• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Analysis of Symmetric Duopoly Model with Conjectural Variation

    2020-06-04 06:39:16XUXiaoZHOUWeiCHUTong

    XU Xiao(徐 曉), ZHOU Wei(周 偉)*, CHU Tong(褚 童)

    1 College of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China 2 College of Law, Zhejiang University of Finance and Economics, Hangzhou 310018, China

    Abstract: The symmetric dynamical model of a Cournot duopoly based on conjectural variation is established. Local stability of the equilibrium point is analyzed and the invariant sets are given. Then, dynamic behavior is studied by numerical simulation. With the change of gradient adjustment parameters, the routes to chaos vary. Synchronization occurs along the invariant sets accompanied by the on-off intermittency through the analysis of transverse stability. Coexistence of multiple attractors and structure of basins of attraction being more complex indicate more complicated bifurcation phenomena.

    Key words:conjectural variation; synchronization; transverse stability; Milnor attractor; coexistence of attractors

    Introduction

    In the study of the oligopoly market, Cournot first proposed a duopoly model with outputs as competition. Bertrand proposed an oligopoly model with prices as competition. Bowley put forward an oligopoly model based on conjectural variation. In 1978, Rand[1]studied the dynamic oligopoly game firstly, which was a great breakthrough for the research on oligopoly. In order to be more pragmatic competition in the market, the Cournot model has been improved by a large number of scholars. It has been found that with the duopoly competition, bifurcation and chaos occur in the system. In the field of nonlinear oligarchs, global dynamics analyses, synchronization phenomena and the coexistence of multiple attractors are included, which have attracted many scholars. Bischi and Kopel[2]studied multistability in a dynamic competition model. Askaretal.[3]researched the chaotic phenomena in dynamic Cournot duopoly games. Fantietal.[4]discussed the occurrence of synchronization in the Bertrand’s duopoly model. Researchers[5-6]discussed the complex dynamics with bounded rationality. Zhouetal.[7]studied a two-stage Cournot game with R & D spillover and product differentiation. Lardon[8]researched the cooperative Bertrand and Cournot oligopoly games with transferable utility on the basis of their non-cooperative foundation. Shi and Xu[9]researched a dynamic quantum Cournot duopoly game with heterogeneous players. It was a leap from the static game to the dynamical oligopoly based on the nonlinear theory. However, there are also some problems. In the complex dynamic model of the oligarch game, the analysis of dynamic behavior by combining conjectural variation with quadratic cost function is few. In the references of oligarch games, most of them discuss the chaotic phenomena of systems, but the numerical simulation is relatively simple. Researches on the coexistence of attractors and synchronization between firms are few. Firstly, based on above problems, we introduce the conjectural variation, and establish a dynamic model of duopoly with nonlinear cost function based on conjectural variation. In the market, firms have limited information about competitors, but they know the marginal profit function of constant conjectural variation. Firms adjust outputs by considering the competitors in addition to themselves. The path dependence is studied by the bifurcation diagrams. Secondly, although the initial value conditions of two firms are different, the synchronous behavior occurs in the long term with the change of parameters. The transverse stability restricted on the invariant sets is studied by characterizing the transform Lyapunov exponent. When the system is transverse stable, it often accompanies the occurrence of synchronization. And at the same time, points on the diagonal attract the attractors off the diagonal, so the coexistence of attractors occurs. In addition, the system is accompanied by intermittent phenomena. Finally, the global bifurcation of the system is studied by characterizing the critical curves[10]. By changing the parameters, we study the coexistence of attractors and the change of the basin structure.

    The paper is organized as follows. In section 1, the symmetric Cournot duopoly model based on the conjectural variation is established, and the invariant sets are given. In section 2, the fixed points and their local stability are studied. In section 3, due to the symmetric of the model, it is inferred that synchronization happens in the long run accompanied by the intermittency. So the invariant sets are studied. And the periodic and chaotic behaviors are studied by using the bifurcation diagrams, the transverse Lyapunov exponent and time series diagrams. Besides, the critical curves and the evolution of attractors and basins of attraction are studied by numerical simulation, which shows the complicated dynamical behaviors through the change of parameters. Section 4 represents the conclusions.

    1 Models and Invariant Sets

    Assuming that the utility function is quadratic, there is a linear and classical inverse demand function[11]. Therefore, the utility function can be defined as

    wherea>0, andb>0.adenotes the maximum price,brepresents the measurement of the decrease in price when per quantity of product increases, andqis the quantity of the product purchased by the consumer.

