• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Design Exploration on Double Intersecting Spheres Manned Pressure Hull of Full Ocean Depth

    2017-10-11 05:33:29LIHaoWANGFangCUIWeichengChinaShipScientificResearchCenterWuxi408ChinaHadalScienceandTechnologyResearchCenterCollegeofMarineScienceShanghaiOceanUniversityShanghaiEngineeringResearchCenterofHadalScienceandTechnologyShang
    船舶力學(xué) 2017年9期
    關(guān)鍵詞:海深海洋大學(xué)耐壓

    LI Hao,WANG Fang,CUI Wei-cheng(.China Ship Scientific Research Center,Wuxi 408,China;.Hadal Science and Technology Research Center,College of Marine Science,Shanghai Ocean University(Shanghai Engineering Research Center of Hadal Science and Technology),Shanghai 0306,China)

    Structural Design Exploration on Double Intersecting Spheres Manned Pressure Hull of Full Ocean Depth

    LI Hao1,WANG Fang2,CUI Wei-cheng2
    (1.China Ship Scientific Research Center,Wuxi 214082,China;2.Hadal Science and Technology Research Center,College of Marine Science,Shanghai Ocean University(Shanghai Engineering Research Center of Hadal Science and Technology),Shanghai 201306,China)

    Abstract:Titanium alloy spherical pressure hull is widely used for deep-sea manned submersible.However,due to constraint of strength of titanium alloy,if full-ocean-depth submersible is designed to have enough volume to take three occupants and Ti-6Al-4V ELI is used,pressure hull thickness will exceed current manufactural ability of most countries.To solve this problem and explore possible form of full-ocean-depth manned pressure hull,based on finite element analysis(by ANSYS),a novel pressure hull structure of double intersecting spheres is proposed,and an optimization for this structure is carried out.Strength under operating pressure and ultimate strength are used as design constraints to ensure structural strength of the whole structure.Also,a comparison between pressure hull forms of the double intersecting spheres and traditional single sphere is presented.

    Key words:deep manned submersible;pressure hull;titanium alloy;Ti-6Al-4V ELI;full ocean depth;double intersecting spheres

    0 Introduction

    Deep-sea manned submersible is the core equipment of ocean scientific research at deepsea space.Significant advantages of deep-sea manned submersibles comparing to unmanned submersibles are strong operational abilities at deep seabed and allowing researchers to be personally on the scene.Up to now several 4 500-7 000 m level deep-sea submersibles have already been used to carry out routine scientific research.Based on achievements of building 4 500-7 000 m level manned submersibles,more and more researchers pay attention to fullocean-depth manned submersible(FODMS)which is a logically derivative of 4 500-7 000 m level submersible,and the idea of‘Third-generation Full-ocean-depth Manned Submersible(third-generation FODMS)’is purposed[1].The most significant characteristics of the thirdgeneration FODMS which distinguish it from its previous counterparts include its strong operational ability and its capability to dive down and float up with a vertical speed of at least 3 knots.The first-generation FODMSs have no or very weak scientific operational ability and move slowly in ocean while the second-generation FODMSs dive down and float up with a vertical speed of less than 2 knots.

    These new characteristics,or called requirements,for FODMS bring new challenges to submersible designers.For design of manned pressure hull,it is required that manned pressure hull should have enough volume to contain 2-3 occupants to ensure operational ability of submersible and be strong enough to resist water pressure at full-ocean-depth seabed.It is also important to balance hull’s size and hydrodynamic performance of submersible due to high requirement for diving speed.To solve these new challenges,some organizations came up with novel ideas[2-4]on design of manned pressure hull,for example,full glass pressure hull,half glass-half titanium alloy pressure hull,carbon fiber pressure hull,and so on.

    Double intersecting spheres manned pressure hull(DSMPH)is also a promising design form of interests.Compared with single spherical hull and cylindrical hull,which are widely used on current manned submersibles,DSMPH has some important advantages.Firstly,it combines small volume density,the advantage of sphere hull,with high space utilization rate,the advantage of cylinder hull.Secondly,compared with single spherical hull of the same volume,DSMPH’s each spherical hull has smaller radial size and smaller hull thickness which makes manufacture easier.Thirdly,compared with single spherical hull of the same volume,DSMPH has a smaller length-diameter ratio,which is good for hydrodynamic performance and general arrangement of submersible.Fourthly,it is easy to insulate crew from dangerous equipment in DSMPH.

    Due to the advantages of DSMPH,some researchers have investigated possible structural forms of DSMPH.Liang et al[5]investigated a pressure hull optimum design of 3 000 m multiple intersecting spheres.This hull consisted of shells and shell stiffeners.Stresses,displacement,and ultimate strength of the structure were all calculated by analytical formulas in their research.Jen and Lai[6]further studied the transient response of this pressure hull subjected to underwater explosion in shallow water.Based on finite element analysis,Wu[7]presented a pressure hull design of three intersecting spheres.Formulas were proposed for calculating maximal stress and ultimate strength.Characteristic of Wu’s design was that there were not any stiffeners on both spherical hull and connecting part,and the whole hull consisted of smooth arc shell of uniform thickness.

