• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wind Speed Prediction by a Hybrid Model Based on Wavelet Transform Technique

    2020-06-04 06:39:20LIShengpeng李生鵬ZHANGShunYAOHongyu姚洪宇CAOShibao曹士保ZHAOBing

    LI Shengpeng (李生鵬), ZHANG Shun (張 順), YAO Hongyu (姚洪宇), CAO Shibao (曹士保), ZHAO Bing (趙 冰)

    State Power Grid Gansu Electric Power Company Electric Power Science Research Institute, Lanzhou 730000, China

    Abstract: It is difficult to predict wind speed series accurately due to the instability and randomness of the wind speed series. In order to predict wind speed, authors propose a hybrid model which combines the wavelet transform technique(WTT), the exponential smoothing (ES) method and the back propagation neural network(BPNN), and is termed as WTT-ES-BPNN. Firstly, WTT is applied to the raw wind speed series for removing the useless information. Secondly, the hybrid model integrating the ES method and the BPNN is used to forecast the de-noising data. Finally, the prediction of raw wind speed series is caught. Real data sets of daily mean wind speed in Hebei Province are used to evaluate the forecasting accuracy of the proposed model. Numerical results indicate that the WTT-ES-BPNN is an effective way to improve the accuracy of wind speed prediction.

    Key words: wind speed; forecasting; wavelet transform technique(WTT); exponential smoothing(ES) method; back propagation neural network(BPNN)

    Introduction

    Recently, since global environmental pollution issues have become more and more serious, the production of renewable energy has been drawn much attention to. As one of non-pollution renewable energy, wind has huge potentials for its development. Wind energy is the kinetic energy of the air and mainly depends on wind speed. As a result, it is significant to forecast wind speed accurately in order to improve the reliability of the wind power generation system[1-2].

    In the past several years, many scholars proposed a large amount of models on wind speed series forecasting. In general, these methods can be divided into two parts[3]. One is a statistical model, such as the auto regressive integrated moving average (ARIMA) model[4-8], the regression method[9-10], and the exponential smoothing (ES) method[11]. These statistical models have low prediction accuracy. Wind speed series are instability and randomness. However, these models only catch the linear component and neglect the nonlinear component. The other is an artificial intelligence(AI) model, and it is proposed by overcoming the limitation of the statistical model, which is mainly covered by artificial neural networks (ANNs)[12-14]. The AI model has more accurate results in wind speed forecasting than statistical models, and there are a large amount of important applications about daily wind speed forecasting. Zhongetal.[2]employed both an ARIMA and a Kalman filter to build an optimized hybrid model for daily wind speed forecasting in Gansu Corridor. Shukur and Lee[15]proposed a hybrid Kalman filter artificial neural network(KF-ANN) model based on ARIMA forecasting daily wind speed data from Iraq and Malaysia. Guoetal.[16]built a new hybrid daily wind speed prediction model based on the BP neural network and seasonal adjustment, which used a daily mean wind speed series from the year 2001 to 2006 about the Minqin area in Gansu Province, China. Wang and Xiong[17]and Wangetal.[18]proposed a hybrid model consisting of an outlier detection and bivariate fuzzy time series to forecast daily wind speed data sets from January 2008 to December 2012 in Hainan Province, China, and successfully applied support vector regression(SVR) to seasonal index adjustment and Elman recurrent neural network methods analyzed for three different sites in Xinjiang, China. Mohandesetal.[19]built and tested the support vector machine(SVM) model based on daily mean wind speed series from Madina City, Saudi Arabia. Ramasamyetal.[3]used an ANN model to predict daily wind speeds for more than ten locations in the Western Himalayan Indian state of Himachal Pradesh, and temperature, air pressure, solar radiation and altitude were taken as inputs for the ANN model.

    The wind speed is affected by comprehensive factors such as topography, climate, temperature and so on, so the wind speed series are unstable and contain noisy. While it will produce large errors when forecasting the series that contain noise directly. Considering the actual characteristics of wind speed series, in this paper, a model named wavelet transform technique exponential smoothing back propagation neural network (WTT-ES-BPNN) for wind speed forecasting is proposed by applying wavelet transform technique(WTT) into a hybrid model which integrates the exponential smoothing and back propagation neural network(BPNN). As we all know, WTT is used to process de-noising in this paper. ES and BPNN capture the linear component and the nonlinear component separately, and then put the prediction values together to get the forecasting values of original data.

