• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on the Influence of Bulkhead Arrangement Form on the Structural Acoustic Characteristics of Cylindrical Shell

    2017-10-11 05:33:30TANLuZHOUQidouJIGangZHANGWeikang
    船舶力學(xué) 2017年9期
    關(guān)鍵詞:波數(shù)聲學(xué)殼體

    TAN Lu,ZHOU Qi-dou,JI Gang,ZHANG Wei-kang

    (Dept.of Naval Architecture and Ocean Engineering,Naval Univ.of Engineering,Wuhan 430033,China)

    Study on the Influence of Bulkhead Arrangement Form on the Structural Acoustic Characteristics of Cylindrical Shell

    TAN Lu,ZHOU Qi-dou,JI Gang,ZHANG Wei-kang

    (Dept.of Naval Architecture and Ocean Engineering,Naval Univ.of Engineering,Wuhan 430033,China)

    Abstract:The vibration response of cylindrical shells with periodic or aperiodic arrangement of bulkhead in typical force excitation was calculated by finite element method(FEM).Then,the mean square velocity level transfer functions were obtained by using the vibration response of different shells as the input.At the typical frequency,the wave number spectrum analysis method was applied to transform the vibration response of different shells from the spatial domain into the wavenumber domain.Therefore,the vibration of the shells can be separated into various simple harmonic waves,whose amplitude determines their respective contribution to the vibration.Finally,by comparing the mean square velocity level transfer functions and wavenumber spectrums of the different shells,the influence of different bulkhead arrangement forms on the structural acoustic characteristics of cylindrical shell was obtained.The results show that:for the vertical force excitation,the cylindrical shell with aperiodic arrangement of bulkhead has better structural acoustic characteristics,which however is not obvious for axial force excitation.In the case of the combination of the aperiodic arrangement of bulkhead and the measures of strengthening local structure,the cylindrical shell can obtain better structural acoustic characteristics in both vertical and axial force excitation.

    Key words:cylindrical shell;periodic;aperiodic;wavenumber spectrum;structural acoustic characteristics

    0 Introduction

    Cylindrical shell with bulkhead is an important structural form of ocean engineering[1].The design of bulkhead arrangement form of cylindrical shell usually includes the structural strength,difficulties in design and construction,the space of internal equipments,but the improvement of structural acoustic characteristics of cylindrical shell has not been paid enough attention.The study of the characteristics of cylindrical shell with periodic or aperiodic arrangement of bulkhead can provide references for understanding and optimizing the structural acoustic characteristics of cylindrical shell.

    So far,there have been many researches about the structural acoustic characteristics ofcylindrical shell,but few focus on the influence of the bulkhead arrangement.Bulkhead arrangement form can be divided into two categories:the periodic and the aperiodic.The studies on structural acoustic characteristics of periodic and aperiodic structure have focused on the seventy’s of the last century to the beginning of this century.They mainly use analysis method to study the simple structure,such as:periodic or aperiodic structure beam[2-5],periodic or aperiodic one-way stiffened plate[6-9].

    The main conclusions of the vibration characteristics of periodic structure are:the vibration of simple periodic structure have alternately pass band and stop band in the frequency domain[10-11]due to the structure wave needs to satisfy the Bloch theory in periodic structure[12-13],and in the pass band structure wave can propagate without attenuation,while in the stop band structure wave is exponentially attenuated with the increase of propagation distance.The main conclusions of the vibration characteristics of the aperiodic structure are:the vibration of the aperiodic structure has the Anderson localization phenomenon[14-15],that the vibration energy of the structure gathers in the vicinity of the excitation source,and the amplitude of the vibration exponentially decays with the distance away from the excitation source.Although some important conclusions have been given by above researches,the study of the influence of bulkhead arrangement form on the structural acoustic characteristics of cylindrical shell has not been done.

    In this paper,the structural acoustic characteristics of typical cylindrical shells which have periodic or aperiodic bulkheads are analyzed in vertical or axial force excitation.The FEM is used to calculate the vibration response of the typical shells,and the mean square velocity level transfer function(response of mean square velocity level in unit excitation)of the shell is obtained.To identify each harmonic wave component of the structure vibration,and to explain the mechanism of vibration response caused by the changes of structure due to wave,the wavenumber spectrum analysis method[16]is used to obtain the vibration power wavenumber spectrum of the shell.Based on the analysis of mean square velocity level transfer functions and wavenumber spectrums of the typical shells,the influence and physical mechanism of the bulkhead arrangement on the structural acoustic characteristics of cylindrical shell are summarized.And the measures combining the aperiodic arrangement of bulkhead with the strengthening of local structure is creatively raised to control the vibration and noise.The paper no longer introduces FEM and mean square velocity level transfer functions theory,but focuses on the wavenumber spectrum analysis theory of the cylindrical shell.