    Provided that the market price is denoted byp, in order to gain sufficiently large profits, the consumer solves the optimization problem, which is

    max{U(q)-pq}

    Firms adjust outputs to achieve internal optimization constantly, so the first order condition indicates that

    [U(q)-pq]′=U′(q)-p=0,p=a-bq.

    (1)

    It is discovered that the linear condition between the quantity and the price of the product is satisfied. Supposed that there are two firms in the market, both of them are cooperative or competitive. Therefore,

    where

    The form of cost function considers not only the output adjustment of the firms, but also the impact of competitors. So the cost function can be complicated when taken the market environment and inside factors into account. The cost will be affected by technology, work force and material resources in the market so that the cost function is nonlinear and more complex. In this way, there is a point in defining cost function as quadratic,

    Ci(q1,q2)=ciqi+eiqi2.

    wherecidenotes the cost coefficient corresponding to per product when a single factor is considered, andeiis the cost coefficient which is relevant to the nonlinear cost function.adenotes the maximum price, soa>c.

    Therefore, the profit function of the firmiis denoted by

    (2)

    Firms adopt adjustment mechanism to update production decisions, which plays a significant role in the local stability analysis of the equilibrium and global dynamics. Considering a discrete time adjustment process that is similar to the gradient process based on marginal profits, we suppose that the change about quantities is proportional to the marginal profits,

    (3)

    whereηi>0.

    Two firms have discrete time dynamic equations as

    (4)

    Due to the dynamic change of the market, it is impossible for firms to be independent. Therefore, the output of firms is affected reciprocally. It is necessary to introduce the constant conjectural variation, dqj/dqi=γi, andγiis variation of the firmi. Firms have limited information about the adjustment of production, which is predictable to some extent. Therefore, Eq. (4) can be further denoted as

    (5)

    The analysis is restricted to the circumstances,a1=a2=a,b1=b2=b,c1=c2=c,e1=e2=e,η1=η2=η, andγ1=γ2=γ.

    The map about two dimensional nonlinear dynamics can be denoted by

    (6)

    2 Fixed Points and Stability Analysis

    Firstly, the fixed points of dynamic system (6) are the solutions of quadratic equations

    (7)

    Proposition 1 Equation (7) has four fixed points for all parameters,

    It is evident that the outputE3of two firms is identical, which is denoted asE3=(q0,q0).E0is origin, andE1andE2are located on coordinates which are boundary points.E3is the internal fixed point, which is called Nash equilibrium[12-13].

    In the following, the local stability of the fixed points is determined by the eigenvalues. The Jacobian matrix of Eq. (6) is

    The eigenvalues ofJare denoted byλ‖andλ⊥.

    Theorem 1 The equilibrium is local stable, if and only if the modulus of the eigenvaluesλ‖andλ⊥are less than 1.

    Theorem 2E0is an unstable node.

    Theorem 3E1andE2are unstable.

    with the form of a triangular matrix, the eigenvalues are

    Theorem 4 The Nash equilibriumE3is local asymptotic stable if it is satisfied

    Proof

    λ‖=G(q0)+H(q0),λ⊥=G(q0)-H(q0).

    The eigenvalues are

    |λ‖|=|1-η(a-c)|,

    E3is local asymptotic stable, if and only if the modulus ofλ‖andλ⊥are less than 1.

    3 Dynamical Analysis

    In the numerical simulation,q1=0.36,q2=0.40,a=1.04,b=0.28,c=0.40,e=0.42, andγ=0.32. To avoid the transient, thousands of iterations are carried out, and the last dozens of iterations are taken to simulate the bifurcation diagrams(shown in Fig. 1). In Fig. 1(a), with the increase ofη, the system changes from period-1 to period-2, and then to period-4. Figure 1(b) is the partial enlargement of Fig. 1(a). Combining with Fig. 1(b), the system leads to chaos from period-4 whenηreaches 3.90. With the further increase of parameters, the system changes from chaos to period-8, and then to chaos. The system presents period doubling bifurcation asηchanges, which is accompanied by chaos. In other words, the Nash equilibrium point loses its stability with the increase of parameters. Furthermore, the system is a stable state when corresponding to period-1. As the parameter increases, the phenomena are more complicated. The period doubling bifurcation and chaos occur, making picturesque dynamical behavior.

