• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Decision-Making of a Single Supplier and Multiple Loss-Averse Retailers under Partial Trade Credit

    2020-06-04 06:39:22WANGZhihong王志宏LIYueLIHongguo李紅果
    關(guān)鍵詞:紅果

    WANG Zhihong(王志宏), LI Yue(李 悅), LI Hongguo(李紅果)

    Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China

    Abstract: Under partial trade credit, suppliers usually require retailers to pay a fraction of the purchase cost immediately when ordering and the remaining payment is deferred at the end of the sales period. Considering a supply chain consisting of a risk-neutral supplier and multiple loss-averse retailers, we develop models under partial trade credit. We analyze the optimal decisions of a supplier and retailers under decentralized decision-making. The study shows that there is a unique Nash equilibrium among the retailers, and the optimal total order quantity of retailers increases as the delayed payment ratio increases and as the degree of retailers’ competition increases, but decreases with an increase in the loss aversion. Numerical studies are conducted to demonstrate the solution procedures and the effects of the parameters on decisions and profits.

    Key words: partial trade credit; loss aversion; multiple retailers; decision; supply chain

    Introduction

    Trade credit is one of the most important short-term financing methods widely used by enterprises in different countries and regions such as China, the United States and Europe[1-4]. It is an effective incentive and coordination contract in supply chain management[5-7]. Suppliers provide trade credit to downstream retailers, which allows the retailers to postpone payment. Trade credit reduces retailers’ capital occupancy and encourages them to increase their orders. At the same time, suppliers receive more profits. In actual operation, suppliers usually require retailers to pay a fraction of the purchase cost immediately when ordering and to settle the remaining payment at the end of the sales period. This is partial trade credit. For example, Sany Heavy Industry Co., Ltd. offers partial trade credit to the dealership within the allowable credit period. Nowadays, partial trade credit is widely used in the engineering machinery industry in China[8-9].

    Trade credit is facing an increasing number of uncertain factors that bring risks to the operation of trade credit and immeasurable losses to the supply chain. Capital-constrained and smaller enterprises tend to respond more strongly to loss and show characteristics of loss aversion, which will affect supply chain decisions. In addition, a single supplier often provides partial trade credit for multiple competing vendors simultaneously. Thus, how will multiple retailers’ competitiveness and loss aversion affect credit decisions and operation decisions in the supply chain? What will happen to the supply chain’s profits? These are the theoretical and practical issues of concern.

    The operation management literature on partial trade credit mainly concerns the buyer’s inventory problem under given trade credit terms, where the economic order quantity (EOQ) model is adopted as one of the simplest and most basic inventory models in partial trade credit[10]. To develop EOQ models under partial trade credit, Zhouetal.[8]developed a synergic EOQ model by considering partial trade credit, shortages, imperfect quality, and inspection errors simultaneously. Rajan and Uthayakumar[11]built an EOQ model for instantaneous deteriorating commodities with inventory-level-dependent demand to obtain optimal replenishment policies under partial trade credit. Instead of setting trade credit as a given parameter, Wangetal.[12]developed a Stackelberg model from the perspective of the supplier. In the model, the supplier set a threshold for a trade credit policy, the proportion of payment for the order, and the discount factor for partial payment; then the retailer made the decision accordingly.

    In recent years, Mahata[13], Soni and Joshi[14], Chenetal.[15], and Wuetal.[16]considered the two-tier trade credit (upstream full trade credit and downstream partial trade credit) in the perishable product supply chain consisting of a supplier, a retailer and a customer, and studied the retailer’s optimal replenishment decision. In contrast, Liaoetal.[17]investigated the optimal wholesaler’s replenishment decisions for deterioration items within the EOQ framework by assuming that the wholesaler obtained partial trade credit from the supplier, but the wholesaler offered full trade credit to the retailer,i.e., upstream partial trade credit and downstream full trade credit.

    Several researchers have investigated three-level trade credit. Pramaniketal.[18]proposed an EOQ model under three levels of a partial trade credit policy, where a supplier, a wholesaler and a retailer offered some credit periods on some fraction of the total purchased amount to the wholesaler, the retailer and the customer, respectively. Pramaniketal.[19]developed an integrated supply chain model with price, credit period, and credit amount dependent on demand, where both the wholesaler and the retailer enjoyed the same full credit facility but the retailer only offered partial trade credit to the customers. For stochastic demand, Zhouetal.[9]determined the optimal order and payment decision of the retailer with different penalty rates given under partial trade credit when the retailer’s immediate payment ratio was exogenous and endogenous.

