collaborative Innovation Center for Advanced Ship and Deep Sea Exploration,Shanghai Jiao Tong University,Shanghai 200240,China;2.Technology Development&Research Center,China Classification Society,Beijing 100007,China)

    Abstract:An angular joint in a container is taken as the research object.Hydrodynamic response and structural hot spot stress response of a container were forecasted by using the finite element software WALCS and PATRAN respectively.In order to avoid using 3D solid element in the hot spot area in PATRAN finite element model for calculating the stress intensity factor(SIF)of a surface crack,a SIF calculation method for surface cracks in ship structures under wave loads was proposed.The accuracy of the proposed method was validated by comparing the calculated results with those of widely accepted empirical formulas.Then,the method was applied to an angular joint in the bottom at the midship.SIFs of surface cracks with different sizes in the joint under the wave induced pressure were calculated and dimensionless empirical formulas were summarized.The fatigue load spectrums were generated by using a method based on spectrum analysis.Fatigue crack growth was calculated by using the unique crack growth rate curve model.Calculation results showed that the discussed hot spot did not meet the requirement of design life and further modification will be needed.

    Key words:wave load;angular type joint;surface crack;stress intensity factor;unique curve model

    0 Introduction

    Ships and marine structures suffer nearly one hundred million cycles random wave load during their service life.Crack defects,mostly in the form of surface cracks can be traced in the welded toes of key load carrying structures,which is the inevitable result of the structural fatigue damage[1-3].Large-scalization of ships and the wide use of the higher tensile steels in ship hulls make the fatigue problem imminent[4].It is of great significance to conduct fatigue crack propagation analysis on ships and marine structures which containing cracks to ensure the personal safety and property safety.

    Stress intensity factor(SIF)is one of the important parameters in evaluating the crackedcomponent failure.To calculate the SIFs of surface cracks in details under real loading conditions is the basis of forecasting the structural fatigue life accurately.At present,cracks in ship structure details are commonly assumed as semi-elliptical surface cracks.Newman-Raju’s formulas for calculating SIFs of surface cracks in a plate under the tensile and bending loads have been widely recognized[5].On the basis of the formula,Bowness[6]put forward formulas for calculating the toe magnification factors for cracks in the weld toe of T-butt joints and they were adopted by BS7910[7].However,the above formulas for calculating the SIFs are only suitable for relatively simple structures under the simple load conditions.It is clearly not appropriate to apply them to joints in the real ships and marine structures.This is because the actual structures are under wave loads and the stress distribution in most typical fatigue assessment details are very complicated.

    Aiming to solve this problem,Yan et al[8]has proposed a SIF calculation method for cracks in ship structures under wave loads.In that method,the hots pot areas are required to be modeled using 3D solid element in PATRAN,and then a macro-program patran2ansys.mac has been written to achieve the transformation boundary conditions from PATRAN whole model to the ANSYS submodel containing surface cracks.But it is extremely complex to model 3D solid element in the huge PATRAN ship model especially in the multiple plates intersecting joint area.Because of this shortcomings of the above method,this paper proposed a new method need not to model 3D solid element in PATRAN,and its calculation accuracy was validated by comparing the calculated results with those of widely accepted empirical formulas.

    In this paper,the ship hydrodynamic response and hot spot stress response were performed by using the finite element software WALCS and PATRAN respectively.Then the above SIF calculation method was applied to calculate SIFs of surfaces cracks in an angular joint in the middle bottom at the midship.SIFs of surface cracks with different sizes in the joint under the wave induced loads were calculated and dimensionless empirical formulas were summarized.The fatigue load spectrums were generated by using a method based on spectrum analysis.Combined with the unique curve model,the fatigue crack propagation of a surface crack in the detail was calculated.

    1 Hot spot stress response analysis

    1.1 Hydrodynamic response

    Ships and marine structures serve in ocean environment,and the main external load is wave load.The precision of the estimated structural response is depending on the precision of the calculated wave loads.Hydrodynamic software WALCS[9]can forecast the wave load of the ship and marine structures,which is based on three dimensional frequency domain linear hydrodynamics principle.It calculates three-dimensional hydrodynamic coefficient of radiation by combining the surface element method and the source distribution method.The wet surface model of the target ship in WALCS is shown in Fig.1 and the hydrodynamic analysis parame-ters are shown in Tab.1.

    Tab.1 Hydrodynamic analysis parameters

    Fig.1 Wet surface model of a ship

    1.2 Hot spot stress response

    The finite element model of the whole ship is modeled in PATRAN,including the whole hull structure,cargo tank and ship bow,etc.On the basis of the whole ship structure model,the lightweight and deadweight are automatically adjusted to the corresponding node of the structure model,making sure that the quality model is corresponding with the actual weight location in actual ship.The calculated wave pressures are transferred to the surface of the hull structure model,and the inertial release technology is used to make the hull structure in a state of dynamic balance.

    Fig.2 Hot spot stress interpolation calculation

    Angular joints widely exist in ship structures and are prone to fatigue failure,which are the key spots for fatigue assessments.In guidelines for fatigue strength of ship structure of CCS[10],hot spot stress method was adopted to assess the fatigue strength,which has clearly stated the requirement for the element size and determinnation of the hot spot stress.Because the shape of the weld toe is not considered in the finite element model,extrapolation method is used to get the stress of the weld toe.The common practice is to use stress at the locations away from the weld toe t/2 and 3t/2 for linear interpolation,as shown in Fig.2.The hot spot stress at the weld toe can be extrapolated using the following formula:

    where σhis hot spot stress, σt/2and σ3t/2are element stresses at a distance t/2 and 3t/2.

    The refine meshed model of an angular joint in the midship bottom is shown in Fig.3,thetransfer function of hot spot stress of the joint is shown in Fig.4.