    (a)

    (b)Fig. 1 Bifurcation diagrams of η

    Asηchanges, the Nash equilibrium point loses its stability, and period doubling bifurcation and chaos occur. Now two-dimension parameter bifurcation diagrams are utilized to study the path to chaos, and the change of the stability region under different Nash equilibrium points. Figures 2(a)- (b) are obtained in specific parameter bifurcation diagrams. Different bifurcation routes are dependent not only on various bifurcation parameters, but also on the selection of the initial, the phenomenon of which is called path-dependence. Due to the difference of the parameters and the initial path, paths leading to chaos are multiple.

    In Fig. 2(a),q1=0.10,q2=0.10,a=2.01,b=0.12,c=0.67,e=0.17, andγ=1.65. There is just one route leading to chaos on and off the diagonal. The system undergoes period doubling bifurcation and then leads to chaos by way of the flip bifurcation. In Fig. 2(b),q1=0.50,q2=0.50,a=1.30,b=1.60,c=0.10,e=0.20, andγ=1.00. Different from Fig. 2(a), two routes exist that lead to chaos. One is flip bifurcation that is from period doubling bifurcation to chaos along the diagonal. The other is off the diagonal, which is from period-1 to chaos directly. In this circumstance, the system undergoes Neimark-Sacker bifurcation[14].

    (a4)

    (b)Fig. 2 Two-dimension bifurcation diagrams of η1 and η2

    In this subsection, we study the mechanisms that route to the synchronization in the long run. A trajectory, starting outΔwhich meansq1(0)≠q2(0), is said to synchronize if |q1(t)-q2(t)|→0 whent→+∞[15].

    (a)

    (b)

    (c)

    (d)

    Fig. 3 Transverse stability and synchronization: (a) bifurcation diagram ofηranging from 1.918 to 2.200 for the restriction of the mapFtoΔ; (b) the transverse Lyapunov exponent ofηcorresponding with (a); (c) the trajectory bursts away from the diagonal before synchronization withη=1.970 versus time; (d) the transient of the trajectory starting from the initial condition as in (c) before converge toΔ

    After studying the phenomenon of synchronization with the change ofη, the global dynamical behavior and contact bifurcation are introduced asb(measurement of the decrease of price when per quantity of product increases) changes next. Asbincreases, the quasi-periodic attractor on the diagonal loses the transverse stability. And the synchronization behavior disappears gradually. Therefore, firms will adjust the price properly in the market and gain profits as much as possible.

    The dynamical behavior with the change ofbcan also be illustrated by Figs. 4(a)- (d).a=2.39,c=1.07,e=0.51,η=1.99, andγ=2.05. Color of black and magenta represent different attractors. In Fig. 4(a), the quasi-periodic attractor on the diagonal, which means Milnor attractor, and the period-2 attractor off theΔ, are coexisting. The initial condition off the diagonal converges to theΔin the long run, therefore synchronization occurs[17]. Asbincreases, the structure of the basin in Fig. 4(b) is similar to that in Fig. 4(a). In this case, boundary of the strange attractor on the diagonal contacts with the basin, and the critical line also contacts with the boundary of the attractor. At this time, the global bifurcation occurs. It is visual that attractor changes and finally disappears. The structure of basins of attraction has changed. Although two kinds of attractors coexist at this time, the weak attractors on the diagonal disappear, and two pieces of chaotic attractors are evolved, which is called chaotic. In Fig. 4(c), asbfurther increases, the structure of the basin changes, and the coexistence of attractors disappears, leaving six-piece strange attractors being symmetric about diagonal only. In Fig. 4(d), the structure of the basin changes and becomes more complicated asbincreases further. Two types of chaotic attractors coexist. The behavior is various, which is closely related to the production of the firms in the market. With the increase of production, the firms prefer to decreasebappropriately. The synchronization is related tobof small values. Two firms reach synchronous and dynamic balance states in the long run.