    1 Wavenumber spectrum analysis theory of cylindrical shell

    To transform the vibration response of cylindrical shell from the spatial domain into the wavenumber domain,the vibration response field with finite length in axial direction is extended to infinite.The assumption that there are infinite cylindrical baffles at the two ends of the finite shell[17]leads to the expression of the vibration response as:

    where x and θ are axial and circumferential coordinates in cylindrical coordinate system respectively,and wRand wIare the real and imaginary parts of the normal displacement w of the shell,and L is the length of cylindrical shell,andThe Fourier series expansion of wRand wIis carried out in the circumferential direction,and the Fourier transform is carried out in the axial direction[16]:

    where kxand n are axial and circumferential wavenumber,and the wavenumber of a single structure wave component is expressed as kx,()n.Eq.(2)shows that the vibration response field of cylindrical shell is decomposed into a superposition of simple traveling waves with different axial and circumferential wavenumber.are the amplitude of the wave whose wavenumber marked as

    The square of the normal velocity response of the shell in Eq.(1)is integrated on the surface of the cylindrical shell,and the vibration powerexpressed by normal velocity on the surface of the whole cylindrical shell is obtained,which is called normal velocity vibration power for short.

    where a is radius of cylindrical shell,ρ0and c0are the density and sound velocity of the coupled fluid.The multiplier(the acoustic impedance ρ0c0)can transform equation dimension into power unit,which do not change the frequency characteristic of the vibration power.The fluid in this paper refers to the air.Combining the Eq.(2)and Eq.(3),and by using the Parseval equation,the function can be simplified into[16]:

    The total normal velocity vibration power of the shell can be expressed as the superposition of the normal velocity vibration power of the wave components of the wavenumber

    Therefore,according to the Eq.(4)and the Eq.(5),the normal velocity vibration powerof a single simple traveling wave of the wavenumbercan be acquired:

    2 Structural acoustic characteristics of cylindrical shell with periodic or aperiodic arrangement of bulkhead in vertical force excitation

    The principal dimension of typical cylindrical shell with different bulkhead arrangement form is shown in Fig.1.The thicknesses of the shell and bulkhead are 14 mm and 10 mm,respectively.The ribs are arranged periodically,and the distance is 600 mm apart from each other.Rib thickness is 7 mm and the height is 300 mm.There are two typical cylindrical shell models which are divided into 6 cabins.The bulkhead spacing of model 1(periodic arrangement of bulkheads)is 6 000 mm,and the bulkhead arrangement form of model 2(aperiodic arrangement of bulkheads)is shown in Fig.1.Two models are all made of steel,whose Young’s modulus is 2.05×105N/mm2,and the density is 7.80×10-6kg/mm3,and the Poisson’s ratio is 0.3.The two typical excitations are vertical force excitation and axial force excitation respectively which are also shown in Fig.1.

    Fig.1 The cylindrical shell with aperiodic arrangement of bulkhead

    Because the cabin 1(the first cabin in the left side of the cylindrical shell)is close to the excitation source,the vibration response of cabin 1 was not included in the mean square velocity level of the shell,otherwise the vibration characteristics of the shell away from the excitation source is not obvious.

    Fig.2 Mean square velocity level transfer function of model 1 and model 2 in vertical force excitation

    Fig.2 denotes the mean square velocity level transfer functionsof model 1 and model 2 in vertical force excitation.Three conclusions can be summed up from this figure.Firstly,the influence of bulkhead arrangement form on the shell vibration is relatedto the relative size of cabin length and structure wavelength.At low frequency,the structure wavelength is much longer than the length of the cabin,so the shell vibration is less influenced by bulkhead arrangement form.At high frequency,the structure wavelength is much smaller than the length of the cabin,so the vibration of the shell is mainly affected by the rib arrangement form but not bulkhead arrangement form.At middle frequency,the structure wavelength is similar to the length of the cabin,so bulkhead arrangement form has a great influence on the shell vibration.Secondly,the vibration of model 1 has alternately pass band and stop band in the frequency domain.According to the vibration shapes,the three spectrum peaks marked in Fig.2 represent three pass bands,whose corresponding vibration shape of the cabin is mainly based on 0.5,1,1.5 times the structure wave in axial direction,respectively.Thirdly,in the pass band,the value of mean square velocity level transfer function of model 2 is smaller than that of model 1.It indicates that,comparing with the periodic arrangement of bulkheads,the vibration of the shell with aperiodic arrangement of bulkhead shows the phenomenon of Anderson localization in which the amplitude of structure wave has significant attenuation.

    Taking the typical peak frequency of 292 Hz as an example,the wavenumber spectrum analysis of the vibration of cylindrical shell with periodic or aperiodic arrangement of bulkhead is carried out.Fig.3 denotes the normal velocity vibration power wavenumber spectrum of model 1 and model 2 corresponding to circumferential wavenumber n=1 in 292 Hz.The horizontal coordinate of the figure is axial dimensionless wavenumber where

    Fig.3 The normal velocity vibration power wavenumber spectrum of model 1 and model 2 corresponding to n=1 at 292 Hz

    In Fig.3,there are a series of peaks in the normal velocity vibration power wavenumber spectrum of model 1.According to the dimensionless wavenumber,it can be found that the structure wavelength corresponding to each peak is equal to 1/m(m is positive integer,and the value of m corresponding to the peaks have been given in Fig.3)times the length of cabin,which indicates the ‘selection’ effect of the axial structure bending wave of cylindrical shell with periodic arrangement of bulkhead.

    The largest spectrum peaks(m=1)of the transfer function of model 1 and model 2 correspond to the same dimensionless wavenumber.It suggests that the vibration shapes of the two models in axial direction are the same,of which the wavelength is equal to the length of the cabin,which is the main factor of the vibration attenuation of model 2.Fig.4 shows the vibration shapes of model 1 and model 2 in vertical force excitation in 292 Hz.It shows that,comparing with the periodic arrangement form of bulkheads,the matching relation of the phase ofstructure wave between cabins is broken by the aperiodic arrangement of bulkheads,therefore the shell vibration attenuated.