    The existing studies on partial trade credit do not consider the loss aversion of decision makers and the situation where multiple retailers are involved in a supply chain. In order to fill these gaps in the existing literature, we explore the decision-making of a supply chain with a single supplier and multiple loss-averse retailers under partial trade credit. The main contributions of this study are in two ways. First, we formulate a Stackelberg game model in the case where a supplier offers partial trade credit to multiple loss-averse retailers, and analyze the Nash Equilibrium of retailers. The key distinction is that we incorporate the loss aversion of multiple retailers into the model. Second, we investigate the impact of the degree of retailers’ loss aversion, the retailers’ competition, and the fraction of delayed payment on the optimal decisions of retailers and the supplier.

    The remainder of this article is organized as follows. Section 1 focuses on the parameters and assumptions of the model. Section 2 studies the optimal policies of retailers and suppliers under decentralized decision-making. A set of numerical experiments and analyses are conducted to illustrate the effectiveness of partial trade credit models in section 3. Finally, conclusions are drawn in section 4.

    1 Parameter Settings and Assumptions

    Consider a supply chain that consists of a supplier andnretailers, where the supplier is risk neutral and the retailers are loss averse. The retailers order the same product from the supplier at the beginning of each selling period and pay a certain proportion of the payment when ordering; that is, the supplier offers a certain partial trade credit to retailers. Then the supplier organizes production according to the total order quantity and delivers goods to the retailers on time. In the paper, the degree of retailers’ competition is described by the number of retailers, and more retailers mean more competition. The optimal decision variables are indicated by the superscript*.

    Model parameters and variables are as follows.

    λis the loss aversion coefficient of retailers;kis the proportion of the payment provided by the retailer immediately when ordering;k′ is the proportion of the payment delayed (0≤k′≤1, andk′=1-k);wis the unit product wholesale price provided by the supplier;cis the supplier’s unit product production cost;pis the retailer’s unit product sales price;sis the salvage value of unit product unsold (p>w>c>s);Qscis the total production under centralized decision-making;Xis the total random demand ofnretailers with probability density functionf(x) and cumulative distribution functionF(x);Xiis the random demand faced by the retaileriwith probability density functiong(xi) and cumulative distribution functionG(xi),i=1, 2, ...,n.

    Model assumptions are as follows.

    (1) Information shared between the decision makers in the supply chain is common knowledge.

    (2) The working capital of the retaileriis [kwQi,wQi]; that is, the initial capital of the retaileriis not sufficient to cover the full payment, and the retailers assume limited liability.

    (3)nretailers sell the same product and there is competition among them. Under decentralized decision-making, letQibe the order quantity of the retaileri,Q-ibe the order quantity ofn-1 retailers except the retaileri, andQ(Q=Qi+Q-i) be the total order quantity ofnretailers. We assume that the total demandXis divided among the retailers in proportion to their respective order quantity. Specifically, the demand of the retaileriisXi, and

    We can get the following equations:

    (1)

    (2)

    The demand allocation rule is known as the proportional demand allocation rule in Refs. [20-23]. As pointed out by Cachon[20], Wang[21]and Wuetal.[23], the proportional demand allocation rule is a reasonable model when customers have a relatively low search cost (e.g., online shopping) and the qualitative insights from this rule are consistent with other demand allocation rules considered in Ref.[24].

    (4) We assume that the retailers are loss averse and consider a simple piecewise-linear form of a loss-aversion utility function.

    where,ziis the expected profit of the retaileri;z0is the reference wealth level (decision reference point) of the retaileriat the beginning of the selling period;λ(λ≥1) indicates loss aversion coefficient of the retailer, the loss of the retailer is neutral ifλ=1, and greater values ofλimply higher levels of loss aversion. Without loss of generality, we normalizez0=0. This piecewise-linear form of loss aversion utility function has been widely used in behavioural economics and operations management literature (seen in Refs. [21, 25-27]) and is an approximation of the non-linear loss aversion utility functions presented by Tversky and Kahneman[28].

    2 Decision-Making in the Supply Chain

    2.1 Decisions of loss-averse retailers

    According to the actual operation of partial trade credit, the supplier plays a dominant role in the supply chain. Consider a Stackelberg leader-follower relationship among the supplier and the loss-averse retailers, and a Nash game betweennretailers. Specifically, the sequence of events is as follows. The supplier determines the wholesale pricewand the proportion of delayed paymentk′ according to the loss aversion of retailers, and then retailers decide their individual order quantityQiaccording to the decision-making of the supplier and their own loss aversion.