    In this paper,a novel structural design of DSMPH with titanium alloy Ti-6Al-4V ELI is proposed.Referring to Refs.[8-9],the strength and ultimate strength of pressure hull are checked by finite element analysis(using ANSYS).Subjected to constraints of strength and ultimate strength,with geometry parameters of pressure hull as variables and mass of structure as optimization objective,optimization of DSMPH is carried out(using Isight).Basic properties of optimized DSMPH are compared with those of a single sphere pressure hull of the same effectivevolume at the end.

    1 Design of DSMPH and strength analysis standard

    1.1 Pressure hull design of titanium alloy double intersecting spheres

    A standard design of 7 000 m-level manned pressure hull with a hatch is presented in Fig.1.This design form has been studied by many researchers,came into use for years and was proved reliable.The merit of this design is that if geometry parameters of transition part between hatch and main spherical hull are well designed,ultimate strength of main sphere will not be obviously damaged by the existence of hatch[10].

    Fig.1 Design of 7 000 m-level deep-sea manned pressure hull with a hatch

    Based on the design in Fig.1,a design of titanium alloy DSMPH consisting of two spherical hulls and connecting part is presented in Fig.2.For spherical hulls,geometry parameters are inner radiuses R1,R2and thickness t1,t2.For connecting part,geometry parameters include those representing the sizes of connecting part(length L,inner radius R,thickness T,θ1,θ2)and those representing the transition part between connecting part and spherical hulls(α1,α2,β1,β2).

    Fig.2 (a)Geometry design of DSMPH

    Fig.2 (b)Geometry parameters of connecting part

    1.2 Basic input parameters

    The maximum operating pressure:

    The maximum operating pressure for FODMS at 11 000 m-depth seabed is calculated by

    P= ρmgh=1 052×9.8×11 000=113.4 MPa

    where ρmis seawater density,kg/m3.

    Material:

    The material used in this investigation is Ti-6AL-4V ELI(See Tab.1).σyis the yielding stress,σuis the ultimate tensile stress.E is Young’s modulus.

    Tab.1 Material properties of Ti-6Al-4V ELI

    1.3 Strength analysis standard

    Referring to Rules for Building and Classing of Diving System and Submersible of China Classification Society(CCS)[8]and Ref.[9],herein strength and ultimate strength are used as strength analysis standard to check structural design of DSMPH.It is required as follows.

    Requirement on ultimate strength:

    Re.1 The ultimate strength of the whole structure should be greater than 1.5×P,i.e.,the safety factor for the ultimate strength is 1.5,where P is maximum operating pressure.

    Requirements on strength,or called stress limitations:

    Re.2 The average shell membrane stress at maximum operating pressure will be limited to 2/3 of the yield strength of material.

    Re.3 The highest combined value of average shell membrane stress and bending stress(excluding effects of local stress concentrations)at maximum operating pressure will be limited to 3/4 of the yield strength of material.

    Re.4 The maximum compressive peak stress at any point of the hull,including effects of local stress concentrations,will be limited to 4/3 of the yield strength of material and will not exceed the ultimate strength of material.The maximum tensile peak stress at any point of the hull,including effects of local stress concentrations,will be limited to the yield strength of material.

    Re.5 For cylindrical part of connecting part,average circumferential stress at midpoint of cylinder should be less than 0.85 of yield strength of material.

    Re.6 For cylindrical part of connecting part,average axial stress at endpoints of cylinder should be less than 1.15 of yield strength of material.

    Res.1-6 form the complete strength standard,or called strength constraints,for design of DSMPH.Similar standard is also used to check strength of a single sphere pressure hull in Chap.3 of this paper.

    1.4 Determination of some parameters

    Considering practical need of containing 2-3 occupants,the radii of spheres are set to be R1=800 mm and R2=650 mm.The bigger hull can contain two occupants and the smaller one can hold one occupant.

    Since additional parts like penetration holes and hatches will break the intactness of spherical hull and more or less damage the strength of spherical hull,the thickness of each spherical hull should be greater than minimal thickness of its intact counterpart.Tab.2 shows the minimal thickness of intact spherical hulls under constraint of just ultimate strength(Re.1),which is done using ANSYS.Thus,t1≥84 mm,t2≥68 mm.

    Tab.2 Minimal thickness of intact spherical hull under constraint of ultimate strength

    Inner radius of connecting part R is another important parameter,which decides to what extent the intactness of original intact spherical hull will be damaged.Based on 10 trial optimizations(similar to the optimization in Chap.2),it is found that optimization algorithm always prefer the smallest R in its variation range(for example 270-360 mm),which means the greater the value of R is,the heavier the structure is.So,it is reasonable to choose the smallest value of R,which also make it easy for occupants to go through the connecting part.Herein,R is set to be 285 mm.

    2 Optimization

    The mass of manned pressure hull makes up more than 1/3 of total mass of submersible.Decreasing mass of manned pressure hull has important contribution to realize the two core characteristics of the third-generation FODMS mentioned in Chap.0.Thus,reducing mass is a main goal of DSMPH design.

    In Chap.2,a design of DSMPH and a strength analysis standard are presented.However it is not easy to manually find a good set of parameters which satisfies strength analysis standard and is also material-saving.So,an optimization problem needs to be solved to find a goodset of parameters with which the DSMPH has small mass and strong structural strength.This optimization problem is summarized as follows.