    Fig.3 Bottom tank angle refine finite element model

    Fig.4 Transfer function of bottom tank angular

    2 Stress intensity factor calculation method validation

    2.1 Shell-to-solid submodel technology

    Ship structure strength analysis is generally conducted based on finite element model using the software PATRAN which is widely used in ship building industry.Shell element,beam element and bar element are always used,but 3D solid element is always avoided to be used.Three-dimensional surface cracks in the structure need to be modeled using 3D solid element and the singular element is needed in the crack tip area where the peak stress exists.There is no singular element in PATRAN,but it is provided in ANSYS.The need of different types element makes the problem difficult,because the node of shell element has three translational degrees and three rotational degrees,but the node of the 3D solid element has three translational degrees only.

    Fig.5 3D solid submodel superimposed on coarse shell model

    Fig.6 Node rotation(a)before cbdof command(b)after cbdof command

    A special submodel technology called shell-to-soild submodel is provided in ANSYS,which can transfer the loads from shell element to the solid element seamlessly.It means the coarse model is shell and the submodel is solid model.A 3D solid submodel superimposed on coarse shell model is shown in Fig.5.In a structural analysis,only the translational displace-ments are calculated for the nodes on the cut-boundary,but their values are based on the translations and rotations of the projected point.Also,the node is rotated such that the nodal UY direction is always perpendicular to shell plane,as shown in Fig.6.A UY constraint is calculated only for nodes that within 10 percent of the average shell element thickness from the shell plane,preventing over_constraint of the submodel in the transverse direction.

    Therefore,we can first transfer the calculated results(translation and rotation degree)into the shell model of ANSYS,then the shell-to-solid submodel technology is used to transfer the calculated results from shell elment to solid model containing semi-elliptical surface crack in ANSYS.

    2.2 Validaton with plate surface crack

    In order to prove the accuracy of the proposed method above,SIFs of semi-elliptical surface crack with different size in a plate are calculated,and the results are compared with those of Newman-Raju formulas which are widely accepted.

    A flat plate measures 5 m×2 m×20 mm and there exists a semi-elliptical surface crack in the middle section of the plate.It is subjected to uniformly distributed tensile stress 90(MPa)and bending stress 7(MPa)respectively.The coarse model of the plate modeled in PATRAN is shown in Fig.7.The elements in the crack location areas are refined and the refined plate model is shown in Fig.8.

    Fig.7 Coarse model of the plate(PATRAN)

    Fig.8 Refined plate model(PATRAN)

    Then,a shell model measuring 500 mm×400 mm×20 mm is modeled using four node element in ANSYS.A 3D solid plate model measuring 400 mm×200 mm×20 mm containing a semi-elliptical surface crack is modeled using element solid 95.The 3D solid model superimposed on coarse shell model in ANSYS is shown in Fig.9 and the crack tip element can also be seen.The boundary of the shell model is loaded using the information from PATRAN by the improved macroprogram patran2ansys.mac which can consider both the translation and rotation degree.Shell-to-solid submodel technology can transform the calculated results from shell model to solid model.

    SIFs of surface cracks with different sizes in the middle section of a plate are calculated and compared with those of the widely accepted Newman-Raju formulas which are shown in Figs.10-13.From the figures above,we can find that the calculated results by the above method are in good agreement with those of the empirical formulas under both tensile stress and bending stress.

    Fig.9 3-D solid submodel superimposed on coarse shell model in ANSYS

    Fig.10 Comparison of crack surface under tensile

    Fig.11 Comparison of crack surface under tensile

    Fig.12 Comparison of crack surface under bending

    Fig.13 Comparison of crack deepest point under bending

    3 Fatigue load generation based on spectral analysis

    3.1 Equivalent stress intensity factor

    When calculating the hot spot stress response amplitude of the structure,the method of‘real part and imaginary part’ is always used in the project.The stress response △σrealandcorresponding to 0°and 90°phase angle respectively are calculated and the equivalent stress response can be obtained by using the following formula:

    where△σrealis the dynamic stress response value caused by unit-height wave at the phase angle 0°,△σimageis the dynamic stress response value caused by unit-height wave at the phase angle 90°.

    Depending on the load types,a crack can be extended into three different modes in Fig.14.They are listed as follows:ModeⅠis the opening(tensile)mode where the crack surfaces move directly apart;ModeⅡis the sliding(in-plane shearing)mode where the crack surfaces slide over one another in the direction perpendicular to the leading edge of the crack;ModeⅢis the tearing(anti-plane shear)mode where the crack surfaces move relative to another and parallel to the leading edge of the crack.

    Fig.14 Three basic modes of farcture

    It is dangerous to considerⅠcrack only,so equivalent SIF is used here.The specific formula is as follows:

    where KⅠ,real,KⅠimage,KⅡ,real,KⅡimage,KⅢ,realand KⅢ,imagerespectively represent real part and image part SIF of the three types crack under wave pressure;μ is the material elastic modulus.

    3.2 Norminal stress

    It is well known that nominal stress is widely used in fracture mechanics,but methods on how to get it from finite element model are still not clearly defined.But there are specific rules and guidelines of the classification society on getting the hot spot stress,so stress concentration coefficient is used to determine norminal stress in this paper.The formula is shown as follows:

    where σnrepresents norminal stress,σhrepresents hot spot stress,kgrepresents stress concentration factor(stress concentration factor of the bottom angular joint is shown in Tab.2)

    Tab.2 Stress concentration factor of the bottom angular joint

    3.3 SIFs calculation of cracks in ship middle angular joints

    In ANSYS,the finite element of an angular joint in the bottom at the midship is modeled,as shown in Fig.15.The boundary of the shell model is loaded using the information getting from PATRAN with the improved macro-program patran2ansys.mac.Shell-to-solid submodel is used to transfer the result from shell model to solid model containing a semi-ellitical surface crack in ANSYS.