    As retailers are loss averse, their decision objective is to maximize the expected utility. In partial trade credit, in order to control their own risks, the supplier requires the retailers to pay part of the full payment when ordering, and allows the retailers to postpone the remaining payment (wQi-kwQi); that isk′wQi. At the end of the selling period, the income of the retailer including salespxiand the salvage value income of the unsold productss(Qi-xi) are used to pay the outstanding paymentk′wQi. Comparing the income of the retailer with its outstanding payment, the profit function of the retaileriis

    Then we can express expected profit function of the retaileriasE[πri(Qi,Q-i)] and expected utility functionE[U(πri(Qi,Q-i))] as

    (3)

    From Eq. (1) and Eq. (2), we rewrite and simplify Eq. (3) and obtain:

    (4)

    Theorem 1 Whens/w≤k′≤1, the retailerihas a unique optimal order quantityQi*that satisfies the following first-order condition:

    (5)

    Proof See APPENDIX A.

    (w-s)F(q2(Q*))-(p-s)F(Q*)+

    p-w=0,

    (6)

    Proof See APPENDIX B.

    Inference 1 The optimal total order quantityQ*ofnretailers is a decreasing function on the degree of loss aversionλ, an increasing function on the numbernof retailers, and an increasing function on the delayed payment ratiok′ whens/w≤k′≤1.

    Proof See APPENDIX C.

    2.2 Decision of the supplier

    The supplier is risk neutral and his/her decision is to maximize expected profit. In partial trade credit, the expected profit function of the supplierE[πs(w,k′)] is

    Under decentralized decision-making, according to the optimal ordering response function of retailers, the supplier determines the wholesale pricewand the delayed payment ratiok′ to maximize his/her own profit. Then the decision problem of the supplier can be transformed into an optimization problem with the following constraint conditions:

    s.t.

    (w-s)F(q2(Q*))-(p-s)F(Q*)+p-w=0.

    (7)

    It is usually difficult to have an explicit solution for the relationship function amongQ*,k′ andw. So we numerically solve the model (7) to get the optimal total order quantityQ*, the optimal wholesale pricew*, and the optimal delayed payment ratiok′*with the aid of the Lagrange multiplier method.

    Thus, we obtain the following equations. The largest expected profit of the supplier is

    (w*-c)Q*.

    (8)

    The largest expected total profit ofnretailers is

    (k′*w*-s)Q*F(q1(Q*)).

    (9)

    The largest expected total utility ofnretailers is

    (10)

    3 Numerical Examples

    We now employ numerical examples to further analyze and verify the above research. We assume thatp=100,c=40,s=5, and the market demandXis subject to uniform distribution,i.e.,X~U(0, 20 000).

    (1) We analyze the influence of the delayed payment ratio on the optimal order decision of the retailers in the case of different degrees of loss aversions and different numbers of retailers, as shown in Fig. 1.

    Fig. 1 Influence of delayed payment ratio on the optimal total order quantity of retailers (w=60,1/12≤k′≤1)

    As can be seen from Fig. 1, when the degree of loss aversion is the same, in order to make the optimal total order quantity of retailers maintain the same level, the delayed payment ratio offered by the supplier decreases with the increasing number of retailers. When the number of retailers is the same, the proportion of delayed payment offered by the supplier increases rapidly as the loss aversion increases if the optimal total order quantity of retailers is maintained at the same level.

    The result is interesting whenk′=1, as seen in Fig. 1. The optimal order quantity will not depend onλwhenk′=1, which can also be justified by Eq. (6) in Theorem 2.

    (2) We analyze the influence of the wholesale price on the optimal order decision of the retailers in the case of different degrees of loss aversion and different numbers of retailers, as shown in Fig. 2.

    Fig. 2 Influence of wholesale price on the optimal total order quantity of retailers (k′=0.6)

    As seen from Fig. 2, the optimal ordering decision of retailers is the decreasing function of the wholesale price inc

    4 Conclusions

    In this paper, we considered a supply chain where multiple loss-averse retailers can enjoy partial trade credit and purchase items from the supplier to satisfy random demand. We studied the decisions of one-to-multiple supply chains, and obtained the following interesting results about the policy of retailers: (1) Nash equilibrium exists between multiple loss-averse retailers, and a unique optimal total order quantity exists to maximize the expected utility; (2) the optimal total order quantity of retailers is a decreasing function of their loss aversion, an increasing function of the number of retailers, and an increasing function of the proportion of the delayed payment.

    In partial trade credit, a delay in payment makes the supplier face a default risk. How will a default risk affect the decision-making policies of the supplier and loss-averse retailers as well as supply chain coordination? This will be our future research. We will also further investigate loss-averse supply chain coordination under partial trade credit considering the following two cases: the supplier is loss averse, and the supplier and retailers are both loss averse.

    APPENDIX A

    Proof of Theorem 1.