    Objective:Minimizing mass

    Constraints:Stress distributions at maximum operating pressure(Res.2-6)

    Variables and range:Listed in Tab.3.

    Tab.3 Optimization variables and upper and lower bound

    It should be noted that Re.1 is used to calculate the lower bound of the sphere thickness t1and t2and then it is excluded from the constraints of this optimization problem.This could greatly reduce computational burden because calculating ultimate strength is a nonlinear problem and is time-consuming which costs about 50 minutes for one case.

    However,Re.1 is still a very important requirement for structural design.The way to make Re.1 satisfied is the following.For ultimate strength of each spherical hull,previous experience reveals if each originally intact spherical hull satisfied Re.1,existence of connecting part will not obviously damage ultimate strength of spherical hull as long as the whole structure satisfy strength requirement,that is,Res.2-6.For ultimate strength of connecting part,it is observed that size of connecting part is much smaller than those of two spherical hulls,which means the stability of it should be better than that of spherical hulls.As long as Res.2-6 are satisfied for connecting part,which to a large extent ensures the ultimate strength of connecting part,it is more likely that final collapse will first occur on spherical hulls.To double check ultimate strength of final optimized design,ultimate strength of the whole structure of optimized design is calculated(see Fig.3,Tab.5-b).

    The minimum values of variation range of t1,t2in Tab.3 are greater than their counterparts in Tab.2.It is because that trial calculation reveals that,for DSMPH and spherical models of this paper,strength requirement(Res.2-6)is stricter than ultimate strength requirement(Re.1).Thus,in order to satisfy Res.2-6,t1,t2are set to be greater than 84 mm and 68 mm correspondingly.

    In this optimization problem,relationship between the variables is complicated.And optimization space is discontinuous,because for some combination of variables,it fails to set up geometry model.To handle the complication of this optimization problem,Multi-Islands Genetic Algorithm(MIGA)is used,which has a strong ability to explore the whole optimization space and thus can prevent the calculation from dropping into local optimal solution too early.A widely accepted optimization software,Isight,is chosen to control the whole procedure(see Fig.3).

    The optimization parameters of MIGA are shown in Tab.4.MIGA explores 14002 cases and the history of optimization objective is illustrated in Fig.4.The optimal point is obtained at the 12900th run(marked by a star in Fig.4).

    Tab.4 Optimization parameters for Multi-Island Genetic Algorithm

    Fig.4 History of structural mass(kg).Star is the optimized point

    3 Result and discussion

    The design of final optimized point is shown in Fig.5 and Tab.5.It is observed from optimization history(not shown in this paper)that the core constraint which makes most unfeasible cases fail is Re.4.And the area with maximal stress is inner surface of connecting part.Some calculation details can be referred to Ref.[11].It means that a main work of designingDSMPH done by Isight is to configure a good set of geometry parameters to make the stress level of inner surface of connecting part small enough.

    Fig.5 Optimized DSMPH

    Tab.5 -a Optimized DSMPH

    Tab.5 -b Optimized DSMPH and optimized spherical hull with the same effective volume

    Optimized DSMPH provides 3.331 9 m3effective volume.To further study DSMPH,optimized DSMPH is compared with an optimized spherical hull(see Tab.5-b),which has the same effective volume.The thickness of spherical hull is determined by the same optimization procedure shown in Fig.3,with constraints Res.1-6,optimization objective-structural mass.From Tab.5,the optimized DSMPH is heavier than the optimized single spherical hull by 1.8%.In this case,adopting DSMPH can reduce radial size of pressure hull by 13.6%.The hull thickness of DSMPH is thinner than that of single spherical hull by 14 mm.All of these indicate that DSMPH can significantly benefit hydrodynamic performance and manufacture of submersible,and it increases mass by just 1.8%.

    Comparing Tab.5 with Tab.2,it is observed that optimized design subjected to the strength requirements,that is,Res.2-6,can satisfy the requirement of ultimate strength,that is,Re.6,with a significant allowance.The same thing can also be found by checking optimization historyof variables(not shown in this paper)in the case of DSMPH.It means that it is a reasonable way to design and optimize full-ocean-depth pressure hull by strength requirements,and finally check the optimized design by ultimate strength.In this way,nonlinear problem needs just be solved once,and designers can focus on linear analyses which are much easier.

    Acknowledgment

    Professor Hu Yong and Doctor Pan Binbin both from Shanghai Ocean University,and Mr.Yu Jun,from China Ship Scientific Research Center,provided useful suggestions and help.We thank all of them.

    [1]Li Z W.Research on part of key technologies for the third generation of manned submersibles with full ocean depth[D].M.Sc thesis,China Ship Research and Development Academy,Beijing,China,2013.(in Chinese)

    [2]Jamieson A J,Fujii T,Mayor D J,Solan M,Priede I G.Hadal trenches:The ecology of the deepest places on Earth[J].Trends in Ecology&Evolution,2010,25(3):190-197.

    [3]Hawkes G.The old arguments of manned versus unmanned systems are about to become irrelevant:New technologies are game changers[J].Marine Technology Society Journal,2009,43(5):164-168.