    The paper is organized as follows: section 1 presents the hybrid model WTT-ES-BPNN for the prediction of wind speed; section 2 provides the evaluation criteria and the numerical results that are compared with other models; section 3 is the conclusions.

    1 Proposed Approach

    1.1 Wavelet transform and de-noising

    WTT is a basic tool for data pre-processing, and its basic idea is the same as the traditional Fourier transform[20]. WTT can be mainly divided into two categories: continuous wavelet transform(CWT) and discrete wavelet transform(DWT).

    The expression of CWT is defined as[21]

    CWTf(a,b) =〈f(x),ψa, b(x)〉=

    (1)

    Signalf(x) must be discreted into a discrete series, as well asaandb. Leta=1/2j, andb=i/2j. The expression of DWT is defined as

    (2)

    wherei,j∈Z.

    A one-dimensional signal which contains noisy can be expressed as[22]

    s(x)=f(x)+ε×e(x),

    (3)

    wheref(x) is a real signal,e(x) is a noise signal ands(x) is a signal with noisy. The real signalf(x) often represents low-frequency signal or stable signal.e(x) often represents high-frequency signal. The soft threshold processing method[23]or hard threshold processing method[24]can be used in the process of threshold for the wavelet coefficient.

    1.2 Exponential smoothing method

    S1=y0,St=αyt-1+(1-α)St-1,t≥2,

    (4)

    where,αis the smoothing factor and 0<α<1;Stis the smooth value of exponential smoothing at timet;St-1denotes the smoothed value at timet-1;y0is the first data of {yi}.

    The value ofαand the initial valueS1are important in ES. However, no formally correct procedure exists for the value choosing. Generally, an appropriate value is also based on the statistician’s judgement[11].

    The prediction formula of ES is

    1.3 Back propagation neural network

    The topological structure about BPNNs has three layers: an input layer, a hidden layer and an output layer. Figure 1 is a typical three layer structure of a BPNN. As shown in Fig. 1,xjis the input value of thejth node in the input layer andj=1, 2, ...,m;wi, jis the weight fromith node in the hidden layer tojth node in the input layer;θirepresents the threshold aboutith node in hidden layer;φis the excitation function in the hidden layer;wk, irepresents the weight fromkth node in the output layer toith node in the hidden layer, andi=1, 2, ...,q;αkrepresents the threshold aboutkth node in the output layer, andk=1, 2, ...,L;ψis the excitation function in the output layer;ykis the output value aboutkth node in the output layer.

    Fig. 1 Three layer feed-forward BPNN

    In the process of the BPNN, the mainly challenge is how to decide the number of nodes in the hidden layer[25-27], but there is not an uniform approach. In this paper, 2n+ 1 hidden neurons are sufficient to map some functions forninputs, which are based on the Hecht-Nelson method[23], and all weights are assigned with random values initially. The input layer includes five nodes, and each node represents one historical data. The output layer includes one node representing one forecast data.

    1.4 Proposed approach

    The proposed hybrid model WTT-ES-BPNN for predicting wind speed is a combination of the WTT, the ES and the BPNN. The hybrid model used in this paper is described as follows.

    Step 1: The raw wind speed data series are decomposed into two parts, namely the low-frequency component and the high-frequency component by the WTT. The low-frequency component represents the main features of the raw data series, and the high-frequency component is often termed as the noisy signal. The idea of this step is to extract the main characteristics and remove the random disturbance from the raw data series.

    Step 2: The ES is used to catch the linear pattern from the low-frequency component of the wind speed series.

    Step 3: The BPNN is used to catch the non-linear pattern from the low-frequency component of the wind speed series. The BPNN is constructed from the error between the low-frequency component and the predicted values of the ES.

    Step 4: The prediction values of the raw wind speed data series are calculated by adding the predicted values of the residual error series to the predicted values of the ES .