    (a)

    (b)

    (c)

    (d)

    Fig. 4 Evolutions about the basins of attraction: (a)b=0.10, the coexistence of the Milnor attractor and the period-2 attractor with the basin of attraction; (b)b=0.23, two-piece strange attractors and the period-2 attractor with the basin of attraction and the critical curves of mapF; (c)b=0.41, six-piece strange attractors and the basin of attraction; (d)b=0.48, two symmetric strange attractors (six-piece) and the basin of attraction

    4 Conclusions

    The synchronous dynamic behavior of the system is studied. Our aims are to research the case in which two firms have an identical dynamical phenomenon, which means synchronous. It is found that different initial values route to different paths of the chaos. With the analysis of the transverse stability, the Milnor attractor and the attractors off the diagonal are coexistent. In the end, the condition that the attractors on the diagonal coexist with the attractors off the diagonal is obtained. Then, synchronization occurs. Firms prefer to adjust the values to achieve the balance dynamically in the market.

    男人的好看免费观看在线视频| 内射极品少妇av片p| av专区在线播放| 亚洲,欧美,日韩| 国产午夜福利久久久久久| 村上凉子中文字幕在线| 我要看日韩黄色一级片| 99热这里只有是精品在线观看 | 国产av不卡久久| 男女视频在线观看网站免费| 亚洲avbb在线观看| 国产乱人伦免费视频| 亚洲美女黄片视频| 18禁在线播放成人免费| 免费看日本二区| 中出人妻视频一区二区| 18美女黄网站色大片免费观看| 色av中文字幕| 国产 一区 欧美 日韩| 特级一级黄色大片| 亚洲成人免费电影在线观看| 成年女人看的毛片在线观看| 日韩人妻高清精品专区| 色噜噜av男人的天堂激情| 88av欧美| 嫩草影院入口| 国产精品亚洲av一区麻豆| 国产大屁股一区二区在线视频| 国产精品人妻久久久久久| 欧美日本视频| 国内精品一区二区在线观看| 免费在线观看日本一区| 亚洲成av人片在线播放无| 一个人看视频在线观看www免费| 成年版毛片免费区| 日本黄大片高清| 亚洲精品在线观看二区| 亚洲片人在线观看| 一二三四社区在线视频社区8| 亚洲性夜色夜夜综合| 欧美xxxx黑人xx丫x性爽| 非洲黑人性xxxx精品又粗又长| 极品教师在线视频| 欧美不卡视频在线免费观看| 免费av毛片视频| 中亚洲国语对白在线视频| 男人狂女人下面高潮的视频| 99热这里只有是精品在线观看 | 琪琪午夜伦伦电影理论片6080| 97超视频在线观看视频| 久久精品国产亚洲av香蕉五月| 午夜福利18| 18禁黄网站禁片免费观看直播| 99热只有精品国产| 最近视频中文字幕2019在线8| 