    Fig.15 3D solid submodel with crack superimposed on coarse shell model in ANSYS

    SIFs of a surface crack with different size(a/c=0.2,0.4,0.6,0.8)at the weld toe of an angular joint in the bottom at the midship are calculated.The SIFs of the surface point of crack are as shown in Fig.16,and the SIFs of the deepest point of crack as shown in Fig.17(wave direction 0,wave frequency 0.5).

    3.4 Empirical formulas of ship middle angular joints

    The crack tip stress intensity factor generally can be represented as:

    Fig.16 Stress intensity factor of crack surface point

    Fig.17 Stress intensity factor of crack deepest point

    where σnrepresents norminal stress,a represents crack depth,is a dimensionless parameter in terms of the crack geometry and type of load.

    SIFs of surface cracks with different sizes in the weld toe of an angular joint are calculated in different wave direction and wave frequencies.The hot spot stress of the angular joint is calculated according to the guidelines of the classification society above.The dimesionless parameter can be backstepped by using the follow formula:

    Dimensionless parameters of the surface point of the crack are shown in Fig.18 and the dimensionless parameters of the deepest point surface are shown in Fig.19.

    Fig.19 of the crack deepest point

    Through the above calculation,the empirical formulas for calculating SIFs of surface cracks with different sizes in an angular joint at the bottom in the midship are summarized as follows using MATLAB:

    where σhis the hot spot stress amplitude,a is crack depth,c is crack length,T is the thickness of the inner bottom,kgis the stress concentration factor(stress concentration factor of the bottom angular joint is shown in Tab.2).

    4 Fatigue life prediction of a bottom tank angle

    4.1 Crack propagation model

    The crack propagation rate is the core content of fatigue crack propagation analysis,many achievements have been made in this aspect.The Paris law[11]is widely studied and used in linear elastic fracture mechanics.Then,the modified formula of the fatigue crack was proposed by Forman[12],so as to consider the effect of mean stress.The above two formulas are widely used in engineering due to its simplicity.

    Many subsequent studies found residual stress,stress ratio and load sequence also had influence on the fatigue crack propagation rate.As a result,modified formulas and new ones were proposed.Described so far,the formulas of crack propagation rate are not less than one hundred,and a suitable model is needed which has calculating accuracy and can be easily applied to engineering practice.The unique crack growth rate curve method,which is based on the equivalent stress intensity factor range as the driving force under constant amplitude external loading,has been proposed by Huang[13-14].The model has many advantages.On one hand,it can consider the effect of R-ratio including residual stress and loading sequence,on the other hand,it can use constants C and m in Paris law which has been frequently tested for different material.Its basic expression is:

    where a is the crack length;N is the number of applied cycles;C,m are the Paris parameters;△Keq0,△Kth0,respectively are the equivalent SIF range and threshold of SIF range corresponding to the stress ratio R=0;MRis the correction factor for stress ratio; β and β1depend on the material and the environment.Kresis the SIF caused by residual stress;MPis the correction factor for load sequence and can be calculated by:

    where△Kuis the SIF range caused by underload follows an overload cycle;are the minimum SIF ranges of the current cycle and the prior cycle;aOLis the crack size when overload occurs;ryis the size of plastic zone at crack tip;rOLis the size of plastic zone at crack tip when overload occurs;r△is the increment of plastic zone size at crack tip caused by underload towards an overload;α is the plastic zone size factor;n is shaping exponent of plastic zone effect.

    4.2 Generation of the fatigue load spectrum

    To predict the fatigue life of structure accurately,fatigue load spectrums need to be as real as possible.The alternating stresses in ship and marine structures are wave-induced stresses.Huang[15]proposed a method for generating fatigue load spectrums based on spectrum analysis.The method is based on the real sea condition and loading condition,and it can consider the combination of different wave direction and frequency,having higher accuracy.It is used to generate fatigue load spectrums in this paper.

    Double parameters P-M wave spectrum recommended by ISSC is used,the P-M spectrum expression is as follows:

    where Hsis the wave height and Tzis the average cross zero cycle.

    Spectral analysis method is based on the theory of linear system.The wave uses stationary Gaussian random process,and the alternating stress of the structure is also a stationary Gaussian random process.So the alternating stress of the structure can be expressed as:

    In the evaluation of the ship response due to external wave-induced pressures,the effect of wave diffraction and radiation is taken into consideration.

    The long-term state of ocean waves is composed of many short-term sequence sea conditions.Every sea condition is characterized by wave characteristic parameters and the frequency of sea conditions.In practical applications,alternating stress process is considered as a narrow band stationary stochastic process in a certain sea state and wave direction.According to the theory of stochastic process,the peak stress obeys Rayleigh distribution,and the probability density function is

    The transfer function of the angular joint in the middle bottom of the ship is shown in Fig.4.Global wave scatter diagram is used.The probability density of the fatigue load spectrums is shown in Fig.20 and a random load sequence diagram(fragment)is shown in Fig.21.

    Fig.20 Probability density of the fatigue load spectrum

    Fig.21 Random load sequence diagram(fragment)

    4.3 The fatigue life prediction

    In crack growth prediction,the unique curve model was applied and the Paris constants in this model were referred to the recommendation of International Institude of Welding(IIW)[16],namelyWeld radius is 10 mm and weld angle is 45°.

    The initial depth of the surface crack was 0.2 mm,and the initial length was 2 mm.The structure was failure when the surface crack penetrates the thickness of the target plate.SIFs of a surface crack with different sizes of a angular joint in the bottom at the midship were calculated by the empirical formulas summarized above and the fatigue spectrums were generated by the method mentioned above.Fatigue crack growth calculation was conducted usingcycle-by-cycle method using MATLAB program and the calculated crack growth curves are shown in Fig.22.We can know the fatigue life of the joint is only 7 years.