    [4]Taylor L,Lawson T.Project deepsearch:An innovative solution for accessing the oceans[J].Marine Technology Society Journal,2009,43(5):169-178.

    [5]Liang C C,Shiah S W,Jen C Y,Chen H W.Optimum design of multiple intersecting spheres deep-submerged pressure hull[J].Ocean Engineering,2004,31:447-457.

    [6]Jen C Y,Lai W H.Transient response of multiple intersecting spheres of deep-submerged pressure hull subjected to underwater explosion[J].Theoretical and Applied Fracture Mechanics,2007,48:112-126.

    [7]Wu L.The response analysis and optimum design of great deep-submerged pressure hulls[D].Huazhong University of Science and Technology,Wuhan,China,2007.(in Chinese)

    [8]Rules for the classification and construction of diving systems and submersibles[S].China Classification Society(CCS),Beijing,China,2013.(in Chinese)

    [9]Pan B B,Cui W C.Structural optimization for a spherical pressure hull of a deep manned submersible based on an appropriate design standard[J].IEEE Journal of Oceanic Engineering,2012,37(3):564-571.

    [10]Lu B.Ultimate strength analysis of pressure spherical hull in deep-sea manned submersibles[D].Shanghai Jiao Tong U-niversity,Shanghai,China,2004.(in Chinese)

    [11]Li H.Research on resistance performance and structure of manned pressure hull of the third-generation full-oceandepth manned submersible[D].M.Sc Thesis,China Ship Research and Development Academy,Beijing,China,2014.(in Chinese)

    全海深雙球連接耐壓艙的結(jié)構(gòu)設(shè)計探索

    李 浩1,王 芳2,崔維成2
    (1.中國船舶科學(xué)研究中心,江蘇 無錫214082;2.上海海洋大學(xué) 深淵科學(xué)技術(shù)研究中心(上海深淵科學(xué)工程技術(shù)研究中心),上海201306)

    鈦合金耐壓球殼被廣泛地應(yīng)用于大深度載人潛水器。但是,由于受到材料強(qiáng)度的限制,若采用成熟的Ti-6Al-4VELI來設(shè)計3人型的全海深載人艙,其壁厚將超出很多國家的現(xiàn)有制造能力。為了解決這一矛盾,該文提出了一種新的雙球連接的方案,并以中國船級社最新的強(qiáng)度標(biāo)準(zhǔn)作為優(yōu)化約束條件,用有限元分析法對這種結(jié)構(gòu)形式進(jìn)行了優(yōu)化設(shè)計。最后,對雙球結(jié)構(gòu)方案與傳統(tǒng)單球方案作了比較。

    載人深潛器;載人艙;鈦合金;Ti-6Al-4V ELI;全海深;雙球連接殼

    U661.4

    A

    李 浩(1988-),男,中國船舶科學(xué)研究中心碩士研究生;王 芳(1979-),女,博士,上海海洋大學(xué)副研究員;崔維成(1963-),男,博士,上海海洋大學(xué)教授,博士生導(dǎo)師。

    10.3969/j.issn.1007-7294.2017.09.010

    Article ID: 1007-7294(2017)09-1160-10

    Received date:2017-03-03

    Foundation item:Supported by the State Key Program of National Natural Science of China(Project No.51439004);The general Program of National Natural Science Foundation of China(Project No.51679133);The scientific innovation program project by the Shanghai Committee of Science and Technology(Project No.15DZ1207000)

    Biography:LI Hao(1988-),male,master student of China Ship Scientific Research Center,E-mail:lihaocq@umich.edu;WANG Fang(1979-),female,Ph.D.,associate professor of Shanghai Ocean University;CUI Wei-cheng(1963-),male,Ph.D.professor/tutor of Shanghai Ocean University.