    2 Experimental Design and Comparison Results

    2.1 Evaluation criteria

    In this paper, in order to test the model prediction effect, three forecast error measures are employed as the evaluation criteria: the mean absolute error (MAE), the root mean-square error (RMSE), and the mean absolute percentage error (MAPE).

    2.2 Data sets and results

    In this paper, real data sets of mean daily wind speed in Hebei Province are used to evaluate the forecasting accuracy of the proposed model. The data are collected from October 1, 2013 to September 21, 2014 with a total of 356 values. The mean daily wind speed data from the site are presented in Fig. 2.

    It is obvious that the raw data have noise. The WTT is used to remove the noise information from the raw data series. There are many types of wavelet functions. However, in this paper, the wavelet function db2 is applied to remove the noise from the raw data sets and level 1 work best with the series of this paper. Figure 3 shows the low-frequency series and the high-frequency series.

    Fig. 2 Mean daily wind speed data

    (a)

    (b)Fig. 3 WTT decomposition process of the raw data: (a) low-frequency component; (b) high-frequency component

    Next, the raw wind speed series are predicted. Firstly, the linear component of the low-frequency signals is predicted by the ES. Secondly, the BPNN is used to predict the error between the low-frequency signals and the predicted values of the ES. Finally, the predicted values of the residual error series are added to the predicted values of the ES in order to get the forecasting results of the raw wind speed series.

    In the calculation, we use the first 320 data of the low-frequency component as the training sets, while the last 36 data are used to validate the model identified. Figure 4 shows the forecasting results of the raw wind speed.

    Fig. 4 Forecasting results of the raw wind speed

    2.3 Model comparisons

    In order to validate the prediction capacity of the proposed hybrid model, the model comparisons are given in this section. The WTT-ES-BPNN is compared with the BPNN, the ARIMA, the WTT-BPNN, the WTT-ES and the ES-BPNN. The comparison results are shown in Table 1, and the data in Table 1 are obtained by the MATLAB program. It can be clearly seen that the proposed model has the minimum errors of MAE, RMSE and MAPE, which are 0.575 2, 0.763 8 and 0.138 7, respectively. Compared with the hybrid model, the results of the BPNN and the ARIMA present that they have higher values of MAPE(0.327 0 and 0.259 2), which can be indicted that the hybrid model has stronger prediction capacity than the single model. Compared with the hybrid model, the results of the WTT-BPNN and the WTT-ES(0.183 6 and 0.224 9) present that the proposed approach also performs better, which indicates that the WTT-ES-BPNN captures both linearity and non-linearity of the wind speed. When comparing the proposed model with the ES-BPNN, we find wavelet transform and de-noising are reasonable for the daily wind speed series in this study, because the three indices(MAE, RMSE and MAPE) are all greatly improved. As a result, the proposed hybrid model can improve the forecasting performance and it is an effective approach to predict daily wind speed, especially the data in Hebei Province used in this paper.

    Table 1 Comparison results among different models

    3 Conclusions

    Considering instability, randomness and highly-noisy of wind speed, we proposed a hybrid model which combines the WTT, the ES and the BPNN for wind speed forecasting. The main idea of the proposed model is to delete the useless information, and take the linear component and the nonlinear component into consideration. The daily mean wind speed series in Hebei Province are used to evaluate the forecasting accuracy of the proposed model. The WTT-ES-BPNN makes full use of the advantages of single models and numerical results also indicate that the approach is a more effective way to improve the prediction accuracy.

    In this paper, we only use the daily wind speed series to prove the proposed hybrid model WTT-ES-BPNN, and realize the one-step prediction by the daily wind speed series in Hebei Province. In the later study, we can also develop a hybrid model for forecasting hourly, monthly, quarterly or even yearly wind speed data, and the multi-step prediction hybrid model will be discussed.