    Fig.22 Crack growth curve

    5 Conclusions

    The paper focused on the fatigue strength assessment of ship angular joint which widely exists in ship structures based on the finite element numerical analysis.The main conclusions are as follows:

    (1)A SIF calculation method for surface cracks in ship structures under wave loads has been proposed which avoids using 3D element in the hot spot area in PATRAN finite element model for calculating the SIFs of a surface crack with different sizes.

    (2)Dimensionless Empirical formulas for calculating SIFs of surface cracks in angular joint in the midship bottom of a container under wave-induced pressure are proposed.

    (3)The results of fatigue life prediction for angular joint in the midship bottom based on crack propagation showed that the fatigue strength did not meet the design requirement.To modify the structure size of the details is needed.

    Acknowledgements

    This work was financially supported by the National Science Foundation of China(Grant No.51279102)and project‘Study on the fatigue strength of Thick High Tensile Steel plate’financially supported by China Classification Society.The support is gratefully acknowledged.

    [1]Huang X,Jia G,Cui W,et al.Unique crack growth rate curve model for fatigue life prediction of marine steel structure[J].Journal of Ship Mechanics,2011,15(1):118-125.(in Chinese)

    [2]Fricke W,Lilienfeld-Toal A V,Paetzold H.Fatigue strength investigations of welded details of stiffened plate structures in steel ships[J].International Journal of Fatigue,2012,34(1):17-26.

    [3]Fricke W,Paetzold H.Full-scale fatigue tests of ship structures to validate the S-N approaches for fatigue strength assessment[J].Marine Structures,2010,23(1):115-130.

    [4]Mao W,Li Z,Ogeman V,et al.A regression and beam theory based approach for fatigue assessment of containership structures including bending and torsion contributions[J].Marine Structures,2015,41(1):244-266.

    [5]Newman J C,Raju I S.Analysis of surface cracks in a finite plate under tension or bending loads[R].NASA TP-1579,1979.

    [6]Bowness D,Lee M M K.Prediction of weld toe magnification factors for semi-elliptical cracks in T-butt joints[J].International Journal of Fatigue,2000,22(5):369-387.

    [7]BS7910.Guide to methods for assessing the acceptability of flaws in metallic structures[M].British Standards Institution,2005.

    [8]Yan X,Huang X,Cui W.Prediction of fatigue crack growth in a ship detail under wave-induced loading[J].Ocean Engineering,2016,113:246-254.

    [9]Tang S,Zhang H,Wu J,et al.Empirical formula for short-term forecast of bulk carriers and oil tanks’vertical wave loads[J].Ocean Engineering,2014,32(3):65-71.(in Chinese)

    [10]CCS.Guidelines for fatigue strength assessment of offshore engineering structures[M].China Classification Society,2014.

    [11]Paris P C,Gomez M,Anderson W.A rational analytic theory of fatigue[J].Trend Engng,1961,13:9-14.

    [12]Forman R G,Kearney V E,Engle R M.Numerical analysis of crack propagation in cyclic-loaded structure[J].Sen-ito Kogyo,1993,49(3):459-464.

    [13]Huang X,Torgeir M.Improved modeling of the effect of R-ratio on crack growth rate[J].International Journal of Fatigue,2007,29(4):591-602.

    [14]Huang X,Moan T,Cui W.An engineering model of fatigue crack growth under variable amplitude loading[J].International Journal of Fatigue,2008,30(1):2-10.

    [15]Yan X,Huang X,Cui W.An engineering method to predict fatigue crack propagation life for marine structures[J].Journal of Ship Mechanics,2016,20(3):323-334.

    [16]IIW.Recommendations for fatigue design of welded joints and components[M].International Institute of Welding,2004.

    船舶折角型節(jié)點(diǎn)的疲勞裂紋擴(kuò)展計(jì)算

    孔小兵1,黃小平1,趙鵬遠(yuǎn)1,張道坤2
    (1.上海交通大學(xué) 高新船舶與深海開發(fā)裝備協(xié)同創(chuàng)新中心,上海 200240;2.中國船級社研發(fā)中心,北京 100007)

    文章以船舶折角型節(jié)點(diǎn)為研究對象,運(yùn)用有限元軟件WALCS和PATRAN分別預(yù)報(bào)某船的水動力響應(yīng)和結(jié)構(gòu)熱點(diǎn)應(yīng)力響應(yīng)。為避免計(jì)算表面裂紋應(yīng)力強(qiáng)度因子時(shí)需要在PATRAN有限元模型中疲勞熱點(diǎn)區(qū)域采用體單元建模,文中提出了一種計(jì)算波浪載荷下船海結(jié)構(gòu)物三維表面裂紋應(yīng)力強(qiáng)度因子而無需在PATRAN中建立體模型的方法,并通過與廣泛認(rèn)可的經(jīng)驗(yàn)公式對比驗(yàn)證其精度。將此方法應(yīng)用于該船船舯底邊艙折角處表面裂紋應(yīng)力強(qiáng)度因子計(jì)算,計(jì)算并總結(jié)出波浪載荷下該類節(jié)點(diǎn)處表面裂紋應(yīng)力強(qiáng)度因子的無量綱計(jì)算經(jīng)驗(yàn)公式。應(yīng)用一種基于譜分析構(gòu)建結(jié)構(gòu)疲勞載荷譜的方法,結(jié)合單一曲線模型對該節(jié)點(diǎn)進(jìn)行裂紋擴(kuò)展計(jì)算。計(jì)算結(jié)果表明:該船船舯底邊艙折角疲勞壽命不滿足設(shè)計(jì)要求,建議對節(jié)點(diǎn)進(jìn)行改進(jìn)。

