• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Design Exploration on Double Intersecting Spheres Manned Pressure Hull of Full Ocean Depth

    2017-10-11 05:33:29LIHaoWANGFangCUIWeichengChinaShipScientificResearchCenterWuxi408ChinaHadalScienceandTechnologyResearchCenterCollegeofMarineScienceShanghaiOceanUniversityShanghaiEngineeringResearchCenterofHadalScienceandTechnologyShang
    船舶力學(xué) 2017年9期
    關(guān)鍵詞:海深海洋大學(xué)耐壓

    LI Hao,WANG Fang,CUI Wei-cheng(.China Ship Scientific Research Center,Wuxi 408,China;.Hadal Science and Technology Research Center,College of Marine Science,Shanghai Ocean University(Shanghai Engineering Research Center of Hadal Science and Technology),Shanghai 0306,China)

    Structural Design Exploration on Double Intersecting Spheres Manned Pressure Hull of Full Ocean Depth

    LI Hao1,WANG Fang2,CUI Wei-cheng2
    (1.China Ship Scientific Research Center,Wuxi 214082,China;2.Hadal Science and Technology Research Center,College of Marine Science,Shanghai Ocean University(Shanghai Engineering Research Center of Hadal Science and Technology),Shanghai 201306,China)

    Abstract:Titanium alloy spherical pressure hull is widely used for deep-sea manned submersible.However,due to constraint of strength of titanium alloy,if full-ocean-depth submersible is designed to have enough volume to take three occupants and Ti-6Al-4V ELI is used,pressure hull thickness will exceed current manufactural ability of most countries.To solve this problem and explore possible form of full-ocean-depth manned pressure hull,based on finite element analysis(by ANSYS),a novel pressure hull structure of double intersecting spheres is proposed,and an optimization for this structure is carried out.Strength under operating pressure and ultimate strength are used as design constraints to ensure structural strength of the whole structure.Also,a comparison between pressure hull forms of the double intersecting spheres and traditional single sphere is presented.

    Key words:deep manned submersible;pressure hull;titanium alloy;Ti-6Al-4V ELI;full ocean depth;double intersecting spheres

    0 Introduction

    Deep-sea manned submersible is the core equipment of ocean scientific research at deepsea space.Significant advantages of deep-sea manned submersibles comparing to unmanned submersibles are strong operational abilities at deep seabed and allowing researchers to be personally on the scene.Up to now several 4 500-7 000 m level deep-sea submersibles have already been used to carry out routine scientific research.Based on achievements of building 4 500-7 000 m level manned submersibles,more and more researchers pay attention to fullocean-depth manned submersible(FODMS)which is a logically derivative of 4 500-7 000 m level submersible,and the idea of‘Third-generation Full-ocean-depth Manned Submersible(third-generation FODMS)’is purposed[1].The most significant characteristics of the thirdgeneration FODMS which distinguish it from its previous counterparts include its strong operational ability and its capability to dive down and float up with a vertical speed of at least 3 knots.The first-generation FODMSs have no or very weak scientific operational ability and move slowly in ocean while the second-generation FODMSs dive down and float up with a vertical speed of less than 2 knots.

    These new characteristics,or called requirements,for FODMS bring new challenges to submersible designers.For design of manned pressure hull,it is required that manned pressure hull should have enough volume to contain 2-3 occupants to ensure operational ability of submersible and be strong enough to resist water pressure at full-ocean-depth seabed.It is also important to balance hull’s size and hydrodynamic performance of submersible due to high requirement for diving speed.To solve these new challenges,some organizations came up with novel ideas[2-4]on design of manned pressure hull,for example,full glass pressure hull,half glass-half titanium alloy pressure hull,carbon fiber pressure hull,and so on.

    Double intersecting spheres manned pressure hull(DSMPH)is also a promising design form of interests.Compared with single spherical hull and cylindrical hull,which are widely used on current manned submersibles,DSMPH has some important advantages.Firstly,it combines small volume density,the advantage of sphere hull,with high space utilization rate,the advantage of cylinder hull.Secondly,compared with single spherical hull of the same volume,DSMPH’s each spherical hull has smaller radial size and smaller hull thickness which makes manufacture easier.Thirdly,compared with single spherical hull of the same volume,DSMPH has a smaller length-diameter ratio,which is good for hydrodynamic performance and general arrangement of submersible.Fourthly,it is easy to insulate crew from dangerous equipment in DSMPH.

    Due to the advantages of DSMPH,some researchers have investigated possible structural forms of DSMPH.Liang et al[5]investigated a pressure hull optimum design of 3 000 m multiple intersecting spheres.This hull consisted of shells and shell stiffeners.Stresses,displacement,and ultimate strength of the structure were all calculated by analytical formulas in their research.Jen and Lai[6]further studied the transient response of this pressure hull subjected to underwater explosion in shallow water.Based on finite element analysis,Wu[7]presented a pressure hull design of three intersecting spheres.Formulas were proposed for calculating maximal stress and ultimate strength.Characteristic of Wu’s design was that there were not any stiffeners on both spherical hull and connecting part,and the whole hull consisted of smooth arc shell of uniform thickness.