    观看美女的网站| 亚洲无线在线观看| 一区福利在线观看| 久久精品久久久久久噜噜老黄 | 亚洲自偷自拍三级| 国产av不卡久久| 九色成人免费人妻av| 成年女人永久免费观看视频| 国国产精品蜜臀av免费| 乱人视频在线观看| 99九九线精品视频在线观看视频| 日韩欧美国产一区二区入口| ponron亚洲| 最好的美女福利视频网| 男女下面进入的视频免费午夜| 国产伦精品一区二区三区视频9| 日日撸夜夜添| 99热只有精品国产| 国产精品人妻久久久影院| 男女边吃奶边做爰视频| 欧美性猛交黑人性爽| 深爱激情五月婷婷| 俄罗斯特黄特色一大片| 最近中文字幕高清免费大全6 | 九九爱精品视频在线观看| 亚洲av电影不卡..在线观看| 国产在视频线在精品| 大又大粗又爽又黄少妇毛片口| 久久国产精品人妻蜜桃| 大又大粗又爽又黄少妇毛片口| 在线观看舔阴道视频| 看免费成人av毛片| 成年版毛片免费区| 国产乱人伦免费视频| 欧美日韩综合久久久久久 | 欧美黑人欧美精品刺激| 有码 亚洲区| av在线天堂中文字幕| а√天堂www在线а√下载| 中国美女看黄片| 毛片女人毛片| bbb黄色大片| 国产单亲对白刺激| 精品人妻1区二区| 亚洲一区二区三区色噜噜| 国产爱豆传媒在线观看| 人人妻,人人澡人人爽秒播| 国产 一区精品| 美女免费视频网站| 日日撸夜夜添| 亚洲国产欧美人成| 俄罗斯特黄特色一大片| 久久午夜福利片| av女优亚洲男人天堂| 中文字幕精品亚洲无线码一区| 两人在一起打扑克的视频| 91麻豆av在线| 精品人妻一区二区三区麻豆 | 成人性生交大片免费视频hd| 韩国av在线不卡| 久久久久精品国产欧美久久久| 精品久久久久久久久久免费视频| 真人做人爱边吃奶动态| 色综合婷婷激情| 不卡视频在线观看欧美| 麻豆久久精品国产亚洲av| 日韩欧美国产一区二区入口| 亚洲精华国产精华液的使用体验 | 亚洲无线在线观看| 99国产精品一区二区蜜桃av| 欧美xxxx黑人xx丫x性爽| 亚洲va在线va天堂va国产| 一进一出抽搐动态| 欧美成人免费av一区二区三区| 老师上课跳d突然被开到最大视频| 赤兔流量卡办理| 伊人久久精品亚洲午夜| 精品福利观看| 不卡一级毛片| 久久国产乱子免费精品| 国产精品国产三级国产av玫瑰| 久久精品综合一区二区三区| 精品免费久久久久久久清纯| 性插视频无遮挡在线免费观看| 国产亚洲av嫩草精品影院| 少妇人妻精品综合一区二区 | 无遮挡黄片免费观看| 国产精品久久久久久精品电影| 国产蜜桃级精品一区二区三区| 成人特级av手机在线观看| 啪啪无遮挡十八禁网站| 久久国内精品自在自线图片| 久久午夜亚洲精品久久| 美女高潮的动态| 高清在线国产一区| 赤兔流量卡办理| 国产伦在线观看视频一区| 国产乱人伦免费视频| 日韩人妻高清精品专区| 少妇被粗大猛烈的视频| 久久久久久国产a免费观看| 69av精品久久久久久| av视频在线观看入口| 亚洲中文字幕一区二区三区有码在线看| 少妇人妻一区二区三区视频| 久久久久久久久大av| 校园人妻丝袜中文字幕| 日本撒尿小便嘘嘘汇集6| 大又大粗又爽又黄少妇毛片口| 又黄又爽又免费观看的视频| 伊人久久精品亚洲午夜| 日韩欧美精品v在线| 国产伦人伦偷精品视频| xxxwww97欧美| 欧美高清成人免费视频www| 99久久久亚洲精品蜜臀av| 我的女老师完整版在线观看| 日韩强制内射视频| 在线观看午夜福利视频| 好男人在线观看高清免费视频| 最新中文字幕久久久久| 少妇的逼好多水| 一个人免费在线观看电影| 