    3 Structural acoustic characteristics of cylindrical shell with periodic or aperiodic arrangement of bulkhead in axial force excitation

    Fig.5 denotes the mean square velocity level transfer functions of model 1 and model 2 in axial force excitation.It shows that the arrangement form of the bulkheads has little effect on the mean square velocity of the cylindrical shell.

    Fig.5 Mean square velocity level transfer functions of model 1 and model 2 in axial force excitation

    Fig.6 Vibration shapes of model 1 and model 2 in axial force excitation at 271 Hz

    In Fig.7,the vibration of the two models is mainly composed of the waves whose dimensionless wavenumber are(0,43)and(4,239).Combined with Fig.6,the long structure wave of wavenumber(0,43)is mainly manifested in the right end of the shell.Its wavelength is approximately 3 times the length of cabin in axial.The bending wave of this kind is mainly generated by the longitudinal wave encountering the bulkheads.Since the arrangement form of bulkheads has little effect on the longitudinal waves,it has little influence on that bending wave.

    On the other hand,the short structure wave of wavenumber(4,239)is mainly manifestedin the left end of the shell.Its wavelength is approximately 0.5 times the length of cabin in axial.Because the axisymmetric structure bending wave is repressed by bulkhead with strong radial stiffness,the amplitude of the wave of wavenumber n=4 has a great attenuation at the bulkhead 2(the second bulkhead from the left side of shell as shown in Fig.1).As a result,the difference of the two arrangement forms of bulkhead on the vibration of the shell is not obvious.In order to weaken the vibration of the whole shell,the length of cabin 1 should be as short as possible in the case of other design conditions permitted.

    Fig.7 The normal velocity vibration power wavenumber spectrum of model 1 and model 2 corresponding to n=0,4 at 271 Hz

    4 Structural acoustic characteristics of cylindrical shell with aperiodic arrangement of bulkhead and local structure strengthening

    According to the analysis on structural acoustic characteristics of model 1 and model 2 in vertical and axial force excitation,the aperiodic arrangement of bulkheads is beneficial to the vibration control of the shell in vertical force excitation,but is not in axial force excitation.Considering the strong vibration of cabin 1 which closes to the excitation source,the structural acoustic characteristics of the shell with strengthened local structure and aperiodic arrangement of bulkhead are analyzed.

    Fig.8 Mean square velocity level transfer function of model 1 and model 3 in vertical and axial force excitation

    The cylindrical shell(called model 3)is strengthened by 8 longitudinal frames arranged uniformly along the circumferential direction in the cabin 1.The longitudinal frames are as long as the cabin 1,and their thicknesses and height are 14 mm and 300 mm,respectively.

    Fig.8 denotes the mean square velocity level transfer functions of models 1-3 in vertical and axial force excitation.The results show that,comparing with the vibration of model 1,the vibration of the model 3 is greatly attenuated in both vertical force excitation and axial force excitation.For vertical force excitation,according to Figs.2-8,it is shown that local structure strengthening has no significant influence on the vibration of cylindrical shell with aperiodic arrangement of bulkhead.At that time,their structural acoustic characteristics are always better than the shell with periodic arrangement of bulkhead.For axial force excitation,because the axial stiffness of cabin 1 is stronger after strengthened by longitudinal frames,the amplitude of axisymmetric bending wave decreased significantly,which is the main reason of vibration attenuation of shell.

    5 Conclusions

    In this paper,the influence of the bulkhead arrangement form on the structural acoustic characteristics of cylindrical shells in two typical excitations is discussed.The main results are as follows:

    (1)Only in the case that the structure wavelength is similar to the length of cabin,the vibration of shell can be influenced by bulkhead arrangement form in vertical force excitation.

    (2)For vertical force excitation,the vibration of the shell with periodic arrangement of bulkhead has alternately pass band and stop band in the frequency domain.And the vibration of the shell with aperiodic arrangement of bulkhead has the phenomenon of Anderson localization resulting in the decrease of wave amplitude in pass band.

    (3)For axial force excitation,bulkhead arrangement form has less influence on the vibration of the shell.There are two main reasons.Firstly,the axisymmetric bending waves are repressed by bulkheads which have strong radial stiffness.So,the length of the first cabin should be as short as possible in the case of other design conditions permitted.Secondly,the bulkhead arrangement form is not effective to control the bending waves generated by longitudinal waves when encountering bulkheads.

    在小尺度空間中進行水景設(shè)計應(yīng)堅持人性化、實用性、生態(tài)性、參與性等設(shè)計原則與可持續(xù)建設(shè)構(gòu)想,不能一味地簡單模仿.一般需要綜合考慮以下幾個方面:

    (4)In the case of the combination of the aperiodic arrangement of bulkhead and the measures of strengthening local structure,the cylindrical shell can obtain better structural acoustic characteristics in vertical or axial force excitation.

    [1]Huang Jiaqiang.Optimum design of long cabin stiffened cylindrical shell[J].Journal of Ship Mechanics,2016,20(1-2):137-141.(in Chinese)

    [2]Mead D J.Wave propagation and natural modes in periodic systems:I.mono-coupled systems[J].Journal of Sound and Vibration,1975,40(1):1-18.

    [3]Mead D J.Wave propagation and natural modes in periodic systems:II.multi-coupled systems,with and without damping[J].Journal of Sound and Vibration,1975,40(1):19-39.