    In this paper,a novel structural design of DSMPH with titanium alloy Ti-6Al-4V ELI is proposed.Referring to Refs.[8-9],the strength and ultimate strength of pressure hull are checked by finite element analysis(using ANSYS).Subjected to constraints of strength and ultimate strength,with geometry parameters of pressure hull as variables and mass of structure as optimization objective,optimization of DSMPH is carried out(using Isight).Basic properties of optimized DSMPH are compared with those of a single sphere pressure hull of the same effectivevolume at the end.

    1 Design of DSMPH and strength analysis standard

    1.1 Pressure hull design of titanium alloy double intersecting spheres

    A standard design of 7 000 m-level manned pressure hull with a hatch is presented in Fig.1.This design form has been studied by many researchers,came into use for years and was proved reliable.The merit of this design is that if geometry parameters of transition part between hatch and main spherical hull are well designed,ultimate strength of main sphere will not be obviously damaged by the existence of hatch[10].

    Fig.1 Design of 7 000 m-level deep-sea manned pressure hull with a hatch

    Based on the design in Fig.1,a design of titanium alloy DSMPH consisting of two spherical hulls and connecting part is presented in Fig.2.For spherical hulls,geometry parameters are inner radiuses R1,R2and thickness t1,t2.For connecting part,geometry parameters include those representing the sizes of connecting part(length L,inner radius R,thickness T,θ1,θ2)and those representing the transition part between connecting part and spherical hulls(α1,α2,β1,β2).

    Fig.2 (a)Geometry design of DSMPH

    Fig.2 (b)Geometry parameters of connecting part

    1.2 Basic input parameters

    The maximum operating pressure:

    The maximum operating pressure for FODMS at 11 000 m-depth seabed is calculated by

    P= ρmgh=1 052×9.8×11 000=113.4 MPa

    where ρmis seawater density,kg/m3.

    Material:

    The material used in this investigation is Ti-6AL-4V ELI(See Tab.1).σyis the yielding stress,σuis the ultimate tensile stress.E is Young’s modulus.

    Tab.1 Material properties of Ti-6Al-4V ELI

    1.3 Strength analysis standard

    Referring to Rules for Building and Classing of Diving System and Submersible of China Classification Society(CCS)[8]and Ref.[9],herein strength and ultimate strength are used as strength analysis standard to check structural design of DSMPH.It is required as follows.

    Requirement on ultimate strength:

    Re.1 The ultimate strength of the whole structure should be greater than 1.5×P,i.e.,the safety factor for the ultimate strength is 1.5,where P is maximum operating pressure.

    Requirements on strength,or called stress limitations:

    Re.2 The average shell membrane stress at maximum operating pressure will be limited to 2/3 of the yield strength of material.

    Re.3 The highest combined value of average shell membrane stress and bending stress(excluding effects of local stress concentrations)at maximum operating pressure will be limited to 3/4 of the yield strength of material.

    Re.4 The maximum compressive peak stress at any point of the hull,including effects of local stress concentrations,will be limited to 4/3 of the yield strength of material and will not exceed the ultimate strength of material.The maximum tensile peak stress at any point of the hull,including effects of local stress concentrations,will be limited to the yield strength of material.

    Re.5 For cylindrical part of connecting part,average circumferential stress at midpoint of cylinder should be less than 0.85 of yield strength of material.

    Re.6 For cylindrical part of connecting part,average axial stress at endpoints of cylinder should be less than 1.15 of yield strength of material.

    Res.1-6 form the complete strength standard,or called strength constraints,for design of DSMPH.Similar standard is also used to check strength of a single sphere pressure hull in Chap.3 of this paper.

    1.4 Determination of some parameters

    Considering practical need of containing 2-3 occupants,the radii of spheres are set to be R1=800 mm and R2=650 mm.The bigger hull can contain two occupants and the smaller one can hold one occupant.

    Since additional parts like penetration holes and hatches will break the intactness of spherical hull and more or less damage the strength of spherical hull,the thickness of each spherical hull should be greater than minimal thickness of its intact counterpart.Tab.2 shows the minimal thickness of intact spherical hulls under constraint of just ultimate strength(Re.1),which is done using ANSYS.Thus,t1≥84 mm,t2≥68 mm.

    Tab.2 Minimal thickness of intact spherical hull under constraint of ultimate strength

    Inner radius of connecting part R is another important parameter,which decides to what extent the intactness of original intact spherical hull will be damaged.Based on 10 trial optimizations(similar to the optimization in Chap.2),it is found that optimization algorithm always prefer the smallest R in its variation range(for example 270-360 mm),which means the greater the value of R is,the heavier the structure is.So,it is reasonable to choose the smallest value of R,which also make it easy for occupants to go through the connecting part.Herein,R is set to be 285 mm.

    2 Optimization

    The mass of manned pressure hull makes up more than 1/3 of total mass of submersible.Decreasing mass of manned pressure hull has important contribution to realize the two core characteristics of the third-generation FODMS mentioned in Chap.0.Thus,reducing mass is a main goal of DSMPH design.