精品欧美国产一区二区三| 极品教师在线视频| 美女被艹到高潮喷水动态| 色综合色国产| 日韩一本色道免费dvd| 国产主播在线观看一区二区| a级毛片a级免费在线| 日韩欧美精品免费久久| 国产视频内射| 国产高清三级在线| 亚洲性久久影院| 国内精品美女久久久久久| 深夜a级毛片| 国产国拍精品亚洲av在线观看| 一个人免费在线观看电影| 久9热在线精品视频| 啦啦啦啦在线视频资源| 亚洲人成网站高清观看| 熟妇人妻久久中文字幕3abv| av.在线天堂| 精品人妻视频免费看| 国产精品av视频在线免费观看| 久久久久久久久大av| 国产一区二区三区在线臀色熟女| 亚洲五月天丁香| 在线看三级毛片| 成人美女网站在线观看视频| 天天一区二区日本电影三级| ponron亚洲| 九九久久精品国产亚洲av麻豆| 中文字幕熟女人妻在线| 给我免费播放毛片高清在线观看| 极品教师在线视频| 麻豆一二三区av精品| 国产黄片美女视频| 精品久久久久久,| АⅤ资源中文在线天堂| 欧美zozozo另类| 亚洲成人久久爱视频| 日韩欧美国产在线观看| 午夜免费男女啪啪视频观看 | 直男gayav资源| 午夜视频国产福利| 又紧又爽又黄一区二区| 久久欧美精品欧美久久欧美| 91麻豆精品激情在线观看国产| 99九九线精品视频在线观看视频| videossex国产| 亚洲欧美激情综合另类| 精品一区二区三区av网在线观看| 成人永久免费在线观看视频| 国产午夜福利久久久久久| 亚洲自拍偷在线| 精品午夜福利在线看| 亚洲精华国产精华精| 亚洲欧美激情综合另类| 国产又黄又爽又无遮挡在线| 国产精品亚洲美女久久久| 亚洲国产高清在线一区二区三| 欧美bdsm另类| 露出奶头的视频| 男人和女人高潮做爰伦理| 在线观看av片永久免费下载| 国产精品av视频在线免费观看| 国内毛片毛片毛片毛片毛片| 禁无遮挡网站| 午夜福利成人在线免费观看| 成人欧美大片| 亚洲精品一卡2卡三卡4卡5卡| 欧美又色又爽又黄视频| 色综合亚洲欧美另类图片| 国产精品自产拍在线观看55亚洲| 一边摸一边抽搐一进一小说| 99热这里只有是精品在线观看| 久久久久久久亚洲中文字幕| 婷婷精品国产亚洲av| av天堂在线播放| 99热只有精品国产| 两个人视频免费观看高清| x7x7x7水蜜桃| 精品久久久噜噜| 在线观看66精品国产| 色噜噜av男人的天堂激情| 亚洲最大成人av| 亚洲国产色片| av在线老鸭窝| 国产乱人伦免费视频| 亚洲真实伦在线观看| 精品午夜福利在线看| 国模一区二区三区四区视频| 国产淫片久久久久久久久| 内地一区二区视频在线| 中国美白少妇内射xxxbb| 国产高清视频在线播放一区| 久久精品国产清高在天天线| 两个人视频免费观看高清| x7x7x7水蜜桃| 国产av麻豆久久久久久久| 国产视频一区二区在线看| 最新中文字幕久久久久| 一级毛片久久久久久久久女| 麻豆国产av国片精品| 直男gayav资源| 国产精品国产高清国产av| 22中文网久久字幕| 少妇的逼好多水| 亚洲av免费高清在线观看| 亚洲第一电影网av| 一个人看视频在线观看www免费| av中文乱码字幕在线| 床上黄色一级片| 高清毛片免费观看视频网站| 极品教师在线视频| av在线亚洲专区| 日日啪夜夜撸| 亚洲内射少妇av| 麻豆国产av国片精品| 天堂网av新在线| 一区二区三区激情视频| 久久精品国产清高在天天线| 欧美xxxx黑人xx丫x性爽| 高清在线国产一区| 老熟妇乱子伦视频在线观看| 日韩欧美精品v在线| a级毛片a级免费在线| 