    We take the first-order and second-order derivatives ofQifor Eq. (4) and obtain

    λ(k′w-s)F(q1(Qi+Q-i))-(λ-1)(w-s)×

    F(q2(Qi+Q-i))-(p-s)F(Qi+Q-i)+p-w.

    dE[U(πri(Qi,Q-i))]/dQi=0.

    Hence, we conclude the proof.

    APPENDIX B

    Proof of Theorem 2.

    From Theorem 1 and its proof process, it can be seen that both the strategy space and the payment function in the ordering game ofnloss-averse retailers meet the requirements of the Nash equilibrium existence theorem, so the game has a pure strategy Nash equilibrium solution. Asnretailers decide the order quantity at the same time in the Nash game, according to the symmetry, the optimal order quantity ofnretailers is equal to that of each other. Then there must beQ1*=Q2*=…=Qi*=…=Qn*.

    Obviously,Qi*=Q*/nandQ-i*=(n-1)Q*/n. The two equations are substituted into Eq. (5), which is further simplified, and the equilibrium total order quantity must satisfy Eq. (6).

    Let the left side of Eq.(6)be the functionl(Q).

    (B1)

    Taking the first-order derivative ofQforl(Q), we can obtain the following:

    Hence, we conclude the proof.

    APPENDIX C

    Proof of Inference 1

    Based on Eq. (B1), Inference 1 can be proved according to the implicit function derivation rule. The optimal total order quantity ofnretailers decreases with an increase in the degree of loss aversion and increases with an increase in the degree of competition (more retailers mean more competition in the market).

    In addition, each retailer determines his/her own order decision based on the wholesale pricewand the delayed payment ratiok′ set by the supplier, and the optimal total order quantityQ*increases with the increase of the delayed payment ratiok′, which indicates that a partial delay in payment strategy plays a part in motivating retailers to a certain extent.

    Hence, we conclude the proof.