    In Chap.2,a design of DSMPH and a strength analysis standard are presented.However it is not easy to manually find a good set of parameters which satisfies strength analysis standard and is also material-saving.So,an optimization problem needs to be solved to find a goodset of parameters with which the DSMPH has small mass and strong structural strength.This optimization problem is summarized as follows.

    Objective:Minimizing mass

    Constraints:Stress distributions at maximum operating pressure(Res.2-6)

    Variables and range:Listed in Tab.3.

    Tab.3 Optimization variables and upper and lower bound

    It should be noted that Re.1 is used to calculate the lower bound of the sphere thickness t1and t2and then it is excluded from the constraints of this optimization problem.This could greatly reduce computational burden because calculating ultimate strength is a nonlinear problem and is time-consuming which costs about 50 minutes for one case.

    However,Re.1 is still a very important requirement for structural design.The way to make Re.1 satisfied is the following.For ultimate strength of each spherical hull,previous experience reveals if each originally intact spherical hull satisfied Re.1,existence of connecting part will not obviously damage ultimate strength of spherical hull as long as the whole structure satisfy strength requirement,that is,Res.2-6.For ultimate strength of connecting part,it is observed that size of connecting part is much smaller than those of two spherical hulls,which means the stability of it should be better than that of spherical hulls.As long as Res.2-6 are satisfied for connecting part,which to a large extent ensures the ultimate strength of connecting part,it is more likely that final collapse will first occur on spherical hulls.To double check ultimate strength of final optimized design,ultimate strength of the whole structure of optimized design is calculated(see Fig.3,Tab.5-b).

    The minimum values of variation range of t1,t2in Tab.3 are greater than their counterparts in Tab.2.It is because that trial calculation reveals that,for DSMPH and spherical models of this paper,strength requirement(Res.2-6)is stricter than ultimate strength requirement(Re.1).Thus,in order to satisfy Res.2-6,t1,t2are set to be greater than 84 mm and 68 mm correspondingly.

    In this optimization problem,relationship between the variables is complicated.And optimization space is discontinuous,because for some combination of variables,it fails to set up geometry model.To handle the complication of this optimization problem,Multi-Islands Genetic Algorithm(MIGA)is used,which has a strong ability to explore the whole optimization space and thus can prevent the calculation from dropping into local optimal solution too early.A widely accepted optimization software,Isight,is chosen to control the whole procedure(see Fig.3).

    The optimization parameters of MIGA are shown in Tab.4.MIGA explores 14002 cases and the history of optimization objective is illustrated in Fig.4.The optimal point is obtained at the 12900th run(marked by a star in Fig.4).

    Tab.4 Optimization parameters for Multi-Island Genetic Algorithm

    Fig.4 History of structural mass(kg).Star is the optimized point

    3 Result and discussion

    The design of final optimized point is shown in Fig.5 and Tab.5.It is observed from optimization history(not shown in this paper)that the core constraint which makes most unfeasible cases fail is Re.4.And the area with maximal stress is inner surface of connecting part.Some calculation details can be referred to Ref.[11].It means that a main work of designingDSMPH done by Isight is to configure a good set of geometry parameters to make the stress level of inner surface of connecting part small enough.

    Fig.5 Optimized DSMPH

    Tab.5 -a Optimized DSMPH

    Tab.5 -b Optimized DSMPH and optimized spherical hull with the same effective volume

    Optimized DSMPH provides 3.331 9 m3effective volume.To further study DSMPH,optimized DSMPH is compared with an optimized spherical hull(see Tab.5-b),which has the same effective volume.The thickness of spherical hull is determined by the same optimization procedure shown in Fig.3,with constraints Res.1-6,optimization objective-structural mass.From Tab.5,the optimized DSMPH is heavier than the optimized single spherical hull by 1.8%.In this case,adopting DSMPH can reduce radial size of pressure hull by 13.6%.The hull thickness of DSMPH is thinner than that of single spherical hull by 14 mm.All of these indicate that DSMPH can significantly benefit hydrodynamic performance and manufacture of submersible,and it increases mass by just 1.8%.

    Comparing Tab.5 with Tab.2,it is observed that optimized design subjected to the strength requirements,that is,Res.2-6,can satisfy the requirement of ultimate strength,that is,Re.6,with a significant allowance.The same thing can also be found by checking optimization historyof variables(not shown in this paper)in the case of DSMPH.It means that it is a reasonable way to design and optimize full-ocean-depth pressure hull by strength requirements,and finally check the optimized design by ultimate strength.In this way,nonlinear problem needs just be solved once,and designers can focus on linear analyses which are much easier.

    Acknowledgment

    Professor Hu Yong and Doctor Pan Binbin both from Shanghai Ocean University,and Mr.Yu Jun,from China Ship Scientific Research Center,provided useful suggestions and help.We thank all of them.

    [1]Li Z W.Research on part of key technologies for the third generation of manned submersibles with full ocean depth[D].M.Sc thesis,China Ship Research and Development Academy,Beijing,China,2013.(in Chinese)

    [2]Jamieson A J,Fujii T,Mayor D J,Solan M,Priede I G.Hadal trenches:The ecology of the deepest places on Earth[J].Trends in Ecology&Evolution,2010,25(3):190-197.