    猜你喜歡
    海深海洋大學(xué)耐壓
    環(huán)肋對耐壓圓柱殼碰撞響應(yīng)的影響
    鈦合金耐壓殼在碰撞下的動力屈曲數(shù)值模擬
    中國海洋大學(xué)作品選登
    耐壓軟管在埋地管道腐蝕治理中的研究與應(yīng)用
    新型裝卸軟管耐壓試驗方法探討
    中國海洋大學(xué) 自主招生,讓我同時被兩所211大學(xué)錄取
    全海深A(yù)RV水下LED調(diào)光驅(qū)動電路設(shè)計
    基于STM32全海深A(yù)RV監(jiān)控系統(tǒng)設(shè)計
    基于北斗定位與通信的全海深A(yù)RV回收控制系統(tǒng)設(shè)計
    Stocking density affects the growth performance and metabolism of Amur sturgeon by regulating expression of genes in the GH/IGF axis*
    成人美女网站在线观看视频| freevideosex欧美| 国产成人91sexporn| 久久影院123| 99久久精品国产国产毛片| 女人被狂操c到高潮| 欧美潮喷喷水| 午夜福利网站1000一区二区三区| 亚洲av男天堂| 性色avwww在线观看| 亚洲精品国产av蜜桃| 欧美变态另类bdsm刘玥| 国产午夜福利久久久久久| 国产精品av视频在线免费观看| 观看美女的网站| 少妇人妻精品综合一区二区| 日韩电影二区| 日本-黄色视频高清免费观看| 一区二区av电影网| av国产久精品久网站免费入址| 免费看av在线观看网站| 91精品一卡2卡3卡4卡| 中文天堂在线官网| a级毛片免费高清观看在线播放| 国产精品熟女久久久久浪| av黄色大香蕉| 成年女人看的毛片在线观看| 亚洲av.av天堂| 18禁在线无遮挡免费观看视频| 欧美极品一区二区三区四区| 日韩,欧美,国产一区二区三区| 蜜臀久久99精品久久宅男| 免费不卡的大黄色大毛片视频在线观看| 少妇猛男粗大的猛烈进出视频 | 中文天堂在线官网| 噜噜噜噜噜久久久久久91| 国产淫片久久久久久久久| 观看免费一级毛片| 成人亚洲欧美一区二区av| 日韩伦理黄色片| 国产v大片淫在线免费观看| 欧美潮喷喷水| 男人舔奶头视频| 亚洲内射少妇av| 男人和女人高潮做爰伦理| 一级爰片在线观看| 永久网站在线| 777米奇影视久久| 国产在视频线精品| 大又大粗又爽又黄少妇毛片口| 一级毛片黄色毛片免费观看视频| 九色成人免费人妻av| 2021少妇久久久久久久久久久| 又爽又黄a免费视频| 夫妻性生交免费视频一级片| 视频区图区小说| 丝袜美腿在线中文| 精品人妻一区二区三区麻豆| 国产午夜福利久久久久久| 爱豆传媒免费全集在线观看| 国产在视频线精品| 99久久精品一区二区三区| 交换朋友夫妻互换小说| 麻豆国产97在线/欧美| 日韩亚洲欧美综合| 亚洲精华国产精华液的使用体验| 亚洲一区二区三区欧美精品 | 国产成人精品福利久久| 少妇人妻久久综合中文| 国产亚洲精品久久久com| 观看免费一级毛片| 天天躁夜夜躁狠狠久久av| a级毛片免费高清观看在线播放| 少妇 在线观看| 小蜜桃在线观看免费完整版高清| 亚洲欧美精品专区久久| 69人妻影院| 国产精品久久久久久久久免| 五月开心婷婷网| 久久精品国产自在天天线| 91精品伊人久久大香线蕉| 日本三级黄在线观看| av福利片在线观看| 日韩三级伦理在线观看| 51国产日韩欧美| 欧美老熟妇乱子伦牲交| 日韩欧美精品v在线| 嫩草影院精品99| 青春草国产在线视频| 特级一级黄色大片| 日本wwww免费看| 王馨瑶露胸无遮挡在线观看| 国产色婷婷99| 免费高清在线观看视频在线观看| 亚洲,一卡二卡三卡| 女的被弄到高潮叫床怎么办| 99久久九九国产精品国产免费| 99热国产这里只有精品6| 欧美激情在线99| 免费黄网站久久成人精品| 欧美日韩综合久久久久久| 国产成人免费观看mmmm| 成年人午夜在线观看视频| 成年女人在线观看亚洲视频 | 精品99又大又爽又粗少妇毛片| 波野结衣二区三区在线| 国产亚洲91精品色在线| 久久人人爽人人片av| 久久亚洲国产成人精品v| 免费观看a级毛片全部| 亚洲,一卡二卡三卡| 99久久人妻综合| 精品国产一区二区三区久久久樱花 | 神马国产精品三级电影在线观看| 午夜免费鲁丝| 亚洲国产精品国产精品| 成人毛片a级毛片在线播放| 久久精品综合一区二区三区| 美女视频免费永久观看网站| 精品国产一区二区三区久久久樱花 | 精华霜和精华液先用哪个| 午夜福利视频精品| 国产成人a区在线观看| 边亲边吃奶的免费视频| 综合色丁香网| 在线观看人妻少妇| 