    猜你喜歡
    紅果
    紅果果紫果果
    幼兒100(2023年42期)2023-11-21 09:36:48
    紅果(攝影作品)
    小刺猬送紅果
    紅果果富了口袋袋
    湯米的紅果果
    蘇喜軍:種了紅果,美了山村,富了百姓
    謝海作品
    畫(huà)刊(2017年2期)2017-04-12 06:43:58
    分紅果
    紅果的夜晚
    紅果參提取物的抗氧化活性研究
    人人妻人人爽人人添夜夜欢视频 | 久久亚洲国产成人精品v| 99热这里只有是精品在线观看| 2021少妇久久久久久久久久久| av国产久精品久网站免费入址| 91久久精品国产一区二区三区| 国产av不卡久久| 国产精品久久久久久精品电影| 国产 一区精品| 日韩一本色道免费dvd| 国产永久视频网站| 亚洲av欧美aⅴ国产| 精品熟女少妇av免费看| 高清午夜精品一区二区三区| av福利片在线观看| 白带黄色成豆腐渣| 欧美最新免费一区二区三区| 国产男女超爽视频在线观看| 在线天堂最新版资源| 日本-黄色视频高清免费观看| 全区人妻精品视频| 全区人妻精品视频| 1000部很黄的大片| 91午夜精品亚洲一区二区三区| 欧美精品一区二区大全| 22中文网久久字幕| 天天躁夜夜躁狠狠久久av| av福利片在线观看| 五月开心婷婷网| 亚洲成色77777| av福利片在线观看| 亚洲欧美一区二区三区黑人 | 亚洲自偷自拍三级| 国产成人精品婷婷| 国产成人福利小说| 国产男女内射视频| 国产成人福利小说| 久久久久久久大尺度免费视频| 国产人妻一区二区三区在| 成人无遮挡网站| 美女cb高潮喷水在线观看| 午夜老司机福利剧场| 王馨瑶露胸无遮挡在线观看| 成人无遮挡网站| 成年人午夜在线观看视频| 国产精品熟女久久久久浪| 午夜激情福利司机影院| 99热这里只有是精品在线观看| 精品99又大又爽又粗少妇毛片| 亚洲av成人精品一区久久| 熟女av电影| 成人免费观看视频高清| 亚洲精品aⅴ在线观看| 婷婷色综合大香蕉| 久久精品综合一区二区三区| 亚洲av一区综合| 欧美xxxx黑人xx丫x性爽| 麻豆乱淫一区二区| 免费少妇av软件| 天天一区二区日本电影三级| 亚洲av国产av综合av卡| 一级片'在线观看视频| 大片免费播放器 马上看| 免费看日本二区| 可以在线观看毛片的网站| 老司机影院毛片| 婷婷色综合大香蕉| 成人漫画全彩无遮挡| 国产精品熟女久久久久浪| 国产乱人偷精品视频| 国产成人午夜福利电影在线观看| 亚洲电影在线观看av| 精品国产乱码久久久久久小说| 91久久精品国产一区二区三区| 国产精品嫩草影院av在线观看| 别揉我奶头 嗯啊视频| 国产欧美亚洲国产| 亚洲欧美精品专区久久| 2018国产大陆天天弄谢| 毛片一级片免费看久久久久| 99热这里只有是精品在线观看| 成年女人在线观看亚洲视频 | 亚洲国产精品成人综合色| 麻豆精品久久久久久蜜桃| 欧美一级a爱片免费观看看| 看十八女毛片水多多多| 亚洲熟女精品中文字幕| 国国产精品蜜臀av免费| 美女内射精品一级片tv| 一级av片app| 久久久欧美国产精品| 国产免费一级a男人的天堂| 我的女老师完整版在线观看| 日日摸夜夜添夜夜爱| 亚洲欧美中文字幕日韩二区| 老师上课跳d突然被开到最大视频| 内射极品少妇av片p| 亚洲av中文av极速乱| 男女边吃奶边做爰视频| 欧美日韩国产mv在线观看视频 | 如何舔出高潮| 国产欧美日韩精品一区二区| 肉色欧美久久久久久久蜜桃 | 久久精品国产a三级三级三级| 国产又色又爽无遮挡免| 精品人妻偷拍中文字幕| 丰满人妻一区二区三区视频av| 国产成人a∨麻豆精品| 久久久久久久国产电影| 欧美激情国产日韩精品一区| 中文欧美无线码| 国产精品三级大全| 亚洲欧美清纯卡通| av黄色大香蕉| 网址你懂的国产日韩在线| 免费观看a级毛片全部| 在线观看国产h片| 亚洲欧美中文字幕日韩二区| 在线观看人妻少妇| 九草在线视频观看| 欧美日韩在线观看h| 久久久精品94久久精品| 国产淫片久久久久久久久| 97在线人人人人妻| 夫妻性生交免费视频一级片| av免费观看日本| 99九九线精品视频在线观看视频| 水蜜桃什么品种好| 国产成人精品一,二区| 欧美区成人在线视频| 精品人妻视频免费看| 一级毛片 在线播放| 嫩草影院新地址| 建设人人有责人人尽责人人享有的 | 中文字幕av成人在线电影| 中文精品一卡2卡3卡4更新| 春色校园在线视频观看| 免费黄频网站在线观看国产| 