    波浪載荷;折角型節(jié)點(diǎn);表面裂紋;應(yīng)力強(qiáng)度因子;單一曲線模型

    U661.4

    A

    國家自然科學(xué)基金資助項(xiàng)目(51279102)和中國船級社高強(qiáng)度鋼超厚板疲勞強(qiáng)度研究項(xiàng)目

    孔小兵(1991-),男,上海交通大學(xué)碩士研究生;黃小平(1963-),男,通訊作者,上海交通大學(xué)副教授,E-mail:xphuang@sjtu.edu.cn;趙鵬遠(yuǎn)(1992-),男,上海交通大學(xué)碩士研究生;張道坤(1978-),男,工程師。

    10.3969/j.issn.1007-7294.2017.09.006

    Article ID: 1007-7294(2017)09-1114-14

    Received date:2017-05-19

    Foundation item:Supported by National Natural Science Foundation of China(Project No.51279102)

    Biography:KONG Xiao-bing(1991-),male,master student of Shanghai Jiao Tong University;HUANG Xiao-ping(1963-),male,Ph.D.,associate professor of Shanghai Jiao Tong University,corresponding author,E-mail:xphuang@sjtu.edu.cn;ZHAO Peng-yuan(1992-),male,master student of Shanghai Jiao Tong University.