    [3]Hawkes G.The old arguments of manned versus unmanned systems are about to become irrelevant:New technologies are game changers[J].Marine Technology Society Journal,2009,43(5):164-168.

    [4]Taylor L,Lawson T.Project deepsearch:An innovative solution for accessing the oceans[J].Marine Technology Society Journal,2009,43(5):169-178.

    [5]Liang C C,Shiah S W,Jen C Y,Chen H W.Optimum design of multiple intersecting spheres deep-submerged pressure hull[J].Ocean Engineering,2004,31:447-457.

    [6]Jen C Y,Lai W H.Transient response of multiple intersecting spheres of deep-submerged pressure hull subjected to underwater explosion[J].Theoretical and Applied Fracture Mechanics,2007,48:112-126.

    [7]Wu L.The response analysis and optimum design of great deep-submerged pressure hulls[D].Huazhong University of Science and Technology,Wuhan,China,2007.(in Chinese)

    [8]Rules for the classification and construction of diving systems and submersibles[S].China Classification Society(CCS),Beijing,China,2013.(in Chinese)

    [9]Pan B B,Cui W C.Structural optimization for a spherical pressure hull of a deep manned submersible based on an appropriate design standard[J].IEEE Journal of Oceanic Engineering,2012,37(3):564-571.

    [10]Lu B.Ultimate strength analysis of pressure spherical hull in deep-sea manned submersibles[D].Shanghai Jiao Tong U-niversity,Shanghai,China,2004.(in Chinese)

    [11]Li H.Research on resistance performance and structure of manned pressure hull of the third-generation full-oceandepth manned submersible[D].M.Sc Thesis,China Ship Research and Development Academy,Beijing,China,2014.(in Chinese)

    全海深雙球連接耐壓艙的結(jié)構(gòu)設(shè)計探索

    李 浩1,王 芳2,崔維成2
    (1.中國船舶科學(xué)研究中心,江蘇 無錫214082;2.上海海洋大學(xué) 深淵科學(xué)技術(shù)研究中心(上海深淵科學(xué)工程技術(shù)研究中心),上海201306)

    鈦合金耐壓球殼被廣泛地應(yīng)用于大深度載人潛水器。但是,由于受到材料強(qiáng)度的限制,若采用成熟的Ti-6Al-4VELI來設(shè)計3人型的全海深載人艙,其壁厚將超出很多國家的現(xiàn)有制造能力。為了解決這一矛盾,該文提出了一種新的雙球連接的方案,并以中國船級社最新的強(qiáng)度標(biāo)準(zhǔn)作為優(yōu)化約束條件,用有限元分析法對這種結(jié)構(gòu)形式進(jìn)行了優(yōu)化設(shè)計。最后,對雙球結(jié)構(gòu)方案與傳統(tǒng)單球方案作了比較。

    載人深潛器;載人艙;鈦合金;Ti-6Al-4V ELI;全海深;雙球連接殼

    U661.4

    A

    李 浩(1988-),男,中國船舶科學(xué)研究中心碩士研究生;王 芳(1979-),女,博士,上海海洋大學(xué)副研究員;崔維成(1963-),男,博士,上海海洋大學(xué)教授,博士生導(dǎo)師。

    10.3969/j.issn.1007-7294.2017.09.010

    Article ID: 1007-7294(2017)09-1160-10

    Received date:2017-03-03

    Foundation item:Supported by the State Key Program of National Natural Science of China(Project No.51439004);The general Program of National Natural Science Foundation of China(Project No.51679133);The scientific innovation program project by the Shanghai Committee of Science and Technology(Project No.15DZ1207000)

    Biography:LI Hao(1988-),male,master student of China Ship Scientific Research Center,E-mail:lihaocq@umich.edu;WANG Fang(1979-),female,Ph.D.,associate professor of Shanghai Ocean University;CUI Wei-cheng(1963-),male,Ph.D.professor/tutor of Shanghai Ocean University.

