• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Control Designs for a Class of Nonviscously Damped Systems

    2020-06-04 06:39:06XIUGuozhong修國(guó)眾SHIBaoQIANFeng

    XIU Guozhong (修國(guó)眾), SHI Bao (時(shí) 寶), QIAN Feng (錢(qián) 峰)

    1 School of Basic Science for Aviation, Naval Aviation University, Yantai 264001, China 2 School of Aviation Operations and Support, Naval Aviation University, Yantai 264001, China

    Abstract: A scheme for optimal control problem formulation of a class of nonviscously damped system using pseudo-state-space formulation is presented in this paper. Taking the exponentially damped system of nonviscously damped system as an example, a new state space representation is applied to the n-order exponentially damped system. The necessary conditions for the optimality of the exponentially damped system are obtained. A numerical example of a single degree of freedom exponentially damped system is considered to illustrate the methodology and technique.

    Key words: nonviscously damped system; state space formulation; exponentially damped system; optimal control problem

    Introduction

    Viscous damping is the most common model for the modelling of vibration damping. Viscous damping models are used widely for their simplicity and mathematical convenience even though the true damping behaviour is expected to be nonviscous. Damping models in which the dissipative forces depend on any quantity other than the instantaneous generalized velocities will be called nonviscous damping models. Among many nonviscous damping models, the convolution integral model is possibly the most general model within the scope of linear analysis[1].

    The convolution integral models are derived based on the material properties of stress relaxation and creep applying Boltzmann’s superposition principle. The convolution integral models are superior to the differential ones in many aspects: (1) the fading memory property can be characterized and the time history of loading acting on materials can be recorded; (2) the stress relaxation functions or creep functions are easily and directly obtained via experiment data fitting; (3) other factors such as temperature and the ageing affects can be conveniently considered and included in the model. The presence of the “integral” term makes the vibration analysis and control design more complicated than the classical ones. The integral type damping models may be also called nonviscously damping models and the corresponding oscillators are called nonviscously damped oscillators.

    A brief review of literature on dynamics of nonviscously damped systems may be found in Refs. [2-3]. Lietal.[4]considered this kind of system where the exponential kernel function is associated with the stiffness matrix. Adhikari[5]proposed an exact state-space method for the analysis of linear systems with exponential damping. Li and Hu[6]presented an idea to describe multiple damping models by considering a fraction formula of rational polynomials (called the general damping model), which is attempting to express different damping models by a uniform damping form. Yun and Youn[7]presented a design sensitivity analysis for the transient response of the non-viscously damped dynamic systems. The transient response is calculated with the implicit Newmark time integration scheme. The design sensitivity analysis method of the history dependent system is developed using the adjoint variable method. The discretize-then-differentiate approach is adopted for deriving discrete adjoint equations. Dingetal.[8]showed three new kinds of time-domain numerical methods of exponentially damped systems, namely, the simplified Newmark integration method, the precise integration method, and the simplified complex mode superposition method. Based on a symmetric state-space equation and the complex mode superposition method, a delicate and simplified general solution of exponentially damped linear systems, completely in real-value form, is developed. Researchers[9-11]presented a method to calculate the derivatives of the eigenvalues and eigenvectors of multiple degree of freedom damped linear dynamic systems with respect to arbitrary design parameters. In a word, more and more scholars pay attention to the nonviscously damped systems.

    In recent years, more and more scholars have studied fractional order control methods, such as fractional proportional integral derivative (PID) control[12-13], fractional sliding mode control[14-15], fractional adaptive control[16-17], and fractional optimal control[18-20]. But the control design of exponential damping system is very few.

    The purpose of this paper is to design the optimal control method for the nonviscously damped systems. In this paper we consider then-order exponentially damped system. Among many other mathematically possible damping functions, the exponential damping model is the most physically meaningful. In section 1, we present pseudo-state-space formulation, which is very similar to an integer order model. In section 2, we formulate the optimal control problems for a single input system. Dynamic constraint involves exponential damping systems. The necessary conditions for the optimality of the exponentially damped systems are obtained. In section 3, as a numerical example we consider the optimal control problem of a single degree of freedom exponential damping system. The necessary conditions for the optimality of the single degree of freedom exponential damping system are obtained. It is a two-point boundary value problem. We use a set of internal variables for solving the two-point boundary value problem. The proposed method can be applied to the optimality of multiple degree of freedom nonviscously damped systems. Numerical simulations are provided to illustrate the proposed method.

    1 Pseudo State Space Representation

    The convolution integral relations of viscoelastic materials are represented by the following integro-differential equation of Volterra type:

    (1)

    whereσ(t)is the stress,ε(t)is the stain, andG(t)is the stress relaxation function. Here, we use a damping model for which the kernel function is exponentially damped model.