    猜你喜歡
    折角上海交通大學(xué)波浪
    上海交通大學(xué)
    電氣自動化(2022年2期)2023-01-07 03:51:56
    波浪谷和波浪巖
    鈍角區(qū)腰線折角為零的月牙肋岔管研究
    GFRP箍筋彎折強(qiáng)度試驗(yàn)及理論研究*
    大管徑大折角熱水供熱管道設(shè)計(jì)方案
    煤氣與熱力(2021年5期)2021-07-22 09:02:02
    波浪谷隨想
    上海交通大學(xué)參加機(jī)器人比賽
    去看神奇波浪谷
    Z字型百葉窗翅片折角對汽車空調(diào)冷凝器換熱性能的影響
    波浪中并靠兩船相對運(yùn)動的短時(shí)預(yù)報(bào)
    中國航海(2014年1期)2014-05-09 07:54:24
    亚洲第一区二区三区不卡| 欧美乱妇无乱码| 久久人人爽人人爽人人片va | 给我免费播放毛片高清在线观看| 麻豆一二三区av精品| 日日摸夜夜添夜夜添av毛片 | 国产精品自产拍在线观看55亚洲| 嫩草影院精品99| 亚洲精品粉嫩美女一区| 男女视频在线观看网站免费| bbb黄色大片| 十八禁网站免费在线| 淫秽高清视频在线观看| 国模一区二区三区四区视频| 欧美日韩亚洲国产一区二区在线观看| av专区在线播放| 免费av观看视频| 国产午夜精品论理片| 亚洲经典国产精华液单 | av专区在线播放| 给我免费播放毛片高清在线观看| 一级a爱片免费观看的视频| 一进一出抽搐gif免费好疼| 欧美+日韩+精品| 美女 人体艺术 gogo| 精品一区二区三区视频在线| 毛片一级片免费看久久久久 | 国产aⅴ精品一区二区三区波| 成人亚洲精品av一区二区| 两人在一起打扑克的视频| 99精品久久久久人妻精品| 18禁裸乳无遮挡免费网站照片| 一区二区三区四区激情视频 | 久久婷婷人人爽人人干人人爱| 国产国拍精品亚洲av在线观看| 免费观看人在逋| 在线观看午夜福利视频| 国产亚洲欧美98| 国产在线精品亚洲第一网站| 免费av不卡在线播放| 97碰自拍视频| 久久久久久久久久黄片| 天天躁日日操中文字幕| 夜夜夜夜夜久久久久| 高清在线国产一区| 看片在线看免费视频| 国产精品亚洲一级av第二区| avwww免费| 淫秽高清视频在线观看| 99精品久久久久人妻精品| 青草久久国产| 欧美乱妇无乱码| 国产精品伦人一区二区| 亚洲av中文字字幕乱码综合| 久久精品人妻少妇| 国产一区二区在线av高清观看| 欧美xxxx黑人xx丫x性爽| 麻豆av噜噜一区二区三区| 91九色精品人成在线观看| 人人妻,人人澡人人爽秒播| 久久久久久大精品| 国产淫片久久久久久久久 | 欧美又色又爽又黄视频| 亚洲无线在线观看| 国产精品伦人一区二区| 小说图片视频综合网站| 国产一区二区在线av高清观看| 熟女人妻精品中文字幕| 真人做人爱边吃奶动态| 97碰自拍视频| 亚洲国产精品成人综合色| 欧美极品一区二区三区四区| 两性午夜刺激爽爽歪歪视频在线观看| eeuss影院久久| 久久久精品欧美日韩精品| 日韩亚洲欧美综合| av在线老鸭窝| 黄色配什么色好看| 久久热精品热| 精品一区二区免费观看| 超碰av人人做人人爽久久| 禁无遮挡网站| 校园春色视频在线观看| 成人国产综合亚洲| 久久精品久久久久久噜噜老黄 | 亚洲精品在线观看二区| 国产精品日韩av在线免费观看| 男人的好看免费观看在线视频| 男女之事视频高清在线观看| 久久久久国内视频| 日韩欧美在线二视频| 欧美日韩国产亚洲二区| av中文乱码字幕在线| 日韩中文字幕欧美一区二区| 最新中文字幕久久久久| 亚洲黑人精品在线| www.熟女人妻精品国产| 精品不卡国产一区二区三区| 精品一区二区免费观看| 中国美女看黄片| 久久精品国产99精品国产亚洲性色| 在线播放国产精品三级| 亚洲av二区三区四区| 97人妻精品一区二区三区麻豆| 亚洲无线在线观看| 欧美日韩福利视频一区二区| 美女被艹到高潮喷水动态| 国产精品亚洲一级av第二区| 黄片小视频在线播放| 欧美黑人巨大hd| 国产精品伦人一区二区| 亚洲av五月六月丁香网| 亚洲片人在线观看| 天天躁日日操中文字幕| 中文字幕人妻熟人妻熟丝袜美| 少妇熟女aⅴ在线视频| 嫩草影视91久久| 99久久精品热视频| 欧美xxxx黑人xx丫x性爽| 欧美高清性xxxxhd video| 欧美绝顶高潮抽搐喷水| av天堂在线播放| АⅤ资源中文在线天堂| 男女视频在线观看网站免费| 日韩欧美精品免费久久 | 亚洲男人的天堂狠狠| 高清在线国产一区| 97热精品久久久久久| 国产私拍福利视频在线观看| 中文字幕av成人在线电影| 99热精品在线国产| 色av中文字幕| 免费在线观看亚洲国产| 日韩有码中文字幕| 熟女人妻精品中文字幕| 国产单亲对白刺激| 欧美国产日韩亚洲一区| 久久久精品大字幕| 欧美色欧美亚洲另类二区| 中出人妻视频一区二区| 精品久久久久久久久久久久久| 国产综合懂色| 婷婷丁香在线五月| 内地一区二区视频在线| 美女 人体艺术 gogo| 国产伦人伦偷精品视频| 最新中文字幕久久久久| 国产免费一级a男人的天堂| 成人av一区二区三区在线看| 成人高潮视频无遮挡免费网站| 国产亚洲精品综合一区在线观看| 国产亚洲精品综合一区在线观看| 可以在线观看毛片的网站| 国产午夜精品论理片| 免费无遮挡裸体视频| av在线蜜桃| 亚洲人成网站在线播放欧美日韩| 两个人的视频大全免费| 99久久久亚洲精品蜜臀av| 在线观看免费视频日本深夜| 国产 一区 欧美 日韩| 一级黄片播放器| 给我免费播放毛片高清在线观看| 夜夜爽天天搞| 亚洲七黄色美女视频| 午夜老司机福利剧场| 99热6这里只有精品| 欧美中文日本在线观看视频| av在线老鸭窝| 国产在线男女| 亚洲精品一卡2卡三卡4卡5卡| 老熟妇仑乱视频hdxx| 国产精品久久久久久亚洲av鲁大| 国产精品av视频在线免费观看| 男女床上黄色一级片免费看| 亚洲精品色激情综合| 国产精品精品国产色婷婷| 一个人观看的视频www高清免费观看| 99久久无色码亚洲精品果冻| 欧美日韩福利视频一区二区| 免费在线观看成人毛片| 国产精品久久视频播放| 国产黄色小视频在线观看| 