一进一出抽搐动态| 波多野结衣巨乳人妻| 国产高清视频在线播放一区| 国产精品人妻久久久影院| 春色校园在线视频观看| 久久精品国产亚洲av天美| 国产精品一区二区三区四区免费观看 | 老师上课跳d突然被开到最大视频| 老熟妇乱子伦视频在线观看| 久久精品国产自在天天线| 男女之事视频高清在线观看| 中出人妻视频一区二区| 亚洲成av人片在线播放无| 97碰自拍视频| 黄色女人牲交| 亚洲av第一区精品v没综合| 麻豆av噜噜一区二区三区| 欧美高清成人免费视频www| 午夜福利在线在线| 九九热线精品视视频播放| 在线看三级毛片| av在线亚洲专区| 亚洲专区中文字幕在线| 日本精品一区二区三区蜜桃| 午夜免费激情av| 国产精品一区二区免费欧美| 国产极品精品免费视频能看的| 亚洲国产欧洲综合997久久,| 日本欧美国产在线视频| 亚洲在线自拍视频| 色哟哟哟哟哟哟| 亚洲熟妇中文字幕五十中出| 99在线视频只有这里精品首页| 最近最新中文字幕大全电影3| 又黄又爽又免费观看的视频| eeuss影院久久| 91久久精品国产一区二区成人| 久久久久久久久久久丰满 | 色吧在线观看| 别揉我奶头~嗯~啊~动态视频| 国内精品久久久久精免费| 国产免费一级a男人的天堂| 少妇的逼好多水| 欧美xxxx性猛交bbbb| 欧美日本视频| 欧美日本亚洲视频在线播放| 日本免费a在线| 亚洲美女搞黄在线观看 | 国产精品乱码一区二三区的特点| 国产伦在线观看视频一区| 男女啪啪激烈高潮av片| 亚洲最大成人av| 午夜激情欧美在线| 天堂av国产一区二区熟女人妻| 欧美三级亚洲精品| 国产高清视频在线观看网站| 麻豆成人午夜福利视频| 精品国产三级普通话版| 国产老妇女一区| 91av网一区二区| 男女视频在线观看网站免费| 中出人妻视频一区二区| 伦精品一区二区三区| 精品久久久久久久久亚洲 | 搞女人的毛片| 久久婷婷人人爽人人干人人爱| 一区二区三区免费毛片| 国产在线精品亚洲第一网站| 99久久久亚洲精品蜜臀av| 噜噜噜噜噜久久久久久91| 国产亚洲欧美98| 日日摸夜夜添夜夜添av毛片 | 亚洲成人久久爱视频| 赤兔流量卡办理| 少妇人妻一区二区三区视频| 日韩av在线大香蕉| 国产精品一区二区免费欧美| 亚洲专区中文字幕在线| 深爱激情五月婷婷| 欧美高清性xxxxhd video| 全区人妻精品视频| 国产av不卡久久| 成年免费大片在线观看| 欧美日韩精品成人综合77777| 少妇裸体淫交视频免费看高清| 老司机福利观看| 欧美三级亚洲精品| 国产精品日韩av在线免费观看| 欧美中文日本在线观看视频| 国产精品1区2区在线观看.| 久久中文看片网| 国产欧美日韩一区二区精品| 免费一级毛片在线播放高清视频| 国产高潮美女av| 欧美日韩乱码在线| 亚洲不卡免费看| 亚洲精品一卡2卡三卡4卡5卡| 久久99热这里只有精品18| 一本一本综合久久| 欧美高清成人免费视频www| 久久精品久久久久久噜噜老黄 | 久9热在线精品视频| 国产精品野战在线观看| 日韩欧美精品v在线| 久久久久九九精品影院| 天堂av国产一区二区熟女人妻| 日本五十路高清| 性插视频无遮挡在线免费观看| 久久久久久久亚洲中文字幕| 国产精品久久久久久亚洲av鲁大| 一夜夜www| 最新在线观看一区二区三区| 国产白丝娇喘喷水9色精品| 久久人人爽人人爽人人片va| 在线看三级毛片| 国产白丝娇喘喷水9色精品| 日韩欧美三级三区| 最近在线观看免费完整版| 人人妻人人看人人澡| 国产一区二区在线观看日韩| 