    (2)

    whereμk∈R+is known as the relaxation parameters, andndenotes the number of relaxation parameters used to describe the damping behaviour.Ck∈RN×Nis the damping coefficient matrix. We consider suchn-order exponentially damped system.

    (3)

    wherenis an integer andc1,c2, …,cmare nonzero real numbers.

    (4)

    which is equivalent to

    (5)

    So then-order exponentially damped system can be expressed as the high dimensional state-space equation[21]. Moreover, it can be noted that the representation is very similar to an integer order model.

    2 Optimal Control Design of the Exponentially Damped Systems

    We now present a formulation for the optimality of a single input exponentially damped systems. Consider the following problem: find the optimal controlu(t) that minimizes the performance index

    (6)

    subject to the system dynamic constraints

    (7)

    and the initial condition is thatX(0)=X0,X(tf) is free, andtfis fixed.Qis a weighted matrix related to the state vector, andris the weighted coefficient associated with the control signal. Here,X(t) andu(t) aren-dimensional state vector and a control input respectively.A∈Rn×n, andb∈Rn×1. In addition, we assume the following conditions:

    (1)Qn×nis a nonnegative matrix.

    (2)r>0.

    To obtain the optimality condition for the problem formulated by Eqs. (6)- (7), we follow the traditional approach and define a modified performance index as

    (8)

    whereλ(t) is the Lagrange multiplier. Taking variation of Eq. (8), we obtain

    (9)

    The second and the third terms on the right side of the upper formula are calculated separately and the following results are obtained.

    Provided thatδX(0)=0 orλ(0)=0, andδX(tf)=0 orλ(tf)=0. AsX(0)=X0is specified,δX(0)=0. And becauseX(tf) is not specified, we requireλ(tf)=0. We can get

    (10)

    (11)

    Substitute the above calculation results into Eq. (9),

    (12)

    Minimization ofJa(u) (and hence minimization ofJ(u)) requires the coefficients ofδλ,δXandδuin Eq. (12) be zero. This leads to

    (13)

    (14)

    ru+bΤλ=0 ,

    (15)

    X(0)=X0,λ(tf)=0.

    (16)

    Equations (13)-(15) are the necessary conditions for the optimality of exponentially damped systems. Equations (13)-(15) with the boundary conditions (16) constitute a boundary value problem of optimal control problems for exponentially damped systems. We can use a direct numerical technique to solve it. Here we only discuss the optimal control problem with one “integral” term in the dynamical constraint. The same method can be used to solve the optimal control problem with multiple “integrals” in the system dynamic constraints. If the single input system is replaced by the multi-input system, this method can also solve the problems.

    3 Numerical Example

    As a numerical example we consider the optimal control problem of a single degree of freedom oscillator with a viscoelastic damper. The equation of motion of the oscillator can be expressed as

    (17)

    (18)

    Then Eq. (18) is transformed into the following equation in the state space

    (19)

    For the convenience of the following calculation, we can takem=1,c=1,k=1, and then the equation can be abbreviated to the following form

    (20)

    Next, we discuss the optimal control problem with exponentially damped terms in system dynamic constraints. The performance index function is expressed as

    (21)

    subject to the system dynamic constraints

    (22)

    Optimal conditions for this problem are given by

    (23)

    (24)

    (25)

    (26)

    Then Eqs. (23)- (26) form a two point boundary value problem. To solve equations, we introduce the internal variablesy1(t) andy2(t) through the following relationship[22]:

    (27)

    (28)

    Applying Leibniz’s rule for differentiation of an integral to Eq. (27), we obtain

    (29)

    Taking Eq. (29) into Eq. (23), we can get

    (30)

    Equations (29)- (30) lead to the following equations

    (31)

    In the same way, we can get

    (32)

    Taking Eq. (32) into Eq. (24), we can get

    (33)

    Equations (33)- (34) lead to the following equations

    (34)

    Note that Eqs. (31) and (34) with the boundary conditions (26) form a two point boundary value problems. We can solve these eight linear equations directly using any linear equation solver. Solving the above equations, we obtain the following results.

    The changes of state variables and control variable for different values ofμare shown in Figs. 1- 2. And we can see the second state variable of Fig. 1 changes more than that of Fig. 2. However, the control variable of Fig. 1 changes less than that of Fig. 2.

    Fig. 1 Changes of state function and control function for μ=0.2

    Fig. 2 Changes of state function and control function for μ=1.0

    4 Conclusions

    A scheme for the optimal control problem of the nonviscously damped system using pseudo-state-space formulation is presented in this paper. Using the pseudo-state-space model, a new set of optimal conditions is obtained. As a numerical example, a single degree of freedom exponential damping system has been considered. The necessary conditions for the optimality of the exponential damping system involve both left and right integral terms. We introduce the internal variables to extend state-space representation of the exponential damping system. So we can get eight linear equations, and these eight linear equations with the boundary conditions together form a two-point boundary value problem. A direct numerical technique is used to solve the two point boundary value problems. Numerical simulations are provided to illustrate the above control design.