亚洲真实伦在线观看| 久久97久久精品| 亚洲久久久久久中文字幕| 三级男女做爰猛烈吃奶摸视频| 亚洲国产欧美在线一区| 日本黄色片子视频| 你懂的网址亚洲精品在线观看| 欧美精品国产亚洲| 18禁动态无遮挡网站| 99精国产麻豆久久婷婷| 欧美少妇被猛烈插入视频| 麻豆精品久久久久久蜜桃| 一个人看视频在线观看www免费| 亚洲欧洲国产日韩| 久久精品夜色国产| 国产白丝娇喘喷水9色精品| 亚洲国产精品专区欧美| 下体分泌物呈黄色| 成人高潮视频无遮挡免费网站| 国产伦精品一区二区三区视频9| 一级毛片我不卡| 成人综合一区亚洲| 精品国产乱码久久久久久小说| 精品久久久久久久末码| 亚洲av中文字字幕乱码综合| 亚洲怡红院男人天堂| 美女cb高潮喷水在线观看| 成年女人在线观看亚洲视频 | 极品少妇高潮喷水抽搐| 亚洲精品日韩在线中文字幕| 六月丁香七月| 赤兔流量卡办理| eeuss影院久久| 18禁裸乳无遮挡免费网站照片| 青春草视频在线免费观看| 亚洲av国产av综合av卡| 18禁裸乳无遮挡免费网站照片| 99久久精品一区二区三区| 少妇人妻一区二区三区视频| 精品久久久精品久久久| 久久久精品免费免费高清| 哪个播放器可以免费观看大片| 久久午夜福利片| 中文字幕久久专区| 欧美日韩精品成人综合77777| 丰满少妇做爰视频| 成年女人在线观看亚洲视频 | 真实男女啪啪啪动态图| 中文欧美无线码| 嫩草影院入口| 亚洲三级黄色毛片| 国产午夜精品久久久久久一区二区三区| 精华霜和精华液先用哪个| 婷婷色综合www| a级一级毛片免费在线观看| 国产精品无大码| av国产久精品久网站免费入址| 久久久精品免费免费高清| eeuss影院久久| 热99国产精品久久久久久7| 成人欧美大片| 99热网站在线观看| 国产精品久久久久久久久免| 男女啪啪激烈高潮av片| 国语对白做爰xxxⅹ性视频网站| 日韩一区二区视频免费看| 欧美日韩视频精品一区| 好男人在线观看高清免费视频| 熟女av电影| 99热网站在线观看| 如何舔出高潮| 国产永久视频网站| 成人无遮挡网站| 久久久精品免费免费高清| 久久久久精品久久久久真实原创| 日韩一区二区三区影片| 午夜福利网站1000一区二区三区| 欧美成人一区二区免费高清观看| 十八禁网站网址无遮挡 | 久久精品国产自在天天线| 好男人在线观看高清免费视频| 精品少妇黑人巨大在线播放| 高清av免费在线| 亚洲国产成人一精品久久久| 日韩av在线免费看完整版不卡| 嫩草影院入口| 一个人看视频在线观看www免费| 大码成人一级视频| 午夜精品国产一区二区电影 | 丰满少妇做爰视频| 国产精品不卡视频一区二区| av又黄又爽大尺度在线免费看| 国产亚洲一区二区精品| 我的老师免费观看完整版| 天美传媒精品一区二区| 精品久久久噜噜| 深夜a级毛片| 最近手机中文字幕大全| 国产毛片在线视频| 欧美另类一区| 黄色欧美视频在线观看| 久久久久久久久大av| 国产精品一二三区在线看| 国产老妇女一区| 舔av片在线| 老师上课跳d突然被开到最大视频| 中文欧美无线码| 国产精品熟女久久久久浪| 亚洲欧美日韩东京热| 又粗又硬又长又爽又黄的视频| 成人亚洲精品av一区二区| 日韩人妻高清精品专区| 在现免费观看毛片| 熟女电影av网| 免费观看无遮挡的男女| 午夜免费男女啪啪视频观看| 久久久国产一区二区| 晚上一个人看的免费电影| 国产爱豆传媒在线观看| 男人和女人高潮做爰伦理| 大香蕉久久网| 精品少妇久久久久久888优播| 欧美潮喷喷水| 国产一区亚洲一区在线观看| 国产久久久一区二区三区| 亚洲真实伦在线观看| 2021少妇久久久久久久久久久| 久久久久国产网址| 欧美性猛交╳xxx乱大交人| 国产成人精品一,二区| 97人妻精品一区二区三区麻豆| 人妻少妇偷人精品九色| 国产老妇女一区| 久久久久久久精品精品| av在线亚洲专区| 国产成年人精品一区二区| 国产91av在线免费观看| 街头女战士在线观看网站| av女优亚洲男人天堂| 99久久九九国产精品国产免费| 国产精品爽爽va在线观看网站| tube8黄色片| 婷婷色综合大香蕉| 成人二区视频| 国产精品成人在线| 国产精品国产三级国产专区5o| 寂寞人妻少妇视频99o| 久久6这里有精品| 久热这里只有精品99| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产男女超爽视频在线观看| 免费观看性生交大片5| 少妇的逼水好多| 黑人高潮一二区| 午夜精品国产一区二区电影 | 国产精品久久久久久精品电影小说 | 国产精品一区二区性色av| 大片免费播放器 马上看| 人人妻人人看人人澡| 97超视频在线观看视频| 在线观看人妻少妇| 高清日韩中文字幕在线| 