天美传媒精品一区二区| 一本久久中文字幕| 美女 人体艺术 gogo| 国产成人啪精品午夜网站| 淫妇啪啪啪对白视频| 午夜免费男女啪啪视频观看 | 欧美日韩黄片免| 中文字幕av成人在线电影| 男女之事视频高清在线观看| 国产av麻豆久久久久久久| 亚洲成人精品中文字幕电影| www.www免费av| 天堂av国产一区二区熟女人妻| 久久欧美精品欧美久久欧美| 国产国拍精品亚洲av在线观看| a在线观看视频网站| 成人无遮挡网站| 国产一区二区三区在线臀色熟女| 一进一出好大好爽视频| 麻豆国产97在线/欧美| 两个人视频免费观看高清| 狂野欧美白嫩少妇大欣赏| 亚洲在线观看片| 亚洲中文字幕日韩| 久久久久久久久大av| 一个人观看的视频www高清免费观看| 女人被狂操c到高潮| 窝窝影院91人妻| av天堂中文字幕网| 亚洲成人免费电影在线观看| 亚洲av五月六月丁香网| 国产毛片a区久久久久| 人妻制服诱惑在线中文字幕| 日韩欧美在线乱码| 日日摸夜夜添夜夜添av毛片 | 人妻制服诱惑在线中文字幕| 深夜a级毛片| 亚洲无线在线观看| 成熟少妇高潮喷水视频| 免费无遮挡裸体视频| eeuss影院久久| 人人妻,人人澡人人爽秒播| 国产不卡一卡二| a级毛片a级免费在线| 波多野结衣高清作品| 久久精品影院6| 国产黄a三级三级三级人| 淫秽高清视频在线观看| 色精品久久人妻99蜜桃| 97超级碰碰碰精品色视频在线观看| 午夜免费男女啪啪视频观看 | 国产亚洲精品久久久久久毛片| xxxwww97欧美| 国内精品久久久久久久电影| 国产精品永久免费网站| x7x7x7水蜜桃| 天堂影院成人在线观看| 国产精品亚洲美女久久久| 精品乱码久久久久久99久播| 色综合欧美亚洲国产小说| 我的老师免费观看完整版| 一个人免费在线观看电影| 男女那种视频在线观看| 国产男靠女视频免费网站| 亚洲性夜色夜夜综合| 国产美女午夜福利| 99久久精品一区二区三区| 国产亚洲精品综合一区在线观看| 成人高潮视频无遮挡免费网站| 成年女人看的毛片在线观看| 全区人妻精品视频| 日韩精品青青久久久久久| 99久久精品热视频| 欧美一区二区亚洲| 成年人黄色毛片网站| 国产美女午夜福利| 人人妻人人看人人澡| 免费av不卡在线播放| 自拍偷自拍亚洲精品老妇| 嫩草影院新地址| 黄色丝袜av网址大全| 我的老师免费观看完整版| 国产国拍精品亚洲av在线观看| 国模一区二区三区四区视频| 色av中文字幕| 99久久精品一区二区三区| h日本视频在线播放| 国产午夜精品久久久久久一区二区三区 | 天天躁日日操中文字幕| 色av中文字幕| 757午夜福利合集在线观看| 国内揄拍国产精品人妻在线| 国模一区二区三区四区视频| 又爽又黄a免费视频| 少妇熟女aⅴ在线视频| 日本五十路高清| 精品一区二区免费观看| 综合色av麻豆| 俄罗斯特黄特色一大片| 亚洲成人久久爱视频| 高清在线国产一区| 国产精品国产高清国产av| 免费看a级黄色片| 欧美性猛交黑人性爽| 最近在线观看免费完整版| 久久久久久久亚洲中文字幕 | 亚洲av电影在线进入| 国产日本99.免费观看| netflix在线观看网站| 18禁黄网站禁片免费观看直播| 国产三级黄色录像| 日韩亚洲欧美综合| 亚洲不卡免费看| 亚洲午夜理论影院| 中文资源天堂在线| 国产精品综合久久久久久久免费| av中文乱码字幕在线| 床上黄色一级片| 久久午夜亚洲精品久久| a级一级毛片免费在线观看| 免费看a级黄色片| 欧美在线一区亚洲| 日本一本二区三区精品| 久久精品人妻少妇| 最近视频中文字幕2019在线8| 很黄的视频免费| 国产午夜精品论理片| eeuss影院久久| 欧美午夜高清在线| 91在线精品国自产拍蜜月| 51国产日韩欧美| 欧美高清性xxxxhd video| 伊人久久精品亚洲午夜| av天堂在线播放| 亚洲av一区综合| 夜夜夜夜夜久久久久| 亚洲午夜理论影院| 午夜福利18| 18禁裸乳无遮挡免费网站照片| 免费一级毛片在线播放高清视频| 亚洲精品日韩av片在线观看| 亚洲国产精品成人综合色| 国产久久久一区二区三区| 国产毛片a区久久久久| 亚洲成人精品中文字幕电影| 变态另类丝袜制服| 99精品久久久久人妻精品| 女人被狂操c到高潮| 男女那种视频在线观看| 欧美三级亚洲精品| av欧美777| 亚洲成av人片免费观看| 亚洲成av人片在线播放无| www日本黄色视频网| a在线观看视频网站| 丁香六月欧美| 欧美黑人欧美精品刺激| 99久国产av精品| 全区人妻精品视频| 少妇人妻一区二区三区视频| 久久久久久久午夜电影| 精品久久久久久久末码| 99热6这里只有精品| 看免费av毛片| 一区二区三区高清视频在线| 亚洲性夜色夜夜综合| 禁无遮挡网站| 国内久久婷婷六月综合欲色啪| 国产午夜精品论理片| 亚洲精品一区av在线观看| 一夜夜www| 国产伦精品一区二区三区四那| 国产免费av片在线观看野外av| 别揉我奶头~嗯~啊~动态视频| 亚洲av中文字字幕乱码综合| 两个人的视频大全免费| 国产国拍精品亚洲av在线观看| 中亚洲国语对白在线视频| 日本在线视频免费播放| 国产伦一二天堂av在线观看| 97人妻精品一区二区三区麻豆| 超碰av人人做人人爽久久| 久久99热6这里只有精品| 欧美三级亚洲精品| 中文字幕熟女人妻在线| 老司机福利观看| 激情在线观看视频在线高清| 国产一区二区在线观看日韩| 久久精品综合一区二区三区| 亚洲成av人片免费观看| 国产色婷婷99| 老熟妇仑乱视频hdxx| 我要看日韩黄色一级片| 亚洲第一欧美日韩一区二区三区| 欧美精品啪啪一区二区三区| 日本a在线网址| 亚洲国产日韩欧美精品在线观看| 久久精品国产亚洲av香蕉五月| 麻豆国产av国片精品| 国产熟女xx| 12—13女人毛片做爰片一| 国产成年人精品一区二区| 久9热在线精品视频| 久久久久精品国产欧美久久久| 亚洲成人免费电影在线观看| 一个人免费在线观看的高清视频| 三级毛片av免费| 在线观看舔阴道视频| 国产精品久久久久久精品电影| 青草久久国产| 一区二区三区高清视频在线| 免费在线观看成人毛片| 午夜影院日韩av| 国产精品亚洲av一区麻豆| 亚洲自拍偷在线| 97超级碰碰碰精品色视频在线观看| 亚洲精品在线美女| 国产伦人伦偷精品视频| 天堂影院成人在线观看| 亚洲av五月六月丁香网| 3wmmmm亚洲av在线观看| 久久久久久久精品吃奶| 日韩欧美在线二视频| 精品一区二区三区视频在线观看免费| 婷婷六月久久综合丁香| 国产淫片久久久久久久久 | 黄色一级大片看看| 欧美xxxx黑人xx丫x性爽| 欧美区成人在线视频| 日日干狠狠操夜夜爽| 亚洲三级黄色毛片| 亚洲欧美日韩无卡精品| 久久久久九九精品影院| 亚洲成av人片在线播放无| 久久精品国产亚洲av香蕉五月| 日韩有码中文字幕| 国产黄片美女视频| 亚洲,欧美精品.