    [4]Bouzit D,Pierre C.An experimental investigation of vibration localization in disordered multi-span beams[J].Journal of Sound and Vibration,1995,187(4):649-669.

    [5]Bansal A S.Collective and localized modes of mono-coupled multi-span beams with large deterministic disorders[J].The Journal of Acoustical Society of America,1997,102(6):3806-3809.

    [6]Mead D J,Zhu D C,Bardell N S.Free vibration of an orthogonally stiffened flat plate[J].Journal of Sound and Vibration,1988,127(1):19-48.

    [7]Mead D J,Parthan S.Free wave propagation in two-dimensional periodic plates[J].Journal of Sound and Vibration,1979,64(3):325-348.

    [8]Eatwell G P.Free-wave propagation in an irregularly stiffened,fluid-loaded plate[J].Journal of Sound and Vibration,1983,88(4):507-522.

    [9]Photiadis D M.Anderson localization of one-dimensional wave propagation on a fluid-loaded plate[J].The Journal of A-coustical Society of America,1992,91(2):771-780.

    [10]Mead D J.A new method of analyzing wave propagation in periodic structures;applications to periodic Timoshenko beams and stiffened plates[J].Journal of Sound and Vibration,1986,104(1):9-27.

    [11]Mead D J,Yaman Y.The response of infinite periodic beams to point harmonic forces:a flexural wave analysis[J].Journal of Sound and Vibration,1991,144(3):507-530.

    [12]Ohlrich M.Forced vibration and wave propagation in mono-coupled periodic structures[J].Journal of Sound and Vibration,1986,107(3):411-434.

    [13]Mead D J.Wave propagation in continuous periodic structures:research contributions from Southampton,1964-1995[J].Journal of Sound and Vibration,1996,190(3):495-524.

    [14]Anderson P W.Absence of diffusion in certain random lattices[J].Physical Review,1958,109(5):1492-1505.

    [15]Kazushige Ishii.Localization of eigenstates and transport Phenomena in the one-dimensional disordered system[J].Progress of Theoretical Physics Supplement,1973,53(53):77-138.

    [16]Tan Lu,Ji Gang,Zhang Weikang,et al.Slender cylindrical vibration and radiation by use of wave-number domain approach[J].Journal of Naval University of Engineering,2013,25(3):66-71.(in Chinese)

    [17]Wang C,Lai J C S.The sound radiation efficiency of finite length acoustically thick circular cylindrical shells under mechanical excitation I:Theoretical analysis[J].Journal of Sound and Vibration,2000,232(2):431-447.

    分艙形式對圓柱殼結(jié)構(gòu)聲學(xué)性能影響研究

    譚 路,周其斗,紀 剛,張緯康
    (海軍工程大學(xué) 艦船工程系,武漢430033)

    為研究艙壁布置形式對圓柱殼結(jié)構(gòu)聲學(xué)性能的影規(guī)律,文章應(yīng)用有限元方法對等間距與不等間距分艙圓柱殼模型的振動響應(yīng)進行了計算,以此為輸入可計算獲得殼體的均方法向速度級聲學(xué)傳遞函數(shù),并在典型頻率處應(yīng)用波數(shù)譜分析方法將殼體空間域振動場轉(zhuǎn)換到波數(shù)域上,對殼體的振動進行波形分離與量化,分析獲得了艙壁等間距布置與不等間距布置圓柱殼在典型激勵下的結(jié)構(gòu)聲學(xué)性能,并解釋其機理。研究表明:對垂向激勵,圓柱殼不等間距分艙相比等間距分艙具有較好的結(jié)構(gòu)聲學(xué)性能,但對軸向激勵,兩者區(qū)別不明顯。若將不等間距分艙與局部結(jié)構(gòu)補強措施相結(jié)合,則可使得圓柱殼在兩典型工況下均能獲得更優(yōu)的結(jié)構(gòu)聲學(xué)性能。

    圓柱殼;等間距;不等間距;波數(shù)譜;結(jié)構(gòu)聲學(xué)

    U661.42

    A

    譚 路(1989-),男,海軍工程大學(xué)博士研究生;周其斗(1962-),男,博士,海軍工程大學(xué)教授,博士生導(dǎo)師;紀 剛(1975-),男,博士,海軍工程大學(xué)副教授,碩士生導(dǎo)師;張緯康(1939-),男,博士,海軍工程大學(xué)教授,博士生導(dǎo)師。

    10.3969/j.issn.1007-7294.2017.09.011

    Article ID: 1007-7294(2017)09-1170-10

    Received date:2017-04-15

    Foundation item:Supported by National Defense Pre-Research Foundation of China(9140A14080512JB11165)

    Biography:TAN Lu(1989-),male,Ph.D.,student of Naval University of Engineering,E-mail:512425568@qq.com;ZHOU Qi-dou(1962-),male,Ph.D.,professor/tutor.