尤物成人国产欧美一区二区三区| 日韩伦理黄色片| 成年免费大片在线观看| 亚洲一区二区三区欧美精品 | 国产精品偷伦视频观看了| 高清欧美精品videossex| 网址你懂的国产日韩在线| 综合色丁香网| 看黄色毛片网站| 97超视频在线观看视频| 丝袜喷水一区| 国产精品秋霞免费鲁丝片| 成人鲁丝片一二三区免费| 91久久精品电影网| 一本一本综合久久| 免费观看av网站的网址| 最后的刺客免费高清国语| 亚洲国产日韩一区二区| 午夜亚洲福利在线播放| 午夜免费男女啪啪视频观看| 久久久国产一区二区| 国产乱人偷精品视频| 哪个播放器可以免费观看大片| 三级国产精品片| 午夜福利网站1000一区二区三区| 色婷婷久久久亚洲欧美| 亚洲第一区二区三区不卡| 97热精品久久久久久| 国产精品99久久久久久久久| 成人特级av手机在线观看| 精品一区二区三卡| 亚洲av.av天堂| 丝瓜视频免费看黄片| 欧美亚洲 丝袜 人妻 在线| 男人爽女人下面视频在线观看| 亚洲成色77777| 天美传媒精品一区二区| 国产成人freesex在线| 亚洲最大成人av| 大又大粗又爽又黄少妇毛片口| 97超视频在线观看视频| 国产成人精品一,二区| 亚洲av男天堂| 亚洲av在线观看美女高潮| av免费观看日本| 欧美3d第一页| 蜜臀久久99精品久久宅男| 国产黄色视频一区二区在线观看| 91午夜精品亚洲一区二区三区| 亚洲国产精品成人久久小说| 国产免费一级a男人的天堂| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久久久免费av| 少妇猛男粗大的猛烈进出视频 | 99久国产av精品国产电影| 三级男女做爰猛烈吃奶摸视频| 午夜福利视频精品| 三级男女做爰猛烈吃奶摸视频| 深夜a级毛片| 免费黄色在线免费观看| 日韩av在线免费看完整版不卡| 亚洲国产精品成人久久小说| 日韩人妻高清精品专区| 99热全是精品| 国产精品无大码| 啦啦啦啦在线视频资源| av免费观看日本| 91精品国产九色| 深夜a级毛片| 婷婷色av中文字幕| 少妇被粗大猛烈的视频| 午夜精品国产一区二区电影 | 青春草国产在线视频| 久久久午夜欧美精品| 亚洲精品第二区| 午夜福利高清视频| 最近的中文字幕免费完整| 成人毛片a级毛片在线播放| 亚洲欧美中文字幕日韩二区| 亚洲精品乱码久久久久久按摩| 亚洲国产精品成人久久小说| 亚洲激情五月婷婷啪啪| 韩国高清视频一区二区三区| 亚洲成人精品中文字幕电影| 嘟嘟电影网在线观看| 国产精品成人在线| 国产精品蜜桃在线观看| 国产精品av视频在线免费观看| 亚洲图色成人| 亚洲av免费在线观看| 国产大屁股一区二区在线视频| 菩萨蛮人人尽说江南好唐韦庄| 国产乱人偷精品视频| 99热网站在线观看| 免费少妇av软件| 国产成人精品婷婷| 亚洲人成网站在线观看播放| 中国国产av一级| 麻豆成人av视频| 精品少妇久久久久久888优播| 日本熟妇午夜| 卡戴珊不雅视频在线播放| 国产白丝娇喘喷水9色精品| 久久午夜福利片| 在线天堂最新版资源| 亚洲最大成人手机在线| 精品人妻偷拍中文字幕| 麻豆乱淫一区二区| 精品人妻视频免费看| 国产精品久久久久久精品古装| 国产精品无大码| 特大巨黑吊av在线直播| 亚洲av成人精品一二三区| 久久精品国产鲁丝片午夜精品| 七月丁香在线播放| 国产淫语在线视频| 亚洲精品国产成人久久av| 中文资源天堂在线| 亚洲精品久久午夜乱码| 色综合色国产| 日韩免费高清中文字幕av| 国产成人精品久久久久久| 人妻少妇偷人精品九色| 黄片无遮挡物在线观看| 九九爱精品视频在线观看| 国产伦精品一区二区三区视频9| 亚洲av在线观看美女高潮| 成人国产av品久久久| 精品国产乱码久久久久久小说| 亚洲国产成人一精品久久久| 久久久久久伊人网av| 观看免费一级毛片| 国国产精品蜜臀av免费| 日韩成人伦理影院| 亚洲,一卡二卡三卡| 欧美最新免费一区二区三区| 午夜福利视频1000在线观看| 中文字幕av成人在线电影| 国产乱来视频区| 国产午夜精品久久久久久一区二区三区| 女人被狂操c到高潮| 日本午夜av视频| 99热这里只有精品一区| av免费在线看不卡| 久热这里只有精品99| 男女国产视频网站| 国产伦理片在线播放av一区| 久久97久久精品| 成人亚洲欧美一区二区av| 亚洲av免费高清在线观看| 成人毛片a级毛片在线播放| 人妻系列 视频| 五月伊人婷婷丁香| 高清在线视频一区二区三区| 精品久久久久久久久av| 18+在线观看网站| 嫩草影院新地址| 日韩,欧美,国产一区二区三区| 啦啦啦中文免费视频观看日本| 免费av不卡在线播放| 春色校园在线视频观看| 天天躁夜夜躁狠狠久久av| 热re99久久精品国产66热6| 日韩精品有码人妻一区| 