欧美日韩综合久久久久久| 搡女人真爽免费视频火全软件| 免费观看无遮挡的男女| 内地一区二区视频在线| h日本视频在线播放| 婷婷色综合大香蕉| 免费观看无遮挡的男女| 久久精品国产a三级三级三级| 亚洲成人av在线免费| 亚洲av男天堂| 欧美日韩国产mv在线观看视频 | 亚洲国产av新网站| 91久久精品国产一区二区成人| 又爽又黄无遮挡网站| 国产伦在线观看视频一区| 在线观看av片永久免费下载| 黑人高潮一二区| 亚洲欧美中文字幕日韩二区| 80岁老熟妇乱子伦牲交| 亚洲av国产av综合av卡| 中国国产av一级| 久久人人爽人人片av| 免费看不卡的av| 久久99精品国语久久久| 欧美性感艳星| 蜜桃亚洲精品一区二区三区| 日本熟妇午夜| 99热国产这里只有精品6| 丰满少妇做爰视频| videos熟女内射| 在线天堂最新版资源| 爱豆传媒免费全集在线观看| 亚洲四区av| 成年女人在线观看亚洲视频 | 建设人人有责人人尽责人人享有的 | 毛片女人毛片| 亚洲在线观看片| av在线蜜桃| 亚洲欧洲日产国产| 午夜激情福利司机影院| 国产探花极品一区二区| 亚洲成人中文字幕在线播放| av国产精品久久久久影院| 晚上一个人看的免费电影| 久久鲁丝午夜福利片| 99久久精品热视频| av国产久精品久网站免费入址| 精品亚洲乱码少妇综合久久| 国产av码专区亚洲av| 爱豆传媒免费全集在线观看| 在线免费十八禁| 成人一区二区视频在线观看| 午夜福利高清视频| 亚洲精品国产成人久久av| 一级黄片播放器| 高清视频免费观看一区二区| 亚洲成人中文字幕在线播放| 午夜福利视频精品| 精品人妻一区二区三区麻豆| 免费观看在线日韩| 国产国拍精品亚洲av在线观看| 午夜激情福利司机影院| 高清视频免费观看一区二区| 3wmmmm亚洲av在线观看| 欧美zozozo另类| 伊人久久国产一区二区| 大陆偷拍与自拍| 亚洲av.av天堂| 美女cb高潮喷水在线观看| 日韩视频在线欧美| 亚洲精品自拍成人| 一级二级三级毛片免费看| 久久99热6这里只有精品| 成人高潮视频无遮挡免费网站| 少妇人妻 视频| 亚洲综合精品二区| 成人综合一区亚洲| 一区二区三区精品91| 毛片一级片免费看久久久久| 免费黄频网站在线观看国产| av在线蜜桃| 亚洲精品国产色婷婷电影| 青春草国产在线视频| 在线精品无人区一区二区三 | 中国三级夫妇交换| 人妻少妇偷人精品九色| kizo精华| 国内揄拍国产精品人妻在线| 97热精品久久久久久| 中文在线观看免费www的网站| 国产免费一级a男人的天堂| 国产亚洲91精品色在线| 国产精品久久久久久精品电影小说 | 啦啦啦啦在线视频资源| 天天一区二区日本电影三级| 免费不卡的大黄色大毛片视频在线观看| 在线 av 中文字幕| 人人妻人人看人人澡| 亚洲熟女精品中文字幕| 高清欧美精品videossex| 国产又色又爽无遮挡免| 视频区图区小说| 国产老妇伦熟女老妇高清| 亚洲无线观看免费| 精品久久久久久久久亚洲| 欧美日韩国产mv在线观看视频 | 成人高潮视频无遮挡免费网站| 国产精品一及| 国产 精品1| 色5月婷婷丁香| 在线观看一区二区三区| 男人和女人高潮做爰伦理| 熟女av电影| 少妇人妻久久综合中文| 午夜爱爱视频在线播放| 色5月婷婷丁香| 亚洲伊人久久精品综合| 成年人午夜在线观看视频| 色5月婷婷丁香| 九九久久精品国产亚洲av麻豆| 高清欧美精品videossex| 91精品一卡2卡3卡4卡| 一区二区三区精品91| 成人国产av品久久久| eeuss影院久久| 日本爱情动作片www.在线观看| 中文字幕免费在线视频6| 午夜福利在线观看免费完整高清在| a级毛片免费高清观看在线播放| 特大巨黑吊av在线直播| 你懂的网址亚洲精品在线观看| 噜噜噜噜噜久久久久久91| 午夜精品国产一区二区电影 | 搡老乐熟女国产| 晚上一个人看的免费电影| 制服丝袜香蕉在线| 深爱激情五月婷婷| av在线app专区| 日日啪夜夜撸| av卡一久久| 亚洲怡红院男人天堂| 禁无遮挡网站| 久久亚洲国产成人精品v| 亚洲国产av新网站| 黄色视频在线播放观看不卡| 亚洲在久久综合| 99久久中文字幕三级久久日本| 在线免费观看不下载黄p国产| 五月开心婷婷网| 少妇的逼好多水| 婷婷色av中文字幕| 欧美三级亚洲精品| 一级二级三级毛片免费看| 欧美极品一区二区三区四区| 纵有疾风起免费观看全集完整版| 超碰av人人做人人爽久久| 最近最新中文字幕大全电影3| 日韩人妻高清精品专区| 91久久精品国产一区二区成人| 秋霞伦理黄片| 又大又黄又爽视频免费| 国产精品熟女久久久久浪| 久久鲁丝午夜福利片| 麻豆国产97在线/欧美| 日本黄色片子视频| 亚洲国产高清在线一区二区三| 搡老乐熟女国产| 国产大屁股一区二区在线视频| 久久久久久九九精品二区国产| 久久97久久精品| 男人添女人高潮全过程视频| 成人黄色视频免费在线看| 99久久精品国产国产毛片| 99re6热这里在线精品视频| 日韩三级伦理在线观看| 韩国av在线不卡| .