一本一本综合久久| 特级一级黄色大片| 国产精品免费一区二区三区在线| 能在线免费观看的黄片| 国产成人一区二区在线| 一进一出好大好爽视频| 别揉我奶头~嗯~啊~动态视频| 国产探花极品一区二区| 国产高清视频在线观看网站| 久久久国产成人精品二区| av福利片在线观看| 天堂√8在线中文| 真人一进一出gif抽搐免费| 伦精品一区二区三区| 亚洲av.av天堂| 欧美色欧美亚洲另类二区| 熟女电影av网| 免费观看人在逋| 日韩欧美国产在线观看| 国产精品久久久久久亚洲av鲁大| 成人午夜高清在线视频| 国产探花在线观看一区二区| 搡老岳熟女国产| 国产欧美日韩一区二区精品| 中文资源天堂在线| 久久中文看片网| 国内精品久久久久久久电影| 成人高潮视频无遮挡免费网站| 国产欧美日韩精品亚洲av| 91精品国产九色| 99视频精品全部免费 在线| 国产一区二区亚洲精品在线观看| 蜜桃亚洲精品一区二区三区| 精品一区二区三区视频在线观看免费| 亚洲精品国产成人久久av| 色av中文字幕| ponron亚洲| 中亚洲国语对白在线视频| 亚洲中文日韩欧美视频| 久久这里只有精品中国| 久99久视频精品免费| 成年版毛片免费区| 91久久精品国产一区二区三区| 九九爱精品视频在线观看| 日本免费一区二区三区高清不卡| 俄罗斯特黄特色一大片| 亚洲av成人精品一区久久| 日韩精品青青久久久久久| 男女视频在线观看网站免费| 联通29元200g的流量卡| 色噜噜av男人的天堂激情| 久久精品国产亚洲网站| 久久精品91蜜桃| 国产伦人伦偷精品视频| 日韩大尺度精品在线看网址| 一a级毛片在线观看| 好男人在线观看高清免费视频| 亚洲性久久影院| 国产男人的电影天堂91| 欧美另类亚洲清纯唯美| 12—13女人毛片做爰片一| 日本 欧美在线| 欧美人与善性xxx| 国产欧美日韩精品亚洲av| 午夜福利成人在线免费观看| 亚洲专区中文字幕在线| 最近最新免费中文字幕在线| 亚洲专区国产一区二区| 99在线人妻在线中文字幕| 亚洲男人的天堂狠狠| 99国产极品粉嫩在线观看| 99久久精品国产国产毛片| 搞女人的毛片| 免费高清视频大片| 黄色丝袜av网址大全| 自拍偷自拍亚洲精品老妇| 国产亚洲精品久久久com| 亚洲va日本ⅴa欧美va伊人久久| 欧美一区二区国产精品久久精品| 美女黄网站色视频| 我要看日韩黄色一级片| 亚洲美女搞黄在线观看 | 国产高潮美女av| 国产精品久久久久久av不卡| 欧美日本视频| 国产国拍精品亚洲av在线观看| 国产久久久一区二区三区| 久久热精品热| 嫁个100分男人电影在线观看| 伊人久久精品亚洲午夜| 国产欧美日韩精品亚洲av| 蜜桃久久精品国产亚洲av| 此物有八面人人有两片| 男插女下体视频免费在线播放| 婷婷亚洲欧美| 亚洲狠狠婷婷综合久久图片| 免费在线观看日本一区| 日韩精品有码人妻一区| 亚洲欧美激情综合另类| 身体一侧抽搐| 欧美黑人巨大hd| 亚洲午夜理论影院| 免费高清视频大片| 欧洲精品卡2卡3卡4卡5卡区| 日本与韩国留学比较| 最近在线观看免费完整版| 波野结衣二区三区在线| 一区二区三区四区激情视频 | 免费搜索国产男女视频| 色5月婷婷丁香| 国产成人福利小说| av黄色大香蕉| 在线观看一区二区三区| 韩国av在线不卡| 午夜福利高清视频| 国产亚洲av嫩草精品影院| 国产黄片美女视频| 69人妻影院| 看黄色毛片网站| АⅤ资源中文在线天堂| 乱码一卡2卡4卡精品| avwww免费| 欧美中文日本在线观看视频| 午夜福利在线在线| 亚洲av免费高清在线观看| 