天堂网av新在线| 久久久久久国产a免费观看| 亚洲性久久影院| 国产av国产精品国产| 精品国产一区二区三区久久久樱花 | 亚洲第一区二区三区不卡| 91久久精品国产一区二区成人| 久久久久久久久久人人人人人人| 五月天丁香电影| 成人毛片a级毛片在线播放| 三级国产精品片| 欧美bdsm另类| 男女那种视频在线观看| 久久久精品94久久精品| 国产一区二区三区综合在线观看 | 亚洲美女搞黄在线观看| 啦啦啦在线观看免费高清www| 在线播放无遮挡| 一二三四中文在线观看免费高清| 全区人妻精品视频| 黄色视频在线播放观看不卡| 日本午夜av视频| 国产亚洲av片在线观看秒播厂| 亚洲国产欧美人成| www.av在线官网国产| 国产亚洲精品久久久com| freevideosex欧美| 欧美成人午夜免费资源| 亚洲内射少妇av| 麻豆成人av视频| 国模一区二区三区四区视频| 天天躁夜夜躁狠狠久久av| 蜜桃亚洲精品一区二区三区| 国产成人免费观看mmmm| 久久久欧美国产精品| 久久99热这里只频精品6学生| 老司机影院毛片| 好男人在线观看高清免费视频| 日本与韩国留学比较| 熟妇人妻不卡中文字幕| 在线观看三级黄色| 十八禁网站网址无遮挡 | 国产免费视频播放在线视频| 麻豆久久精品国产亚洲av| 啦啦啦啦在线视频资源| 99久久中文字幕三级久久日本| 小蜜桃在线观看免费完整版高清| 午夜福利视频精品| 22中文网久久字幕| 国产91av在线免费观看| 国产男女内射视频| 国产成人freesex在线| 高清欧美精品videossex| 免费高清在线观看视频在线观看| 伊人久久国产一区二区| 久久久久久国产a免费观看| 黄色一级大片看看| 久久久久精品性色| 少妇丰满av| 亚洲av成人精品一区久久| 噜噜噜噜噜久久久久久91| 亚洲av二区三区四区| 亚洲成人久久爱视频| 哪个播放器可以免费观看大片| 久久久久久久亚洲中文字幕| 久久影院123| 99精国产麻豆久久婷婷| 日韩一区二区三区影片| 日日撸夜夜添| 日日摸夜夜添夜夜添av毛片| 久久午夜福利片| 日韩av在线免费看完整版不卡| 99热这里只有精品一区| 国产亚洲午夜精品一区二区久久 | 国语对白做爰xxxⅹ性视频网站| 亚洲av中文av极速乱| 久久精品国产a三级三级三级| 久久久久久久午夜电影| 久久女婷五月综合色啪小说 | 国产免费福利视频在线观看| 亚洲精品456在线播放app| 丰满人妻一区二区三区视频av| 日韩成人伦理影院| 高清欧美精品videossex| 国产精品国产三级专区第一集| 欧美成人午夜免费资源| av一本久久久久| 亚洲欧美日韩东京热| 久久久久网色| 久久久久精品久久久久真实原创| 久久久精品免费免费高清| av卡一久久| 国产成年人精品一区二区| 国产精品99久久久久久久久| 久久久色成人| 久久精品久久久久久噜噜老黄| 欧美97在线视频| 欧美激情在线99| 精品人妻偷拍中文字幕| 精品亚洲乱码少妇综合久久| 精品一区在线观看国产| 欧美日韩综合久久久久久| 麻豆精品久久久久久蜜桃| 精品久久久久久电影网| 日韩成人伦理影院| 毛片女人毛片| 黄片wwwwww| 日韩电影二区| 性插视频无遮挡在线免费观看| 日韩人妻高清精品专区| 尤物成人国产欧美一区二区三区| av在线天堂中文字幕| 天堂中文最新版在线下载 | 神马国产精品三级电影在线观看| 涩涩av久久男人的天堂| 一级二级三级毛片免费看| 日本-黄色视频高清免费观看| 国产v大片淫在线免费观看| 国产男女内射视频| .国产精品久久| 免费黄色在线免费观看| 最近最新中文字幕免费大全7| 特级一级黄色大片| 亚洲欧美中文字幕日韩二区| 亚洲怡红院男人天堂| 久久亚洲国产成人精品v| 99久国产av精品国产电影| 欧美bdsm另类| 亚洲精华国产精华液的使用体验| 美女cb高潮喷水在线观看| 五月伊人婷婷丁香| 欧美变态另类bdsm刘玥| 亚洲综合精品二区| 婷婷色综合大香蕉| 国产午夜精品一二区理论片| 欧美成人一区二区免费高清观看| 亚洲自拍偷在线| 美女被艹到高潮喷水动态| 午夜福利视频精品| 只有这里有精品99| 欧美97在线视频| 亚洲高清免费不卡视频| 婷婷色麻豆天堂久久| 一级爰片在线观看| 久久韩国三级中文字幕| 亚洲av中文av极速乱| 国产综合懂色| 黄色怎么调成土黄色| 天天躁夜夜躁狠狠久久av| 高清在线视频一区二区三区| 综合色丁香网| 国产乱人视频| 中文字幕人妻熟人妻熟丝袜美| 久久99热这里只频精品6学生| 日韩av不卡免费在线播放| av在线老鸭窝| 少妇猛男粗大的猛烈进出视频 | 欧美成人午夜免费资源| 99九九线精品视频在线观看视频| 人妻夜夜爽99麻豆av| 成年av动漫网址| 国产综合精华液| 中文字幕av成人在线电影|