    猜你喜歡
    海深海洋大學(xué)耐壓
    環(huán)肋對耐壓圓柱殼碰撞響應(yīng)的影響
    鈦合金耐壓殼在碰撞下的動力屈曲數(shù)值模擬
    中國海洋大學(xué)作品選登
    耐壓軟管在埋地管道腐蝕治理中的研究與應(yīng)用
    新型裝卸軟管耐壓試驗方法探討
    中國海洋大學(xué) 自主招生,讓我同時被兩所211大學(xué)錄取
    全海深A(yù)RV水下LED調(diào)光驅(qū)動電路設(shè)計
    基于STM32全海深A(yù)RV監(jiān)控系統(tǒng)設(shè)計
    基于北斗定位與通信的全海深A(yù)RV回收控制系統(tǒng)設(shè)計
    Stocking density affects the growth performance and metabolism of Amur sturgeon by regulating expression of genes in the GH/IGF axis*
    国产日韩欧美亚洲二区| 在线观看美女被高潮喷水网站| 视频区图区小说| 99久久中文字幕三级久久日本| 国产成人免费观看mmmm| 夜夜骑夜夜射夜夜干| 成年av动漫网址| 国产成人午夜福利电影在线观看| 久久久亚洲精品成人影院| 精品久久蜜臀av无| 午夜激情av网站| 少妇精品久久久久久久| 全区人妻精品视频| 国产欧美另类精品又又久久亚洲欧美| 人妻人人澡人人爽人人| 欧美精品高潮呻吟av久久| 亚洲人成77777在线视频| 欧美日韩视频精品一区| 黄色毛片三级朝国网站| 高清毛片免费看| 免费大片黄手机在线观看| 亚洲色图 男人天堂 中文字幕 | 久久久久精品性色| 赤兔流量卡办理| 全区人妻精品视频| 2018国产大陆天天弄谢| 最近的中文字幕免费完整| 青春草视频在线免费观看| 免费观看在线日韩| 国产男女内射视频| 侵犯人妻中文字幕一二三四区| 国产亚洲av片在线观看秒播厂| 波野结衣二区三区在线| 桃花免费在线播放| 色婷婷久久久亚洲欧美| 亚洲人成网站在线观看播放| 大香蕉久久成人网| av天堂久久9| 狂野欧美激情性bbbbbb| 欧美激情 高清一区二区三区| 精品福利永久在线观看| 搡老乐熟女国产| 一二三四在线观看免费中文在 | 极品人妻少妇av视频| 少妇猛男粗大的猛烈进出视频| 欧美亚洲日本最大视频资源| 99re6热这里在线精品视频| 超色免费av| 亚洲欧洲精品一区二区精品久久久 | 亚洲第一av免费看| 日韩av在线免费看完整版不卡| 2018国产大陆天天弄谢| 黄网站色视频无遮挡免费观看| 久久毛片免费看一区二区三区| 母亲3免费完整高清在线观看 | 成人漫画全彩无遮挡| 亚洲精品成人av观看孕妇| 精品人妻在线不人妻| 纵有疾风起免费观看全集完整版| 亚洲欧洲精品一区二区精品久久久 | 最新的欧美精品一区二区| 人人妻人人澡人人看| 男女无遮挡免费网站观看| 欧美国产精品va在线观看不卡| 青春草国产在线视频| 高清毛片免费看| 日韩成人伦理影院| 亚洲av电影在线进入| 人人妻人人爽人人添夜夜欢视频| 夫妻性生交免费视频一级片| 国产精品 国内视频| 国产国语露脸激情在线看| 午夜激情久久久久久久| 一二三四中文在线观看免费高清| 性色avwww在线观看| 一区二区三区乱码不卡18| 在线亚洲精品国产二区图片欧美| 精品亚洲成a人片在线观看| 国产不卡av网站在线观看| 国产精品久久久久久久电影| 美女脱内裤让男人舔精品视频| 国产免费福利视频在线观看| 亚洲av在线观看美女高潮| 侵犯人妻中文字幕一二三四区| 欧美亚洲日本最大视频资源| 国产日韩欧美在线精品| 宅男免费午夜| 人体艺术视频欧美日本| 欧美精品一区二区免费开放| 菩萨蛮人人尽说江南好唐韦庄| 少妇的丰满在线观看| 国产精品久久久久成人av| 免费少妇av软件| 交换朋友夫妻互换小说| 国产综合精华液| 黄色 视频免费看| 大香蕉久久网| 日韩大片免费观看网站| a 毛片基地| 欧美变态另类bdsm刘玥| 中文字幕人妻熟女乱码| 欧美 亚洲 国产 日韩一| 夜夜爽夜夜爽视频| 欧美精品一区二区免费开放| 国产免费视频播放在线视频| 青春草视频在线免费观看| 日韩av在线免费看完整版不卡| 精品第一国产精品| 亚洲伊人色综图| 午夜福利在线观看免费完整高清在| 国产男人的电影天堂91| 99热这里只有是精品在线观看| 欧美+日韩+精品| 久久精品国产自在天天线| 好男人视频免费观看在线| tube8黄色片| 欧美精品人与动牲交sv欧美| 免费观看性生交大片5| 韩国精品一区二区三区 | 亚洲精品av麻豆狂野| 国产欧美日韩一区二区三区在线| 