欧美精品啪啪一区二区三区| 亚洲最大成人av| 窝窝影院91人妻| 亚洲av免费在线观看| 午夜久久久久精精品| 亚洲美女视频黄频| 欧美极品一区二区三区四区| 日本免费一区二区三区高清不卡| 给我免费播放毛片高清在线观看| 在线观看免费视频日本深夜| 午夜福利在线观看吧| 白带黄色成豆腐渣| 成人午夜高清在线视频| 亚洲va日本ⅴa欧美va伊人久久| 综合色av麻豆| 日韩大尺度精品在线看网址| 99久久中文字幕三级久久日本| 亚洲精品乱码久久久v下载方式| 欧美日本亚洲视频在线播放| 午夜激情福利司机影院| 日本免费一区二区三区高清不卡| 真人一进一出gif抽搐免费| 熟女电影av网| 日韩欧美精品免费久久| 成人国产综合亚洲| 男女之事视频高清在线观看| 在线国产一区二区在线| 女生性感内裤真人,穿戴方法视频| 黄色欧美视频在线观看| 国产私拍福利视频在线观看| 日韩欧美国产在线观看| 亚洲精品成人久久久久久| 麻豆av噜噜一区二区三区| 国产精品综合久久久久久久免费| 亚洲av免费高清在线观看| 国产女主播在线喷水免费视频网站 | 欧美zozozo另类| 成人永久免费在线观看视频| 亚洲精品国产成人久久av| 久久久久久久久久久丰满 | 舔av片在线| 在线观看舔阴道视频| a级毛片免费高清观看在线播放| 成人欧美大片| 久久久久久国产a免费观看| 午夜视频国产福利| 国产精品爽爽va在线观看网站| 免费av观看视频| 91久久精品国产一区二区三区| 小蜜桃在线观看免费完整版高清| 久久久久久大精品| 免费一级毛片在线播放高清视频| 天堂√8在线中文| 日日摸夜夜添夜夜添小说| 色哟哟·www| 午夜日韩欧美国产| 舔av片在线| 国产午夜精品论理片| 超碰av人人做人人爽久久| 欧美绝顶高潮抽搐喷水| 成人午夜高清在线视频| 国产精品一区二区三区四区免费观看 | 精品人妻视频免费看| 99久国产av精品| 热99在线观看视频| 乱码一卡2卡4卡精品| 亚洲精品色激情综合| 免费人成在线观看视频色| 国产一区二区在线av高清观看| 麻豆一二三区av精品| 亚洲精品国产成人久久av| 韩国av一区二区三区四区| 我要搜黄色片| 婷婷亚洲欧美| 最后的刺客免费高清国语| 女同久久另类99精品国产91| 国产精华一区二区三区| 日本黄大片高清| 人妻少妇偷人精品九色| 此物有八面人人有两片| 成人鲁丝片一二三区免费| 少妇丰满av| 九九爱精品视频在线观看| 色综合亚洲欧美另类图片| 精品一区二区三区av网在线观看| 少妇的逼好多水| 色综合婷婷激情| 观看美女的网站| 黄色配什么色好看| 97热精品久久久久久| 动漫黄色视频在线观看| 人妻少妇偷人精品九色| 91午夜精品亚洲一区二区三区 | 又粗又爽又猛毛片免费看| 美女高潮的动态| 最新中文字幕久久久久| 天堂影院成人在线观看| 国产精品人妻久久久影院| 成人精品一区二区免费| 淫秽高清视频在线观看| 欧美人与善性xxx| 国产 一区精品| 直男gayav资源| 波多野结衣高清作品| 小蜜桃在线观看免费完整版高清| 亚洲性夜色夜夜综合| 日本熟妇午夜| 一边摸一边抽搐一进一小说| 不卡一级毛片| 日本撒尿小便嘘嘘汇集6| 五月伊人婷婷丁香| 中文字幕人妻熟人妻熟丝袜美| 天堂√8在线中文| av在线亚洲专区| 91久久精品国产一区二区成人| 在线观看免费视频日本深夜| 男人和女人高潮做爰伦理| 神马国产精品三级电影在线观看| 欧美中文日本在线观看视频| www.色视频.com| 大又大粗又爽又黄少妇毛片口| 极品教师在线免费播放|