中亚洲国语对白在线视频| 国产成人av教育| 欧美极品一区二区三区四区| 精品一区二区三区av网在线观看| 亚洲午夜理论影院| 在线观看免费视频日本深夜| 又粗又爽又猛毛片免费看| 国产免费av片在线观看野外av| 听说在线观看完整版免费高清| xxxwww97欧美| 激情在线观看视频在线高清| 久久久成人免费电影| 成人无遮挡网站| 黄色丝袜av网址大全| 欧美最新免费一区二区三区 | 日本黄色片子视频| 日韩精品中文字幕看吧| 亚洲不卡免费看| 变态另类成人亚洲欧美熟女| 少妇的逼好多水| 成人性生交大片免费视频hd| 国产精品野战在线观看| 日韩成人在线观看一区二区三区| 一个人观看的视频www高清免费观看| 首页视频小说图片口味搜索| 少妇高潮的动态图| 宅男免费午夜| 国产精品美女特级片免费视频播放器| 波多野结衣巨乳人妻| 精品人妻1区二区| 精品午夜福利在线看| 最近中文字幕高清免费大全6 | 麻豆国产97在线/欧美| 亚洲精品久久国产高清桃花| 国产欧美日韩精品一区二区| 亚洲欧美日韩无卡精品| 中国美女看黄片| 国内久久婷婷六月综合欲色啪| 在线a可以看的网站| 88av欧美| 夜夜夜夜夜久久久久| 久久精品国产亚洲av涩爱 | 99久久成人亚洲精品观看| 麻豆成人av在线观看| 国产精品,欧美在线| 久久久色成人| 午夜免费男女啪啪视频观看 | 好男人电影高清在线观看| 丰满乱子伦码专区| 老司机午夜福利在线观看视频| 国产成+人综合+亚洲专区| 白带黄色成豆腐渣| 黄色视频,在线免费观看| 一夜夜www| 免费电影在线观看免费观看| 久久精品国产清高在天天线| 久久久久久久午夜电影| 国产精品日韩av在线免费观看| 综合色av麻豆| 性插视频无遮挡在线免费观看| bbb黄色大片| 亚洲第一电影网av| 激情在线观看视频在线高清| 国产精品影院久久| 美女高潮喷水抽搐中文字幕| 69人妻影院| 中文字幕精品亚洲无线码一区| 精品人妻一区二区三区麻豆 | 九九久久精品国产亚洲av麻豆| 淫秽高清视频在线观看| 亚洲精品456在线播放app | 久久精品夜夜夜夜夜久久蜜豆| 18禁裸乳无遮挡免费网站照片| 国产探花在线观看一区二区| 欧美日本亚洲视频在线播放| 久久久久九九精品影院| 9191精品国产免费久久| 免费av毛片视频| 99在线视频只有这里精品首页| 国产精品人妻久久久久久| 美女免费视频网站| 简卡轻食公司| 国产乱人伦免费视频| 国产精品一区二区三区四区久久| 亚洲精品456在线播放app | 美女黄网站色视频| 18禁黄网站禁片午夜丰满| 成人永久免费在线观看视频| 深夜精品福利| 中出人妻视频一区二区| 国产高潮美女av| 深爱激情五月婷婷| 国产大屁股一区二区在线视频| ponron亚洲| 深爱激情五月婷婷| 久久久久久久亚洲中文字幕 | 免费黄网站久久成人精品 | 美女高潮的动态| 亚洲av二区三区四区| 美女高潮喷水抽搐中文字幕| 99久国产av精品| 午夜两性在线视频| 午夜福利免费观看在线| 日韩欧美国产在线观看| 亚洲美女黄片视频| 男人的好看免费观看在线视频| 中文字幕高清在线视频| 免费电影在线观看免费观看| 男人狂女人下面高潮的视频| 一区二区三区高清视频在线| 欧美日韩乱码在线| 国产精品电影一区二区三区| 少妇人妻一区二区三区视频| 国产精品嫩草影院av在线观看 | 中文亚洲av片在线观看爽| 国产一区二区亚洲精品在线观看| 日本三级黄在线观看| 三级国产精品欧美在线观看| 日日干狠狠操夜夜爽| 最近最新中文字幕大全电影3| 日韩免费av在线播放| 两个人视频免费观看高清| 日本一本二区三区精品| 一a级毛片在线观看| 最近在线观看免费完整版| 成人永久免费在线观看视频| 国产精品,欧美在线| 免费在线观看亚洲国产| 欧美区成人在线视频| 国产一区二区亚洲精品在线观看| 又爽又黄a免费视频| 国产三级中文精品| 嫁个100分男人电影在线观看| 人人妻人人看人人澡| 婷婷六月久久综合丁香| 国产精品亚洲av一区麻豆| 国产亚洲精品久久久久久毛片| 一个人免费在线观看的高清视频| 欧美另类亚洲清纯唯美| 最好的美女福利视频网| 午夜福利视频1000在线观看| 国产成+人综合+亚洲专区| 