国产精品久久| 日韩强制内射视频| av在线app专区| 亚洲欧美精品专区久久| 亚洲四区av| 国产探花极品一区二区| 国产亚洲91精品色在线| 欧美成人午夜免费资源| 蜜臀久久99精品久久宅男| 最后的刺客免费高清国语| av在线亚洲专区| 大码成人一级视频| 国产精品久久久久久精品古装| 国产精品久久久久久久电影| 舔av片在线| 亚洲在线观看片| 婷婷色综合大香蕉| 国产人妻一区二区三区在| 女人久久www免费人成看片| 色哟哟·www| 熟妇人妻不卡中文字幕| 国产女主播在线喷水免费视频网站| 嫩草影院入口| 免费av观看视频| 亚洲精品色激情综合| 亚洲av不卡在线观看| 亚洲精品aⅴ在线观看| 天天躁日日操中文字幕| 人人妻人人看人人澡| 国产精品国产三级国产av玫瑰| 国产精品一二三区在线看| 国产精品久久久久久久电影| 亚洲欧美日韩卡通动漫| 免费看不卡的av| 日韩三级伦理在线观看| 久久久久久久国产电影| 欧美亚洲 丝袜 人妻 在线| 好男人在线观看高清免费视频| 一个人看的www免费观看视频| 男女国产视频网站| 国产一区有黄有色的免费视频| 美女主播在线视频| 国产片特级美女逼逼视频| 成年版毛片免费区| 成人漫画全彩无遮挡| 亚洲人成网站高清观看| 亚洲av成人精品一二三区| 亚洲精品国产av成人精品| 午夜精品一区二区三区免费看| 日韩中字成人| 一区二区三区乱码不卡18| 国产成人精品一,二区| 九九久久精品国产亚洲av麻豆| 韩国高清视频一区二区三区| 欧美精品人与动牲交sv欧美| 美女内射精品一级片tv| 日本熟妇午夜| 舔av片在线| 国产探花在线观看一区二区| 国产成人91sexporn| 欧美丝袜亚洲另类| 亚洲av日韩在线播放| 王馨瑶露胸无遮挡在线观看| 日韩国内少妇激情av| 久久久精品94久久精品| 国产一区有黄有色的免费视频| 日韩伦理黄色片| 韩国av在线不卡| 午夜福利网站1000一区二区三区| 最后的刺客免费高清国语| 国产精品.久久久| 午夜免费鲁丝| 国产精品国产av在线观看| 大片电影免费在线观看免费| 最近最新中文字幕大全电影3| 少妇丰满av| 久久精品久久久久久久性| 男人舔奶头视频| 毛片女人毛片| av天堂中文字幕网| 啦啦啦中文免费视频观看日本| 小蜜桃在线观看免费完整版高清| 一本色道久久久久久精品综合| 熟妇人妻不卡中文字幕| 亚洲天堂av无毛| 国产69精品久久久久777片| 国产爱豆传媒在线观看| 久久久色成人| .国产精品久久| 女人十人毛片免费观看3o分钟| 在线播放无遮挡| 一级毛片电影观看| 可以在线观看毛片的网站| 自拍欧美九色日韩亚洲蝌蚪91 | 久久韩国三级中文字幕| 在线精品无人区一区二区三 | 一区二区三区免费毛片| 国产成人freesex在线| 五月玫瑰六月丁香| 狂野欧美白嫩少妇大欣赏| 中国美白少妇内射xxxbb| 97超视频在线观看视频| 国产久久久一区二区三区| 中文欧美无线码| 久久人人爽人人片av| 中文天堂在线官网| 亚洲av免费高清在线观看| 99视频精品全部免费 在线| 男男h啪啪无遮挡| 女人久久www免费人成看片| 观看美女的网站| 中文资源天堂在线| 青春草亚洲视频在线观看| 久久久欧美国产精品| 少妇的逼好多水| 青春草视频在线免费观看| 欧美精品国产亚洲| 乱码一卡2卡4卡精品| 草草在线视频免费看| 中文字幕免费在线视频6| 亚洲欧美日韩无卡精品| 少妇 在线观看| 国产免费一级a男人的天堂| 最近手机中文字幕大全| 老司机影院毛片| 少妇猛男粗大的猛烈进出视频 | 日本av手机在线免费观看| 亚洲欧美成人精品一区二区| 丰满乱子伦码专区| 99久国产av精品国产电影| 99re6热这里在线精品视频| 啦啦啦在线观看免费高清www| av女优亚洲男人天堂| 夫妻性生交免费视频一级片| 久久6这里有精品| 国产一区二区三区综合在线观看 | 国产精品一及| 伊人久久国产一区二区| 日本wwww免费看| 内地一区二区视频在线| 最新中文字幕久久久久| 一级av片app| 哪个播放器可以免费观看大片| 