    国产老妇伦熟女老妇高清| 80岁老熟妇乱子伦牲交| 亚洲自拍偷在线| 国产亚洲午夜精品一区二区久久 | 嫩草影院新地址| 美女高潮的动态| 午夜日本视频在线| 在线观看人妻少妇| 亚洲精品456在线播放app| 久久久久网色| 亚洲av电影在线观看一区二区三区 | 精品不卡国产一区二区三区| 天堂影院成人在线观看| 久久韩国三级中文字幕| 国产一区亚洲一区在线观看| 丰满人妻一区二区三区视频av| 亚洲精品乱码久久久久久按摩| 美女脱内裤让男人舔精品视频| 99久久精品一区二区三区| 韩国av在线不卡| 午夜福利在线观看吧| 国产成人免费观看mmmm| 国产午夜精品久久久久久一区二区三区| 欧美激情久久久久久爽电影| 国产又色又爽无遮挡免| 亚洲图色成人| 麻豆精品久久久久久蜜桃| 最后的刺客免费高清国语| 精品午夜福利在线看| www.色视频.com| 国产精品一区二区性色av| 大香蕉久久网| 国产精品国产三级国产av玫瑰| 99热6这里只有精品| 一级a做视频免费观看| 国产精品一区二区在线观看99 | 欧美一区二区亚洲| 亚洲精品乱码久久久久久按摩| 日韩电影二区| 男人爽女人下面视频在线观看| 国产成人精品婷婷| 麻豆久久精品国产亚洲av| 国产成人精品一,二区| 中文乱码字字幕精品一区二区三区 | 久久国产乱子免费精品| 搞女人的毛片| 91在线精品国自产拍蜜月| 肉色欧美久久久久久久蜜桃 | 美女内射精品一级片tv| 国产av在哪里看| 麻豆成人av视频| 啦啦啦啦在线视频资源| 春色校园在线视频观看| 最近视频中文字幕2019在线8| 亚洲精品456在线播放app| 欧美日韩一区二区视频在线观看视频在线 | 精品国产三级普通话版| 永久免费av网站大全| 麻豆成人av视频| 一级黄片播放器| 一级毛片 在线播放| 亚洲经典国产精华液单| 精品久久久久久电影网| 99热这里只有是精品50| 久久久久九九精品影院| 一级毛片 在线播放| 国产免费一级a男人的天堂| 不卡视频在线观看欧美| 欧美 日韩 精品 国产| 在线免费十八禁| 少妇裸体淫交视频免费看高清| 亚洲精品乱久久久久久| 亚洲真实伦在线观看| 国产一区亚洲一区在线观看| 国产爱豆传媒在线观看| .国产精品久久| 高清视频免费观看一区二区 | 国产亚洲5aaaaa淫片| 联通29元200g的流量卡| 亚洲av电影不卡..在线观看| 久久人人爽人人片av| 国语对白做爰xxxⅹ性视频网站| 亚洲综合色惰| 欧美日韩精品成人综合77777| 久久精品国产亚洲av涩爱| 久久久久久久大尺度免费视频| 男女视频在线观看网站免费| 又大又黄又爽视频免费| 三级男女做爰猛烈吃奶摸视频| 国产人妻一区二区三区在| 激情五月婷婷亚洲| 精品熟女少妇av免费看| 观看免费一级毛片| 欧美xxxx性猛交bbbb| 国产亚洲精品av在线| 久久久久精品性色| 18禁在线播放成人免费| 亚洲怡红院男人天堂| 大话2 男鬼变身卡| 久久这里有精品视频免费| 欧美3d第一页| 欧美成人一区二区免费高清观看| 国产亚洲最大av| 一区二区三区四区激情视频| 成年av动漫网址| 大香蕉97超碰在线| 插逼视频在线观看| 日日啪夜夜爽| 99久国产av精品| 亚洲高清免费不卡视频| 久久99热这里只有精品18| 国产精品.久久久| 国产淫语在线视频| 久久精品久久久久久久性| av卡一久久| 欧美另类一区| 精华霜和精华液先用哪个| 插逼视频在线观看| 午夜视频国产福利| 边亲边吃奶的免费视频| 2021少妇久久久久久久久久久| 91久久精品电影网| 亚洲精品日韩av片在线观看| 草草在线视频免费看| 国产亚洲最大av| 噜噜噜噜噜久久久久久91| 日韩av在线大香蕉| 国产中年淑女户外野战色| 免费黄频网站在线观看国产| 国产激情偷乱视频一区二区| 伦理电影大哥的女人| 不卡视频在线观看欧美| 夜夜看夜夜爽夜夜摸| 自拍偷自拍亚洲精品老妇| 亚洲自偷自拍三级| 在线观看美女被高潮喷水网站| 亚洲av福利一区| 一级a做视频免费观看| 丝袜美腿在线中文| 亚洲精品影视一区二区三区av| 一级毛片我不卡| 久久国内精品自在自线图片| 国产淫片久久久久久久久| 免费黄网站久久成人精品| 久久久a久久爽久久v久久| 国产精品一区二区三区四区免费观看| 国产精品1区2区在线观看.