| 天美传媒精品一区二区| 成人鲁丝片一二三区免费| 欧美高清成人免费视频www| 国产精品免费一区二区三区在线| 怎么达到女性高潮| 中文字幕熟女人妻在线| 搞女人的毛片| 亚洲黑人精品在线| 国产亚洲精品久久久久久毛片| 久久九九热精品免费| 在线十欧美十亚洲十日本专区| 亚州av有码| 日韩 亚洲 欧美在线| 亚洲成av人片在线播放无| 欧美一区二区精品小视频在线| 久久人人爽人人爽人人片va | 国产视频内射| 看十八女毛片水多多多| 波多野结衣高清无吗| 深爱激情五月婷婷| 日韩大尺度精品在线看网址| 天堂√8在线中文| 久久久精品大字幕| 国产一区二区激情短视频| 91九色精品人成在线观看| 久久久久久国产a免费观看| 亚洲人成网站在线播| 99久久九九国产精品国产免费| 自拍偷自拍亚洲精品老妇| 少妇的逼好多水| 欧美乱妇无乱码| 99精品在免费线老司机午夜| 亚洲电影在线观看av| 亚洲片人在线观看| 日韩高清综合在线| 国产精品人妻久久久久久| 亚洲精品粉嫩美女一区| 亚洲精品乱码久久久v下载方式| 精品一区二区三区视频在线观看免费| 国产色婷婷99| 久久人人精品亚洲av| 久久性视频一级片| 午夜两性在线视频| 最近视频中文字幕2019在线8| 久久久久久久亚洲中文字幕 | 亚洲成人中文字幕在线播放| 夜夜爽天天搞| 国产综合懂色| 久久人人精品亚洲av| 熟女人妻精品中文字幕| 在线a可以看的网站| 男人舔女人下体高潮全视频| 99在线视频只有这里精品首页| 欧美区成人在线视频| 成人av在线播放网站| 国产午夜精品久久久久久一区二区三区 | 女同久久另类99精品国产91| 老鸭窝网址在线观看| 国产精品亚洲美女久久久| 亚洲精品色激情综合| av黄色大香蕉| 久久欧美精品欧美久久欧美| 给我免费播放毛片高清在线观看| 少妇熟女aⅴ在线视频| 久久精品国产自在天天线| 亚洲国产精品成人综合色| 内地一区二区视频在线| 麻豆久久精品国产亚洲av| 在线观看午夜福利视频| 婷婷精品国产亚洲av| 国内毛片毛片毛片毛片毛片| 国产激情偷乱视频一区二区| 国内揄拍国产精品人妻在线| 国产v大片淫在线免费观看| 久久国产乱子伦精品免费另类| 日本在线视频免费播放| www.999成人在线观看| 色综合婷婷激情| 亚洲国产精品成人综合色| av在线蜜桃| 精品一区二区三区视频在线| 日本黄大片高清| 亚洲最大成人手机在线| 日本熟妇午夜| 国产国拍精品亚洲av在线观看| 内地一区二区视频在线| 三级男女做爰猛烈吃奶摸视频| 一个人免费在线观看的高清视频| 亚洲男人的天堂狠狠| 国产野战对白在线观看| xxxwww97欧美| 每晚都被弄得嗷嗷叫到高潮| 最后的刺客免费高清国语| 亚洲专区国产一区二区| 国模一区二区三区四区视频| h日本视频在线播放| 最近在线观看免费完整版| 日韩人妻高清精品专区| 国产精品久久电影中文字幕| 麻豆国产97在线/欧美| 搞女人的毛片| 精品欧美国产一区二区三| 亚洲精品一区av在线观看| 99久久成人亚洲精品观看| 成年女人永久免费观看视频| 国产毛片a区久久久久| 国产欧美日韩一区二区精品| 亚洲成人中文字幕在线播放| 怎么达到女性高潮| 国产高清有码在线观看视频| 精品不卡国产一区二区三区| 免费在线观看成人毛片| 精品国产三级普通话版| 国产精品永久免费网站| 国产精品,欧美在线| 久久伊人香网站| 一进一出好大好爽视频| 久久国产精品人妻蜜桃| 99热只有精品国产| 校园春色视频在线观看| 精品国产亚洲在线| 女人十人毛片免费观看3o分钟| 午夜视频国产福利| 国产高清视频在线观看网站| 尤物成人国产欧美一区二区三区| 最好的美女福利视频网| 1024手机看黄色片| 国内精品美女久久久久久| 亚洲成av人片免费观看| 精品一区二区三区视频在线观看免费| bbb黄色大片| 国产精品av视频在线免费观看| a级一级毛片免费在线观看| av视频在线观看入口| 91久久精品电影网| 色视频www国产| 亚洲国产精品999在线| 色视频www国产| 12—13女人毛片做爰片一| aaaaa片日本免费| 熟女电影av网| 久久久久久国产a免费观看| 亚洲人与动物交配视频| 国产极品精品免费视频能看的| 香蕉av资源在线| 免费黄网站久久成人精品 | 日本免费a在线| 少妇的逼水好多| 听说在线观看完整版免费高清| 国产精品乱码一区二三区的特点| 久久久国产成人免费| 亚洲国产精品sss在线观看| 中文字幕久久专区| 亚洲精品粉嫩美女一区| 国产探花在线观看一区二区| 国产高清视频在线观看网站| 国产在线精品亚洲第一网站| 国产av不卡久久| 日韩欧美国产在线观看| 亚洲一区二区三区色噜噜| a在线观看视频网站| 国产在线男女| 久久人人爽人人爽人人片va | 九色国产91popny在线| 国产主播在线观看一区二区| 精品久久久久久成人av| 久久久久久久久久黄片| 欧美绝顶高潮抽搐喷水| 亚洲人成电影免费在线| 中文字幕人成人乱码亚洲影| 午夜视频国产福利| 91在线精品国自产拍蜜月| 成人毛片a级毛片在线播放| 男人狂女人下面高潮的视频| 亚洲精品粉嫩美女一区| 国产精品乱码一区二三区的特点| 18禁黄网站禁片午夜丰满| 亚洲美女视频黄频| 午夜精品一区二区三区免费看| 长腿黑丝高跟| 日日摸夜夜添夜夜添av毛片 | 欧美一区二区国产精品久久精品| 两人在一起打扑克的视频| av欧美777| 黄色丝袜av网址大全| 男女床上黄色一级片免费看| 人妻丰满熟妇av一区二区三区| 床上黄色一级片| 最近最新中文字幕大全电影3| 国产精品一区二区三区四区久久| 亚洲不卡免费看| 欧美bdsm另类| 久久久久久大精品| 日日夜夜操网爽|