午夜福利在线观看免费完整高清在| 一级a做视频免费观看| 亚洲五月色婷婷综合| 国产又色又爽无遮挡免| 亚洲美女黄色视频免费看| 国产成人免费无遮挡视频| 亚洲精品一区蜜桃| 国产黄色免费在线视频| 丰满少妇做爰视频| 亚洲人成网站在线观看播放| 国产黄频视频在线观看| 丰满少妇做爰视频| 少妇被粗大的猛进出69影院 | 亚洲人与动物交配视频| 亚洲经典国产精华液单| 七月丁香在线播放| 黄网站色视频无遮挡免费观看| 久久久久国产网址| 大片电影免费在线观看免费| 国产精品蜜桃在线观看| 中文天堂在线官网| 校园人妻丝袜中文字幕| 一级爰片在线观看| 久久99精品国语久久久| av电影中文网址| 青春草视频在线免费观看| 免费人妻精品一区二区三区视频| 日韩欧美精品免费久久| 18+在线观看网站| 国产精品偷伦视频观看了| 久久韩国三级中文字幕| 久久久精品免费免费高清| 欧美日韩视频精品一区| 久久久久网色| 亚洲性久久影院| 国产极品粉嫩免费观看在线| 熟女人妻精品中文字幕| 国产精品一区二区在线观看99| 国产一区亚洲一区在线观看| 丝袜在线中文字幕| 国产免费一级a男人的天堂| 两个人看的免费小视频| av在线老鸭窝| 男人操女人黄网站| 国产片特级美女逼逼视频| 尾随美女入室| 精品一区二区三区四区五区乱码 | 日韩在线高清观看一区二区三区| 18+在线观看网站| 两个人看的免费小视频| 啦啦啦中文免费视频观看日本| av女优亚洲男人天堂| 男女午夜视频在线观看 | 国产精品欧美亚洲77777| 亚洲国产色片| 在线观看一区二区三区激情| 成人亚洲欧美一区二区av| 最新中文字幕久久久久| 黑人欧美特级aaaaaa片| 亚洲精品成人av观看孕妇| 日韩一区二区视频免费看| 国产熟女欧美一区二区| 国产一区二区在线观看av| 亚洲欧美精品自产自拍| 黑人欧美特级aaaaaa片| 成年动漫av网址| 男人操女人黄网站| 亚洲av免费高清在线观看| 亚洲欧美成人精品一区二区| 五月玫瑰六月丁香| 国产无遮挡羞羞视频在线观看| 夫妻性生交免费视频一级片| 久久久久人妻精品一区果冻| 久久久久久久亚洲中文字幕| 日韩伦理黄色片| 成年人午夜在线观看视频| 免费在线观看完整版高清| 色婷婷av一区二区三区视频| 青春草国产在线视频| 大陆偷拍与自拍| 多毛熟女@视频| 狠狠精品人妻久久久久久综合| 国产成人精品无人区| 91在线精品国自产拍蜜月| 在线观看一区二区三区激情| 少妇人妻 视频| 曰老女人黄片| 99国产综合亚洲精品| 亚洲精品国产色婷婷电影| 久久久久久久大尺度免费视频| 国产成人精品久久久久久| 观看美女的网站| 国产又爽黄色视频| 国产麻豆69| 欧美日韩av久久| 五月开心婷婷网| 一边摸一边做爽爽视频免费| 你懂的网址亚洲精品在线观看| 久久人人爽av亚洲精品天堂| 亚洲第一av免费看| 国产精品秋霞免费鲁丝片| 国产精品99久久99久久久不卡 | 尾随美女入室| 日韩av免费高清视频| 女的被弄到高潮叫床怎么办| 日韩一本色道免费dvd| 国产1区2区3区精品| 赤兔流量卡办理| 99热网站在线观看| 国产欧美日韩一区二区三区在线| 久久99蜜桃精品久久| av电影中文网址| 欧美人与善性xxx| 亚洲综合色网址| 狠狠精品人妻久久久久久综合| 一级,二级,三级黄色视频| 丝袜美足系列| 99国产精品免费福利视频| 日韩中文字幕视频在线看片| 久久人人97超碰香蕉20202| 最新的欧美精品一区二区| 最近手机中文字幕大全| 成人亚洲精品一区在线观看| 视频中文字幕在线观看| 午夜免费男女啪啪视频观看| 少妇的丰满在线观看| 青春草国产在线视频| 午夜福利在线观看免费完整高清在| 在线观看国产h片| 国产乱来视频区| 久久女婷五月综合色啪小说| 国产亚洲最大av| 在线免费观看不下载黄p国产| 女性生殖器流出的白浆| 久久久久久久精品精品| 80岁老熟妇乱子伦牲交| 久久久国产一区二区| 国产在线一区二区三区精| 免费高清在线观看视频在线观看| av女优亚洲男人天堂| 色网站视频免费| 观看美女的网站| 一区二区日韩欧美中文字幕 | 亚洲av综合色区一区| 永久免费av网站大全| 美女福利国产在线| 黄色一级大片看看| 黄色怎么调成土黄色| h视频一区二区三区| 精品久久久久久电影网| 自线自在国产av| 大香蕉久久成人网| 国产日韩欧美视频二区| 1024视频免费在线观看| 97人妻天天添夜夜摸| 九九在线视频观看精品| 好男人视频免费观看在线| 欧美人与善性xxx| 97在线视频观看| 丝袜喷水一区| 久久久久久伊人网av| 女人被躁到高潮嗷嗷叫费观| 成人黄色视频免费在线看| 下体分泌物呈黄色| 国产成人精品无人区| 亚洲国产最新在线播放| 久久女婷五月综合色啪小说| 