久久中文看片网| 免费在线观看亚洲国产| 我的老师免费观看完整版| 51午夜福利影视在线观看| 尤物成人国产欧美一区二区三区| 2021天堂中文幕一二区在线观| 国产精品免费一区二区三区在线| 国产黄色小视频在线观看| 内地一区二区视频在线| 日本与韩国留学比较| a在线观看视频网站| 日韩欧美在线乱码| 欧美黄色片欧美黄色片| 亚洲精品456在线播放app | 麻豆国产97在线/欧美| 成熟少妇高潮喷水视频| 日韩欧美国产一区二区入口| 国产亚洲av嫩草精品影院| 熟妇人妻久久中文字幕3abv| 国产精品日韩av在线免费观看| 欧美高清性xxxxhd video| 大型黄色视频在线免费观看| 美女cb高潮喷水在线观看| 国产精品亚洲美女久久久| 亚洲av美国av| 国产av一区在线观看免费| 国产精品久久久久久亚洲av鲁大| 男插女下体视频免费在线播放| 一本综合久久免费| 国产欧美日韩精品亚洲av| 国产v大片淫在线免费观看| 我的老师免费观看完整版| 女人十人毛片免费观看3o分钟| 成人一区二区视频在线观看| 99热只有精品国产| 国产精品永久免费网站| 精品久久久久久久久亚洲 | 午夜视频国产福利| 久久久久久久久大av| 性欧美人与动物交配| 国产免费一级a男人的天堂| 99国产精品一区二区蜜桃av| 波多野结衣巨乳人妻| 香蕉av资源在线| 首页视频小说图片口味搜索| 日本免费一区二区三区高清不卡| 桃红色精品国产亚洲av| 在线十欧美十亚洲十日本专区| АⅤ资源中文在线天堂| 午夜久久久久精精品| 亚洲成人精品中文字幕电影| 在现免费观看毛片| 亚洲人成网站在线播放欧美日韩| 亚洲av熟女| 中文字幕av在线有码专区| 久久中文看片网| 男插女下体视频免费在线播放| 免费观看精品视频网站| 亚洲欧美日韩高清在线视频| 人人妻人人看人人澡| 日本五十路高清| a级毛片a级免费在线| 国产亚洲欧美98| 亚洲无线观看免费| 久久这里只有精品中国| 国产高清有码在线观看视频| 午夜福利视频1000在线观看| 成人亚洲精品av一区二区| 成年版毛片免费区| 日韩欧美一区二区三区在线观看| 色播亚洲综合网| 又爽又黄a免费视频| 九九在线视频观看精品| 男女床上黄色一级片免费看| 日韩亚洲欧美综合| 国产av麻豆久久久久久久| 欧美又色又爽又黄视频| or卡值多少钱| 99热6这里只有精品| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲内射少妇av| 99久久成人亚洲精品观看| 搡老岳熟女国产| 99热6这里只有精品| 日本黄大片高清| 亚洲精华国产精华精| 国产免费男女视频| 免费观看人在逋| 国产精品野战在线观看| 床上黄色一级片| 日韩欧美国产在线观看| 他把我摸到了高潮在线观看| 丰满人妻熟妇乱又伦精品不卡| 精品人妻视频免费看| 午夜激情福利司机影院| 成人国产一区最新在线观看| 国产人妻一区二区三区在| 日本成人三级电影网站| 中国美女看黄片| 黄色一级大片看看| 国产伦人伦偷精品视频| 久久久久免费精品人妻一区二区| 噜噜噜噜噜久久久久久91| 啦啦啦观看免费观看视频高清| 国产伦精品一区二区三区视频9| 久久草成人影院| 精品人妻1区二区| 成人性生交大片免费视频hd| 91久久精品电影网| 日韩有码中文字幕| 麻豆久久精品国产亚洲av| 午夜老司机福利剧场| 黄色一级大片看看| 免费搜索国产男女视频| 国产毛片a区久久久久| 一级毛片久久久久久久久女| 亚洲,欧美,日韩| 久久久久久大精品| 波多野结衣巨乳人妻| 亚洲熟妇熟女久久| 国产av麻豆久久久久久久| 五月玫瑰六月丁香| 天堂网av新在线| 我的女老师完整版在线观看| 久久国产精品人妻蜜桃| 黄片小视频在线播放| 国产av一区在线观看免费| 最新中文字幕久久久久| 如何舔出高潮| 丁香欧美五月| 欧美日韩亚洲国产一区二区在线观看| www日本黄色视频网| 性欧美人与动物交配| av天堂在线播放| 少妇人妻精品综合一区二区 | 男插女下体视频免费在线播放| 波野结衣二区三区在线| 欧美成人a在线观看| 天天一区二区日本电影三级| 亚洲av熟女| 亚洲最大成人中文| 免费人成视频x8x8入口观看| 激情在线观看视频在线高清| 