麻豆精品久久久久久蜜桃| 久久久午夜欧美精品| 日韩 亚洲 欧美在线| 久久精品人妻少妇| 亚洲欧美中文字幕日韩二区| 永久免费av网站大全| 国产老妇伦熟女老妇高清| 寂寞人妻少妇视频99o| 日本欧美国产在线视频| 午夜福利在线观看免费完整高清在| 亚洲av免费高清在线观看| 麻豆久久精品国产亚洲av| 一本一本综合久久| 1000部很黄的大片| 成年人午夜在线观看视频| 欧美精品一区二区大全| 婷婷色综合大香蕉| 亚洲精品中文字幕在线视频 | 美女视频免费永久观看网站| 日本午夜av视频| 亚洲精品456在线播放app| 婷婷色综合大香蕉| 国产爽快片一区二区三区| 一本一本综合久久| 国产欧美亚洲国产| 男男h啪啪无遮挡| 亚洲成人av在线免费| 性色avwww在线观看| 欧美三级亚洲精品| 国产精品嫩草影院av在线观看| 天堂中文最新版在线下载 | 久久久精品94久久精品| 欧美3d第一页| 欧美日韩视频精品一区| 国产精品久久久久久久久免| 黄片wwwwww| 中文字幕免费在线视频6| 亚洲国产av新网站| 中文在线观看免费www的网站| 亚洲精品乱久久久久久| 夜夜爽夜夜爽视频| 97在线视频观看| 国产毛片在线视频| 免费观看性生交大片5| 女人久久www免费人成看片| 一区二区三区免费毛片| 成年女人看的毛片在线观看| 好男人在线观看高清免费视频| 国产乱人视频| 亚洲欧美日韩另类电影网站 | h日本视频在线播放| 最后的刺客免费高清国语| 日本黄大片高清| 久久久久精品性色| 只有这里有精品99| 欧美日韩亚洲高清精品| 99久久精品热视频| 国产精品麻豆人妻色哟哟久久| 亚洲av福利一区| 看黄色毛片网站| 99九九线精品视频在线观看视频| 日本熟妇午夜| 精品久久久久久久末码| 国产熟女欧美一区二区| 中文乱码字字幕精品一区二区三区| 男女边摸边吃奶| 久久99热6这里只有精品| 3wmmmm亚洲av在线观看| 精品亚洲乱码少妇综合久久| 国产一区亚洲一区在线观看| 亚洲av中文字字幕乱码综合| 亚洲最大成人av| 在线精品无人区一区二区三 | 丝袜脚勾引网站| 久久久午夜欧美精品| 如何舔出高潮| 日日撸夜夜添| 一级毛片aaaaaa免费看小| 久久影院123| 伦精品一区二区三区| 在线观看国产h片| 成人综合一区亚洲| 国产成人精品婷婷| 国产精品国产av在线观看| 日本爱情动作片www.在线观看| 一个人看的www免费观看视频| 午夜福利视频1000在线观看| 亚洲精品aⅴ在线观看| 韩国高清视频一区二区三区| 99热国产这里只有精品6| 国产色爽女视频免费观看| 久久久久久久午夜电影| 精品少妇黑人巨大在线播放| 女人十人毛片免费观看3o分钟| 国产av码专区亚洲av| 熟女人妻精品中文字幕| 亚洲成人精品中文字幕电影| 高清毛片免费看| 97超视频在线观看视频| 看黄色毛片网站| 一区二区三区四区激情视频| 夫妻性生交免费视频一级片| 精品一区二区三区视频在线| 免费高清在线观看视频在线观看| 成人亚洲精品av一区二区| 免费不卡的大黄色大毛片视频在线观看| 精品久久久久久久人妻蜜臀av| 国产黄片视频在线免费观看| 国产av码专区亚洲av| 欧美xxxx性猛交bbbb| 成人黄色视频免费在线看| 日日啪夜夜爽| 亚洲欧洲日产国产| 国产成人freesex在线| 亚洲va在线va天堂va国产| 欧美精品一区二区大全| 成人二区视频| av免费在线看不卡| 国产在线男女| 国产v大片淫在线免费观看| 我的女老师完整版在线观看| a级一级毛片免费在线观看| 69人妻影院| 国产av码专区亚洲av| 久久精品夜色国产| 久久精品久久久久久噜噜老黄| 一级爰片在线观看| 青春草亚洲视频在线观看| 波野结衣二区三区在线| 久久久久精品性色| 亚洲熟女精品中文字幕| 国产 一区 欧美 日韩| 国产亚洲最大av| 国产毛片a区久久久久| 在现免费观看毛片| av在线观看视频网站免费| 亚洲国产精品国产精品| 国产国拍精品亚洲av在线观看| 国产精品99久久久久久久久| 一级毛片我不卡| 男女边摸边吃奶| 亚洲久久久久久中文字幕| 2018国产大陆天天弄谢| 日本熟妇午夜| 热99国产精品久久久久久7| 午夜福利在线在线| 丝瓜视频免费看黄片| 又粗又硬又长又爽又黄的视频| 在线播放无遮挡| videossex国产| 午夜日本视频在线| 成人亚洲精品av一区二区| xxx大片免费视频| 精品少妇黑人巨大在线播放| 高清欧美精品videossex| 国产黄频视频在线观看| 乱码一卡2卡4卡精品| 嫩草影院精品99|