    猜你喜歡
    波數(shù)聲學(xué)殼體
    聲場波數(shù)積分截斷波數(shù)自適應(yīng)選取方法
    一種基于SOM神經(jīng)網(wǎng)絡(luò)中藥材分類識別系統(tǒng)
    電子測試(2022年16期)2022-10-17 09:32:26
    減速頂殼體潤滑裝置的研制與構(gòu)想
    愛的就是這股Hi-Fi味 Davis Acoustics(戴維斯聲學(xué))Balthus 70
    汽車變速箱殼體零件自動化生產(chǎn)線
    Acoustical Treatment Primer:Diffusion談?wù)劼晫W(xué)處理中的“擴散”
    Acoustical Treatment Primer:Absorption談?wù)劼晫W(xué)處理中的“吸聲”(二)
    Acoustical Treatment Primer:Absorption 談?wù)劼晫W(xué)處理中的“吸聲”
    油泵殼體的沖壓工藝及模具設(shè)計
    TH型干燥筒殼體的焊接
    焊接(2016年2期)2016-02-27 13:01:22
    久久综合国产亚洲精品| 人人澡人人妻人| 多毛熟女@视频| 日韩不卡一区二区三区视频在线| 亚洲伊人久久精品综合| 亚洲婷婷狠狠爱综合网| 亚洲国产精品国产精品| 国产日韩欧美亚洲二区| 亚洲精华国产精华液的使用体验| 亚洲人成网站在线观看播放| 婷婷成人精品国产| av线在线观看网站| 亚洲av成人精品一二三区| 国产精品一国产av| 国产精品亚洲av一区麻豆 | 久久久久网色| 超碰97精品在线观看| 无遮挡黄片免费观看| 精品国产超薄肉色丝袜足j| 国产成人a∨麻豆精品| 在线 av 中文字幕| 亚洲欧美精品综合一区二区三区| 久久国产亚洲av麻豆专区| 国产成人精品久久久久久| 新久久久久国产一级毛片| 建设人人有责人人尽责人人享有的| 久久婷婷青草| 国产成人精品久久二区二区91 | 国产成人欧美| 欧美人与善性xxx| 免费人妻精品一区二区三区视频| 亚洲国产精品一区三区| 秋霞在线观看毛片| 在线精品无人区一区二区三| 国产欧美日韩综合在线一区二区| 咕卡用的链子| 国产成人系列免费观看| 高清黄色对白视频在线免费看| 精品久久久久久电影网| av电影中文网址| 97在线人人人人妻| 最近最新中文字幕大全免费视频 | 在现免费观看毛片| 久久热在线av| 亚洲欧美激情在线| 捣出白浆h1v1| 人人妻人人澡人人看| 中文字幕av电影在线播放| 欧美 日韩 精品 国产| 老汉色av国产亚洲站长工具| 亚洲伊人久久精品综合| 在现免费观看毛片| 丁香六月天网| 久热这里只有精品99| 成人午夜精彩视频在线观看| 亚洲精品美女久久av网站| 亚洲美女黄色视频免费看| 青春草亚洲视频在线观看| 在线免费观看不下载黄p国产| 欧美黑人精品巨大| 91aial.com中文字幕在线观看| 综合色丁香网| 亚洲国产精品国产精品| 永久免费av网站大全| 国产亚洲欧美精品永久| 午夜激情av网站| h视频一区二区三区| 国产福利在线免费观看视频| 青春草亚洲视频在线观看| 一区二区三区激情视频| 亚洲,欧美精品.| 街头女战士在线观看网站| 欧美久久黑人一区二区| 国产爽快片一区二区三区| 大香蕉久久网| 久久久久视频综合| 一边摸一边做爽爽视频免费| 人人妻人人爽人人添夜夜欢视频| 午夜老司机福利片| 久久青草综合色| 欧美另类一区| 黄色 视频免费看| 午夜福利视频精品| 2018国产大陆天天弄谢| 色吧在线观看| 女人爽到高潮嗷嗷叫在线视频| 高清在线视频一区二区三区| 交换朋友夫妻互换小说| 色视频在线一区二区三区| 国产无遮挡羞羞视频在线观看| 欧美黑人欧美精品刺激| 免费不卡黄色视频| 午夜激情av网站| 亚洲精品一二三| 亚洲精品,欧美精品| 日韩成人av中文字幕在线观看| 欧美亚洲日本最大视频资源| 国产有黄有色有爽视频| 久久久久视频综合| 丰满饥渴人妻一区二区三| 99re6热这里在线精品视频| 最黄视频免费看| 99九九在线精品视频| videos熟女内射| 精品免费久久久久久久清纯 | 亚洲,一卡二卡三卡| 日韩制服丝袜自拍偷拍| 男女下面插进去视频免费观看| www.熟女人妻精品国产| 狠狠精品人妻久久久久久综合| 色94色欧美一区二区| 亚洲av男天堂| 日韩中文字幕欧美一区二区 | 在线观看免费午夜福利视频| 2021少妇久久久久久久久久久| 午夜免费观看性视频| 欧美日韩成人在线一区二区| 欧美日韩国产mv在线观看视频| 亚洲欧美色中文字幕在线| 人成视频在线观看免费观看| 中文字幕最新亚洲高清| 嫩草影视91久久| 免费观看人在逋| 国产成人啪精品午夜网站| 麻豆精品久久久久久蜜桃| 亚洲成人国产一区在线观看 | 91精品国产国语对白视频| 亚洲国产精品国产精品| 丝袜人妻中文字幕| 免费观看性生交大片5| 黑人巨大精品欧美一区二区蜜桃| 国产福利在线免费观看视频| 亚洲av电影在线观看一区二区三区| 99热全是精品| 香蕉丝袜av| 黑人猛操日本美女一级片| 丰满饥渴人妻一区二区三| 五月开心婷婷网| 女人精品久久久久毛片| 国产亚洲一区二区精品| av.