午夜福利视频精品| www.av在线官网国产| 在线观看国产h片| 在线观看免费视频网站a站| 99久久中文字幕三级久久日本| 三上悠亚av全集在线观看| 久久99精品国语久久久| 最近2019中文字幕mv第一页| 国产女主播在线喷水免费视频网站| 好男人视频免费观看在线| 日本黄色日本黄色录像| 啦啦啦中文免费视频观看日本| 97超碰精品成人国产| 亚洲欧洲日产国产| 久久久精品免费免费高清| 国产欧美另类精品又又久久亚洲欧美| tube8黄色片| 少妇人妻久久综合中文| 午夜精品国产一区二区电影| 美女主播在线视频| 超碰97精品在线观看| 亚洲精品乱码久久久久久按摩| 色婷婷久久久亚洲欧美| 男女下面插进去视频免费观看 | 亚洲精品视频女| 老司机亚洲免费影院| 亚洲国产精品999| av片东京热男人的天堂| 久久久久国产精品人妻一区二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品蜜桃在线观看| 夫妻性生交免费视频一级片| 亚洲综合色网址| 在线亚洲精品国产二区图片欧美| 母亲3免费完整高清在线观看 | 成人手机av| 国产亚洲精品久久久com| 久久久欧美国产精品| 1024视频免费在线观看| 美国免费a级毛片| 国产欧美日韩一区二区三区在线| 亚洲一码二码三码区别大吗| 国产免费视频播放在线视频| 午夜福利,免费看| 久久久久视频综合| 婷婷成人精品国产| 久久国产精品大桥未久av| 久久热在线av| 又黄又爽又刺激的免费视频.| 日本午夜av视频| 亚洲四区av| 亚洲久久久国产精品| 国产精品免费大片| 亚洲精品国产av蜜桃| 男女边摸边吃奶| 日日爽夜夜爽网站| 18+在线观看网站| 99久久中文字幕三级久久日本| 蜜桃国产av成人99| 亚洲国产精品一区二区三区在线| av在线播放精品| 欧美变态另类bdsm刘玥| 日韩制服骚丝袜av| 欧美xxxx性猛交bbbb| 亚洲久久久国产精品| www.熟女人妻精品国产 | 美女主播在线视频| 最近的中文字幕免费完整| 中文字幕人妻丝袜制服| 啦啦啦中文免费视频观看日本| 日韩电影二区| 国产麻豆69| 亚洲av综合色区一区| 日韩人妻精品一区2区三区| 高清不卡的av网站| 久久久精品免费免费高清| 国产麻豆69| 成人二区视频| 交换朋友夫妻互换小说| 毛片一级片免费看久久久久| 日韩成人伦理影院| 亚洲精品色激情综合| 九九爱精品视频在线观看| a级毛片在线看网站| 大片免费播放器 马上看| 午夜福利乱码中文字幕| 国产一区二区在线观看av| 激情视频va一区二区三区| 午夜福利网站1000一区二区三区| 午夜激情久久久久久久| 少妇人妻精品综合一区二区| 国产男女超爽视频在线观看| 免费大片18禁| 午夜免费观看性视频| 久久这里只有精品19| 亚洲国产欧美日韩在线播放| 亚洲激情五月婷婷啪啪| 国产精品熟女久久久久浪| 日韩,欧美,国产一区二区三区| √禁漫天堂资源中文www| 老女人水多毛片| 成人黄色视频免费在线看| 国产日韩欧美视频二区| 一级,二级,三级黄色视频| 欧美人与性动交α欧美软件 | 午夜久久久在线观看| 国产高清三级在线| 天天躁夜夜躁狠狠久久av| 久久午夜福利片| 宅男免费午夜| 成人手机av| 热99国产精品久久久久久7| 欧美老熟妇乱子伦牲交| 国产 一区精品| 51国产日韩欧美| 男女下面插进去视频免费观看 | 蜜桃在线观看..| 日日撸夜夜添| av女优亚洲男人天堂| 亚洲第一区二区三区不卡| 国产1区2区3区精品| 日韩,欧美,国产一区二区三区| 十分钟在线观看高清视频www| 大香蕉97超碰在线| 欧美人与善性xxx| 啦啦啦在线观看免费高清www| 丝袜脚勾引网站| 久久av网站| 精品午夜福利在线看| 黑人巨大精品欧美一区二区蜜桃 | 久久人人爽人人片av| 免费观看在线日韩| av国产久精品久网站免费入址| 国产有黄有色有爽视频| 国产 精品1| 国产精品国产三级专区第一集| 亚洲av综合色区一区| 久久精品久久久久久噜噜老黄| 高清在线视频一区二区三区| xxx大片免费视频| 考比视频在线观看| 91在线精品国自产拍蜜月| 波野结衣二区三区在线| 国产片特级美女逼逼视频| 视频在线观看一区二区三区| 国产精品久久久久久久久免| 亚洲美女黄色视频免费看| 最近2019中文字幕mv第一页| 亚洲欧美一区二区三区黑人 | 一级毛片电影观看| 国产精品麻豆人妻色哟哟久久| 国产一区二区在线观看av| 内地一区二区视频在线| 亚洲精品久久久久久婷婷小说| 久久人妻熟女aⅴ| 少妇 在线观看| 精品熟女少妇av免费看| 亚洲欧美日韩卡通动漫| 日韩一区二区视频免费看| www.