性插视频无遮挡在线免费观看| 国产精品国产高清国产av| 69人妻影院| 亚洲va日本ⅴa欧美va伊人久久| 国产精品精品国产色婷婷| 天堂av国产一区二区熟女人妻| 国产av不卡久久| 亚洲三级黄色毛片| 国产精品日韩av在线免费观看| 夜夜躁狠狠躁天天躁| 一级a爱片免费观看的视频| 好男人在线观看高清免费视频| a级一级毛片免费在线观看| 欧美又色又爽又黄视频| 十八禁人妻一区二区| 欧美最黄视频在线播放免费| 欧美bdsm另类| 日韩欧美精品免费久久 | 色综合亚洲欧美另类图片| 国产人妻一区二区三区在| 老司机深夜福利视频在线观看| 黄色丝袜av网址大全| 久久国产精品影院| 噜噜噜噜噜久久久久久91| 欧美极品一区二区三区四区| 国产爱豆传媒在线观看| 女人十人毛片免费观看3o分钟| 国产欧美日韩精品一区二区| 婷婷六月久久综合丁香| 成人av在线播放网站| 又黄又爽又免费观看的视频| 搡老妇女老女人老熟妇| 黄色一级大片看看| 中亚洲国语对白在线视频| 国产精品1区2区在线观看.| 欧美成人a在线观看| 波野结衣二区三区在线| 青草久久国产| 成人av一区二区三区在线看| 三级毛片av免费| 国产精品影院久久| 成年女人毛片免费观看观看9| 国产真实伦视频高清在线观看 | 757午夜福利合集在线观看| 日日干狠狠操夜夜爽| 国产精品国产高清国产av| 一个人观看的视频www高清免费观看| 国产黄片美女视频| 久久性视频一级片| 欧美一区二区精品小视频在线| 成人性生交大片免费视频hd| 精品人妻1区二区| 欧美黄色淫秽网站| av欧美777| www.熟女人妻精品国产| 国产高清视频在线观看网站| 波多野结衣巨乳人妻| 国产精品自产拍在线观看55亚洲| 国产精品人妻久久久久久| 美女黄网站色视频| 久久伊人香网站| 婷婷丁香在线五月| 中文在线观看免费www的网站| 免费看a级黄色片| 午夜精品在线福利| 99国产精品一区二区三区| 欧美一区二区国产精品久久精品| 十八禁国产超污无遮挡网站| 久久精品夜夜夜夜夜久久蜜豆| 97超级碰碰碰精品色视频在线观看| 757午夜福利合集在线观看| 中文字幕熟女人妻在线| 亚洲av电影不卡..在线观看| 两个人的视频大全免费| 最近中文字幕高清免费大全6 | 女人十人毛片免费观看3o分钟| 中文字幕av在线有码专区| 麻豆久久精品国产亚洲av| 欧美在线一区亚洲| 精品99又大又爽又粗少妇毛片 | 女生性感内裤真人,穿戴方法视频| 夜夜躁狠狠躁天天躁| 一a级毛片在线观看| 麻豆av噜噜一区二区三区| 久久久久久九九精品二区国产| 性插视频无遮挡在线免费观看| 一本综合久久免费| 国内毛片毛片毛片毛片毛片| 亚洲,欧美,日韩| 琪琪午夜伦伦电影理论片6080| 精品久久久久久久久久免费视频| 精品国产三级普通话版| 男插女下体视频免费在线播放| 一个人看视频在线观看www免费| 久久久久久久午夜电影| 日本一本二区三区精品| 99久久精品热视频| 亚洲第一欧美日韩一区二区三区| 成人国产一区最新在线观看| 久久性视频一级片| 波野结衣二区三区在线| 亚洲七黄色美女视频| 99久久99久久久精品蜜桃| 欧美精品国产亚洲| 国产又黄又爽又无遮挡在线| 久久这里只有精品中国| 欧美另类亚洲清纯唯美| 亚州av有码| 看片在线看免费视频| 黄色视频,在线免费观看| 国产精品国产高清国产av| 久久久久九九精品影院| 男人舔奶头视频| 欧美中文日本在线观看视频| 亚洲激情在线av| 成人欧美大片| 69人妻影院| 久久香蕉精品热| 国产美女午夜福利| eeuss影院久久| 国产 一区 欧美 日韩| 国产亚洲欧美在线一区二区| 亚洲成av人片在线播放无| 欧美zozozo另类| 一区二区三区激情视频| 亚洲欧美激情综合另类| 男女做爰动态图高潮gif福利片| 夜夜躁狠狠躁天天躁| 久久久精品欧美日韩精品| 成人国产综合亚洲| 欧美色视频一区免费| av中文乱码字幕在线| 蜜桃久久精品国产亚洲av| 亚洲18禁久久av| 国产精品不卡视频一区二区 | 动漫黄色视频在线观看| 99热这里只有是精品在线观看 | av专区在线播放| 午夜亚洲福利在线播放| 精品不卡国产一区二区三区| 熟女人妻精品中文字幕| 五月伊人婷婷丁香| 国产又黄又爽又无遮挡在线| 亚洲无线在线观看| 丁香六月欧美| 美女高潮喷水抽搐中文字幕| 啪啪无遮挡十八禁网站| 日本黄色片子视频| 日本免费一区二区三区高清不卡| 一区二区三区免费毛片| 99热6这里只有精品| 欧美激情国产日韩精品一区| 噜噜噜噜噜久久久久久91| 国产探花在线观看一区二区| 亚洲,欧美精品.| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 色综合亚洲欧美另类图片| 国产av一区在线观看免费| 国产免费av片在线观看野外av| 蜜桃久久精品国产亚洲av| 一区福利在线观看| 亚洲人成网站在线播| 亚洲片人在线观看| 欧美国产日韩亚洲一区| 男女做爰动态图高潮gif福利片| 久久精品国产亚洲av天美| 九九久久精品国产亚洲av麻豆| 国产久久久一区二区三区| 国产伦精品一区二区三区视频9| 免费黄网站久久成人精品 | 亚洲美女搞黄在线观看 | 在线观看av片永久免费下载| 成人亚洲精品av一区二区| 久久人人爽人人爽人人片va | a级毛片a级免费在线| 亚洲经典国产精华液单 | 国产不卡一卡二| 看免费av毛片| av视频在线观看入口| 1000部很黄的大片| 亚洲av电影不卡..在线观看| 国产精品一区二区三区四区久久| 可以在线观看毛片的网站| 亚洲av电影在线进入| 俺也久久电影网| 中文字幕久久专区| 国产精品,欧美在线| 久久精品国产亚洲av天美| 久久久成人免费电影| 国产aⅴ精品一区二区三区波| 国产黄a三级三级三级人| 成人亚洲精品av一区二区| 搡女人真爽免费视频火全软件 | 一级黄色大片毛片| 午夜免费激情av| 亚洲中文字幕一区二区三区有码在线看| 性色avwww在线观看| 日本黄色视频三级网站网址| 久久午夜亚洲精品久久| 91久久精品电影网| 国内精品久久久久久久电影| 2021天堂中文幕一二区在线观| 久久精品国产99精品国产亚洲性色| 精华霜和精华液先用哪个| 亚洲avbb在线观看| 他把我摸到了高潮在线观看| 观看免费一级毛片| 88av欧美| 美女被艹到高潮喷水动态| a级毛片免费高清观看在线播放| 欧美高清成人免费视频www| 在线观看美女被高潮喷水网站 | 亚洲综合色惰| 好看av亚洲va欧美ⅴa在| 禁无遮挡网站| www日本黄色视频网| 日日摸夜夜添夜夜添小说| 亚洲精品影视一区二区三区av| 国产精品久久久久久亚洲av鲁大| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 午夜久久久久精精品| 免费看美女性在线毛片视频| 永久网站在线| 欧美极品一区二区三区四区| 欧美日韩中文字幕国产精品一区二区三区| 波野结衣二区三区在线| 97超级碰碰碰精品色视频在线观看| 精品乱码久久久久久99久播| 国产探花极品一区二区| 成人av在线播放网站| av欧美777| 亚洲成av人片在线播放无| 美女cb高潮喷水在线观看| av国产免费在线观看| 国产激情偷乱视频一区二区| 日韩欧美精品免费久久 | 国产高清三级在线| 岛国在线免费视频观看| 久久热精品热| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品久久久久久久久久免费视频| av视频在线观看入口| 亚洲精品亚洲一区二区| 真实男女啪啪啪动态图| 嫩草影院新地址| 久久精品人妻少妇| 九色国产91popny在线| 一夜夜www| 日韩人妻高清精品专区| 国产aⅴ精品一区二区三区波| 亚洲av第一区精品v没综合| 日韩人妻高清精品专区| 观看免费一级毛片| 久久6这里有精品| 欧美又色又爽又黄视频| 亚洲在线观看片| 免费人成视频x8x8入口观看| 亚洲精品在线观看二区| 国产色婷婷99| 国产精品久久视频播放| 无遮挡黄片免费观看| 国产探花在线观看一区二区| 欧美成人一区二区免费高清观看| 午夜影院日韩av| 丁香六月欧美| 亚洲欧美清纯卡通| 男人舔女人下体高潮全视频| 国产精品不卡视频一区二区 | 美女大奶头视频| 成人精品一区二区免费| 桃红色精品国产亚洲av| 久久精品久久久久久噜噜老黄 | 欧美在线黄色| 亚洲成av人片在线播放无| 麻豆国产av国片精品|