在线天堂| 男女高潮啪啪啪动态图| 亚洲美女搞黄在线观看| 国产成人精品久久二区二区91 | 在线观看免费视频网站a站| 汤姆久久久久久久影院中文字幕| av国产久精品久网站免费入址| 免费少妇av软件| 丝袜人妻中文字幕| 大片免费播放器 马上看| 亚洲第一av免费看| 在线观看免费午夜福利视频| 国产精品99久久99久久久不卡 | 无限看片的www在线观看| 精品人妻在线不人妻| 免费观看a级毛片全部| 99九九在线精品视频| 一区福利在线观看| 午夜老司机福利片| 麻豆乱淫一区二区| 天堂中文最新版在线下载| 亚洲欧洲精品一区二区精品久久久 | 日本欧美国产在线视频| 99国产精品免费福利视频| 亚洲av男天堂| 韩国av在线不卡| 色94色欧美一区二区| 日韩av免费高清视频| 国产精品一二三区在线看| 久久女婷五月综合色啪小说| 在线观看国产h片| 熟妇人妻不卡中文字幕| 男女边摸边吃奶| 日日爽夜夜爽网站| 国产精品国产av在线观看| av免费观看日本| 欧美 亚洲 国产 日韩一| 尾随美女入室| 亚洲av中文av极速乱| 久久久久久久精品精品| 日韩一区二区视频免费看| 哪个播放器可以免费观看大片| 一本久久精品| 九草在线视频观看| 激情五月婷婷亚洲| 国产亚洲av片在线观看秒播厂| 日韩人妻精品一区2区三区| xxxhd国产人妻xxx| 精品人妻在线不人妻| bbb黄色大片| 777久久人妻少妇嫩草av网站| 十八禁网站网址无遮挡| av又黄又爽大尺度在线免费看| 久久久精品区二区三区| 熟女av电影| 亚洲av中文av极速乱| 国产精品久久久久久人妻精品电影 | 亚洲欧美色中文字幕在线| 欧美av亚洲av综合av国产av | 日韩大片免费观看网站| 亚洲精品第二区| 久久久久久久久久久免费av| 国产高清国产精品国产三级| 在线观看一区二区三区激情| 欧美日韩一级在线毛片| 一边摸一边做爽爽视频免费| 你懂的网址亚洲精品在线观看| 久久午夜综合久久蜜桃| 日本欧美视频一区| 99热国产这里只有精品6| 亚洲精品日本国产第一区| 在线精品无人区一区二区三| 国产精品 欧美亚洲| 久久久久久久国产电影| 汤姆久久久久久久影院中文字幕| 精品久久久精品久久久| 国产一区二区三区综合在线观看| 亚洲欧洲精品一区二区精品久久久 | 色94色欧美一区二区| 男女高潮啪啪啪动态图| 巨乳人妻的诱惑在线观看| 国产精品无大码| 在线 av 中文字幕| 叶爱在线成人免费视频播放| 久久97久久精品| 一区福利在线观看| 成年女人毛片免费观看观看9 | 天天影视国产精品| 精品一区二区免费观看| 黄色 视频免费看| 人成视频在线观看免费观看| 最近手机中文字幕大全| 久久久久久久久久久免费av| 搡老乐熟女国产| 精品亚洲成国产av| 久久久久精品久久久久真实原创| 亚洲精品在线美女| 日韩一本色道免费dvd| av卡一久久| 国产成人午夜福利电影在线观看| 国产成人91sexporn| 亚洲欧美激情在线| 日韩av不卡免费在线播放| av国产久精品久网站免费入址| 免费在线观看完整版高清| 自拍欧美九色日韩亚洲蝌蚪91| 三上悠亚av全集在线观看| 欧美精品一区二区大全| 婷婷色综合www| 看免费成人av毛片| 成人漫画全彩无遮挡| 国产色婷婷99| 七月丁香在线播放| 如何舔出高潮| 街头女战士在线观看网站| 五月天丁香电影| av有码第一页| 久久影院123| 国产精品麻豆人妻色哟哟久久| 国产精品一国产av| 国产亚洲一区二区精品| 亚洲精品视频女| 一级毛片我不卡| 免费黄频网站在线观看国产| 美女高潮到喷水免费观看| 午夜福利网站1000一区二区三区| 日韩大片免费观看网站| 丁香六月欧美| 纯流量卡能插随身wifi吗| 亚洲男人天堂网一区| 婷婷色麻豆天堂久久| 国产人伦9x9x在线观看| 久久久久精品性色| 久久精品aⅴ一区二区三区四区| 一级片免费观看大全| 亚洲国产av影院在线观看| 国产精品久久久久成人av| 免费看av在线观看网站| 国产在线视频一区二区| 久久这里只有精品19| 亚洲国产欧美网| av线在线观看网站| 国产女主播在线喷水免费视频网站| √禁漫天堂资源中文www| 国产精品久久久久久精品古装| 男女下面插进去视频免费观看| 9191精品国产免费久久| 国产免费现黄频在线看| 亚洲色图综合在线观看| 91精品三级在线观看| 免费av中文字幕在线| 亚洲欧美色中文字幕在线| 亚洲av成人精品一二三区| 婷婷色av中文字幕| 91国产中文字幕| 黄色视频在线播放观看不卡| 精品国产乱码久久久久久男人| 91精品国产国语对白视频| 欧美人与善性xxx| www.