色视频.com| 国产一级毛片在线| 欧美精品人与动牲交sv欧美| 精品少妇内射三级| 国产精品国产av在线观看| 最近最新中文字幕免费大全7| 另类精品久久| 成人毛片60女人毛片免费| 午夜福利影视在线免费观看| 99国产精品免费福利视频| 少妇的逼好多水| av线在线观看网站| 22中文网久久字幕| 9191精品国产免费久久| 极品少妇高潮喷水抽搐| 观看av在线不卡| 免费黄色在线免费观看| 日本免费在线观看一区| xxxhd国产人妻xxx| 蜜桃在线观看..| 天美传媒精品一区二区| 熟女电影av网| 久久精品夜色国产| 日韩中字成人| 午夜影院在线不卡| 中文字幕最新亚洲高清| 90打野战视频偷拍视频| 成年人午夜在线观看视频| 免费人妻精品一区二区三区视频| av线在线观看网站| 国产精品欧美亚洲77777| 精品人妻熟女毛片av久久网站| 精品卡一卡二卡四卡免费| 边亲边吃奶的免费视频| 亚洲av综合色区一区| 美女国产视频在线观看| 少妇被粗大的猛进出69影院 | 9191精品国产免费久久| 看免费成人av毛片| 9色porny在线观看| 国产精品不卡视频一区二区| 亚洲内射少妇av| videos熟女内射| 日韩精品有码人妻一区| 婷婷成人精品国产| 精品久久久久久电影网| 成人午夜精彩视频在线观看| 高清不卡的av网站| 国产成人精品无人区| 亚洲av综合色区一区| 一级毛片 在线播放| 国产又色又爽无遮挡免| 亚洲婷婷狠狠爱综合网| 亚洲精品乱码久久久久久按摩| 国产欧美日韩一区二区三区在线| 久久人人爽人人爽人人片va| 日本黄色日本黄色录像| 国产精品嫩草影院av在线观看| 久久99蜜桃精品久久| 久久久久久久国产电影| 九色成人免费人妻av| 99re6热这里在线精品视频| 欧美日韩国产mv在线观看视频| 国产永久视频网站| 久久人人97超碰香蕉20202| 国产男女内射视频| 在线天堂中文资源库| 老司机影院成人| 男人操女人黄网站| 国产色婷婷99| 最近中文字幕高清免费大全6| 欧美xxⅹ黑人| 亚洲av综合色区一区| 久久久久视频综合| 国产成人午夜福利电影在线观看| videossex国产| 亚洲av国产av综合av卡| 极品少妇高潮喷水抽搐| 国产日韩一区二区三区精品不卡| 插逼视频在线观看| 久久精品久久久久久久性| 成人国语在线视频| 国产成人一区二区在线| 亚洲精品国产av成人精品| 2022亚洲国产成人精品| 国产亚洲精品第一综合不卡 | 国产一区二区三区综合在线观看 | 欧美精品一区二区免费开放| 亚洲欧美色中文字幕在线| 色视频在线一区二区三区| 日本-黄色视频高清免费观看| 欧美丝袜亚洲另类| xxx大片免费视频| 欧美日本中文国产一区发布| av女优亚洲男人天堂| 久久精品国产自在天天线| 久久婷婷青草| 99久久综合免费| freevideosex欧美| videos熟女内射| 黄片播放在线免费| 中文字幕av电影在线播放| 满18在线观看网站| 18禁观看日本| 91久久精品国产一区二区三区| 老司机影院毛片| a级毛色黄片| 女人精品久久久久毛片| 亚洲,欧美,日韩| 亚洲精品日本国产第一区| 免费观看a级毛片全部| 国产成人精品一,二区| av国产精品久久久久影院| 亚洲一码二码三码区别大吗| 国产爽快片一区二区三区| www.熟女人妻精品国产 | 亚洲精品第二区| 七月丁香在线播放| 91精品三级在线观看| 亚洲av免费高清在线观看| 日韩中字成人| 赤兔流量卡办理| 一本久久精品| 一区在线观看完整版| 久久婷婷青草| videossex国产| 黄片无遮挡物在线观看| 欧美精品高潮呻吟av久久| av国产精品久久久久影院| 国产精品 国内视频| 97在线人人人人妻| 国产成人av激情在线播放| 久久99一区二区三区| 18禁动态无遮挡网站| av一本久久久久| 99国产综合亚洲精品| 999精品在线视频| 免费不卡的大黄色大毛片视频在线观看| 不卡视频在线观看欧美| 久久久久精品性色| 国产一区二区在线观看av| 深夜精品福利| 久久久久网色| 精品久久久久久电影网| 久久久久久久久久成人| 精品一区二区三区视频在线| 精品国产一区二区久久| kizo精华| 老司机影院成人| 精品一区二区三区四区五区乱码 | 欧美少妇被猛烈插入视频| 国产探花极品一区二区| av电影中文网址| 日韩av在线免费看完整版不卡| 极品人妻少妇av视频| 老熟女久久久| 国产激情久久老熟女| 国产精品不卡视频一区二区| 亚洲色图综合在线观看| 久久久精品免费免费高清| 久久女婷五月综合色啪小说| 91久久精品国产一区二区三区| 日本黄色日本黄色录像| 亚洲综合精品二区| 伊人亚洲综合成人网| 蜜桃国产av成人99| 亚洲国产精品专区欧美| videos熟女内射|