熟女人妻精品国产| 赤兔流量卡办理| 亚洲成国产人片在线观看| 天天躁夜夜躁狠狠躁躁| 99热国产这里只有精品6| 啦啦啦啦在线视频资源| 欧美精品一区二区免费开放| 97精品久久久久久久久久精品| 亚洲欧美一区二区三区黑人| 无限看片的www在线观看| 午夜福利免费观看在线| 午夜日韩欧美国产| 看十八女毛片水多多多| 日日摸夜夜添夜夜爱| 在线精品无人区一区二区三| 天美传媒精品一区二区| 高清视频免费观看一区二区| 青青草视频在线视频观看| 考比视频在线观看| 日本猛色少妇xxxxx猛交久久| 晚上一个人看的免费电影| 亚洲伊人色综图| 在线 av 中文字幕| tube8黄色片| 90打野战视频偷拍视频| 男女高潮啪啪啪动态图| www.自偷自拍.com| 纵有疾风起免费观看全集完整版| 久久久久久久精品精品| 国产黄色免费在线视频| 又粗又硬又长又爽又黄的视频| 一级a爱视频在线免费观看| 久久精品人人爽人人爽视色| 国产片内射在线| 精品亚洲成a人片在线观看| 十八禁人妻一区二区| 一区二区三区乱码不卡18| 另类亚洲欧美激情| 亚洲av成人精品一二三区| 亚洲五月色婷婷综合| 欧美日韩综合久久久久久| 男女边吃奶边做爰视频| 久久精品国产a三级三级三级| 亚洲av中文av极速乱| 丝袜美足系列| 一个人免费看片子| 久久精品亚洲av国产电影网| 日本欧美国产在线视频| 高清在线视频一区二区三区| 天堂中文最新版在线下载| 国产精品三级大全| 青春草国产在线视频| 国产在线免费精品| 777米奇影视久久| 9热在线视频观看99| 亚洲精华国产精华液的使用体验| 男人操女人黄网站| 看免费av毛片| 在线观看一区二区三区激情| 这个男人来自地球电影免费观看 | av在线app专区| 午夜日本视频在线| 高清不卡的av网站| 午夜免费男女啪啪视频观看| 中文字幕最新亚洲高清| 深夜精品福利| 国产av国产精品国产| 国产一区二区三区综合在线观看| 一二三四中文在线观看免费高清| 国产成人精品在线电影| 咕卡用的链子| 久久精品国产亚洲av高清一级| 亚洲自偷自拍图片 自拍| 中文字幕另类日韩欧美亚洲嫩草| 色婷婷久久久亚洲欧美| av网站免费在线观看视频| 777久久人妻少妇嫩草av网站| 老鸭窝网址在线观看| 欧美日韩av久久| 日韩人妻精品一区2区三区| 最近2019中文字幕mv第一页| 国产黄频视频在线观看| 欧美 日韩 精品 国产| 99精品久久久久人妻精品| 国产精品蜜桃在线观看| 欧美人与性动交α欧美精品济南到| 晚上一个人看的免费电影| 操出白浆在线播放| 人人妻,人人澡人人爽秒播 | 久久久国产精品麻豆| 国产精品二区激情视频| av片东京热男人的天堂| 久久久久久人人人人人| 制服丝袜香蕉在线| 成人18禁高潮啪啪吃奶动态图| 999久久久国产精品视频| 亚洲一码二码三码区别大吗| av国产精品久久久久影院| 亚洲第一av免费看| 99精品久久久久人妻精品| 午夜激情av网站| 日韩,欧美,国产一区二区三区| 2018国产大陆天天弄谢| 日韩一区二区三区影片| 伦理电影大哥的女人| 一本色道久久久久久精品综合| 麻豆精品久久久久久蜜桃| 男女免费视频国产| 国产成人av激情在线播放| 亚洲国产成人一精品久久久| 国产免费福利视频在线观看| 日本av手机在线免费观看| 97在线人人人人妻| 亚洲人成电影观看| 亚洲国产欧美网| 在线观看免费视频网站a站| 操出白浆在线播放| 免费日韩欧美在线观看| 免费观看av网站的网址| 亚洲国产精品成人久久小说| 视频在线观看一区二区三区| 妹子高潮喷水视频| 成人国产麻豆网| av在线app专区| 777米奇影视久久| 人妻 亚洲 视频| 黑人欧美特级aaaaaa片| 成人亚洲精品一区在线观看| 9191精品国产免费久久| 纵有疾风起免费观看全集完整版| 国产精品一二三区在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 老熟女久久久| 可以免费在线观看a视频的电影网站 | 男女之事视频高清在线观看 | 18禁动态无遮挡网站| 久久这里只有精品19| 国产精品麻豆人妻色哟哟久久| 亚洲国产中文字幕在线视频| 男女床上黄色一级片免费看| 王馨瑶露胸无遮挡在线观看| 国产成人精品久久二区二区91 | 国产成人精品久久二区二区91 | 纵有疾风起免费观看全集完整版| 一区二区三区激情视频| 国产精品免费大片| av在线老鸭窝| 国产亚洲最大av| 国产一区二区三区综合在线观看| 人妻人人澡人人爽人人| 色精品久久人妻99蜜桃| 美女视频免费永久观看网站| 国产成人91sexporn| 日韩电影二区| 久久综合国产亚洲精品| 亚洲成色77777| 国产在视频线精品| 丝袜人妻中文字幕| 嫩草影视91久久| 精品午夜福利在线看| 久久毛片免费看一区二区三区| xxxhd国产人妻xxx| 美女脱内裤让男人舔精品视频| 9热在线视频观看99| 中文欧美无线码| 99久久人妻综合| 又粗又硬又长又爽又黄的视频| 亚洲欧美成人精品一区二区| 中文字幕av电影在线播放| 肉色欧美久久久久久久蜜桃| 精品少妇一区二区三区视频日本电影 | 亚洲情色 制服丝袜| 岛国毛片在线播放| 2021少妇久久久久久久久久久| 婷婷色麻豆天堂久久| 国产欧美日韩一区二区三区在线| 中文字幕色久视频| kizo精华| 99九九在线精品视频| 中文天堂在线官网| 女人被躁到高潮嗷嗷叫费观| 国产精品人妻久久久影院| 亚洲欧美成人精品一区二区| 精品卡一卡二卡四卡免费| 男女下面插进去视频免费观看| 性色av一级| 亚洲欧美成人综合另类久久久| 国产色婷婷99| xxxhd国产人妻xxx| 51午夜福利影视在线观看| 一边摸一边做爽爽视频免费| 国产一区二区在线观看av| 日韩电影二区| 国精品久久久久久国模美| 亚洲第一区二区三区不卡| 亚洲三区欧美一区| 国产成人免费观看mmmm| 18禁国产床啪视频网站| 午夜91福利影院| av网站免费在线观看视频| 欧美 日韩 精品 国产| 黄色视频不卡| a级毛片黄视频| 波多野结衣一区麻豆| 国产成人系列免费观看| 欧美日韩视频高清一区二区三区二| 色网站视频免费| 亚洲精品第二区| 一区二区av电影网| 久久婷婷青草| 少妇猛男粗大的猛烈进出视频| 男女下面插进去视频免费观看| 蜜桃国产av成人99| 狂野欧美激情性xxxx| 欧美激情 高清一区二区三区| 精品国产国语对白av| 1024视频免费在线观看| 亚洲av在线观看美女高潮| 丰满乱子伦码专区| 夫妻性生交免费视频一级片| 国产亚洲av高清不卡| 久久这里只有精品19| 赤兔流量卡办理| 大片免费播放器 马上看| 亚洲激情五月婷婷啪啪| 久久精品国产a三级三级三级| 欧美另类一区| 老司机影院毛片| 亚洲欧美精品综合一区二区三区| 人人妻人人澡人人看| 人妻 亚洲 视频| av卡一久久| 亚洲精品视频女| 亚洲国产精品国产精品| 青春草亚洲视频在线观看| 国产av码专区亚洲av| 激情视频va一区二区三区| 欧美日韩福利视频一区二区| 亚洲精品久久成人aⅴ小说| 国产1区2区3区精品| 国产精品 国内视频| 亚洲专区中文字幕在线 | 亚洲精品美女久久久久99蜜臀 | 欧美97在线视频| av在线播放精品| 国产女主播在线喷水免费视频网站| 18禁动态无遮挡网站| 日本猛色少妇xxxxx猛交久久| 女性生殖器流出的白浆| 免费黄色在线免费观看| 一级毛片 在线播放| 一本一本久久a久久精品综合妖精| 国产在视频线精品| 成人黄色视频免费在线看| 天天影视国产精品| 啦啦啦视频在线资源免费观看| 母亲3免费完整高清在线观看| 亚洲美女搞黄在线观看| 成人影院久久| 国产伦人伦偷精品视频| 欧美日韩亚洲高清精品| 黑人猛操日本美女一级片| 色网站视频免费| 亚洲精品在线美女| 久久久国产一区二区| 成人免费观看视频高清| 欧美成人午夜精品| 成年女人毛片免费观看观看9 | 国产xxxxx性猛交| 又粗又硬又长又爽又黄的视频| 免费看不卡的av| 亚洲 欧美一区二区三区| 中文字幕人妻丝袜制服| 精品少妇一区二区三区视频日本电影 | 亚洲伊人久久精品综合| 精品一区二区三卡| 青春草亚洲视频在线观看| 久久久久久久久久久免费av| 成年人午夜在线观看视频| 免费高清在线观看视频在线观看| 18禁观看日本| 狂野欧美激情性xxxx| 国产av一区二区精品久久| 日本av手机在线免费观看| 看十八女毛片水多多多| 欧美乱码精品一区二区三区| 天天操日日干夜夜撸| 亚洲精品第二区| 精品国产乱码久久久久久小说| 涩涩av久久男人的天堂| 久久久国产一区二区| 蜜桃在线观看..| 亚洲 欧美一区二区三区| 叶爱在线成人免费视频播放| 老司机在亚洲福利影院| 只有这里有精品99| 狠狠精品人妻久久久久久综合| 18禁裸乳无遮挡动漫免费视频| 久久久精品免费免费高清| 人人澡人人妻人| 黑丝袜美女国产一区| 一边摸一边抽搐一进一出视频| 亚洲美女黄色视频免费看| 自线自在国产av| 欧美日韩福利视频一区二区| 午夜福利视频精品| 人体艺术视频欧美日本| 欧美日韩精品网址| 欧美日韩视频精品一区| 久久久久久人妻| 亚洲综合色网址| 人人妻人人爽人人添夜夜欢视频| 黄色毛片三级朝国网站| 最近中文字幕2019免费版| 黄色视频在线播放观看不卡| 成人手机av|