| 3wmmmm亚洲av在线观看| 九色成人免费人妻av| av国产久精品久网站免费入址| 亚洲精品456在线播放app| 欧美极品一区二区三区四区| 天天一区二区日本电影三级| 一个人看的www免费观看视频| 色5月婷婷丁香| 亚洲综合精品二区| 99久久精品国产国产毛片| 2018国产大陆天天弄谢| 亚洲国产欧美在线一区| 国产成人福利小说| 偷拍熟女少妇极品色| 欧美日韩视频高清一区二区三区二| 一区二区三区四区激情视频| 69av精品久久久久久| 午夜精品在线福利| 欧美xxxx性猛交bbbb| 日韩一区二区三区影片| 18禁动态无遮挡网站| 免费在线观看成人毛片| 少妇裸体淫交视频免费看高清| 国精品久久久久久国模美| 亚洲一区高清亚洲精品| 免费av观看视频| 男女啪啪激烈高潮av片| 一级二级三级毛片免费看| 人妻少妇偷人精品九色| kizo精华| 亚洲国产精品sss在线观看| 97超视频在线观看视频| 午夜免费激情av| 久久久久久久久久久丰满| 国产毛片a区久久久久| 日韩中字成人| 性插视频无遮挡在线免费观看| 又爽又黄无遮挡网站| 亚洲精品一二三| 日韩在线高清观看一区二区三区| 欧美变态另类bdsm刘玥| 夜夜看夜夜爽夜夜摸| 亚洲av.av天堂| 成人无遮挡网站| 亚洲人成网站在线播| 国产成人一区二区在线| 亚洲精品,欧美精品| 淫秽高清视频在线观看| 建设人人有责人人尽责人人享有的 | 九九久久精品国产亚洲av麻豆| 啦啦啦中文免费视频观看日本| 蜜桃亚洲精品一区二区三区| 免费无遮挡裸体视频| 国产精品福利在线免费观看| 国产高清有码在线观看视频| 99热全是精品| 国产精品人妻久久久久久| 91久久精品电影网| 激情五月婷婷亚洲| 熟女人妻精品中文字幕| 国产淫语在线视频| 国产精品.久久久| 欧美成人午夜免费资源| 免费观看的影片在线观看| 久久国内精品自在自线图片| 三级毛片av免费| 亚洲av电影不卡..在线观看| 亚洲欧美中文字幕日韩二区| 亚洲欧美清纯卡通| 三级毛片av免费| 日韩欧美国产在线观看| 亚洲不卡免费看| 伊人久久国产一区二区| 中文在线观看免费www的网站| 中文字幕制服av| 久热久热在线精品观看| 国产乱来视频区| 色尼玛亚洲综合影院| 大又大粗又爽又黄少妇毛片口| 亚洲在久久综合| 91精品一卡2卡3卡4卡| 免费大片黄手机在线观看| 亚洲第一区二区三区不卡| 自拍偷自拍亚洲精品老妇| 亚洲美女视频黄频| 国产精品人妻久久久影院| av国产久精品久网站免费入址| 免费黄色在线免费观看| 久久久久久伊人网av| 久久久久久久久久黄片| 午夜亚洲福利在线播放| 欧美xxxx黑人xx丫x性爽| av国产久精品久网站免费入址| 精品欧美国产一区二区三| 女人被狂操c到高潮| 国产精品麻豆人妻色哟哟久久 | av天堂中文字幕网| 午夜福利在线在线| 99热网站在线观看| 一区二区三区免费毛片| 韩国av在线不卡| 国产乱人偷精品视频| 久久亚洲国产成人精品v| 欧美不卡视频在线免费观看| 欧美激情国产日韩精品一区| 日本三级黄在线观看| 午夜精品在线福利| 在线免费观看不下载黄p国产| 51国产日韩欧美| 最近中文字幕高清免费大全6| 啦啦啦中文免费视频观看日本| 春色校园在线视频观看| 99热这里只有是精品在线观看| 一级黄片播放器| 亚洲人成网站高清观看| 亚洲国产日韩欧美精品在线观看| 精品酒店卫生间| 国产女主播在线喷水免费视频网站 | 在线观看av片永久免费下载| 国内揄拍国产精品人妻在线| 丰满乱子伦码专区| 一本久久精品| 美女高潮的动态| 中文字幕久久专区| 女人久久www免费人成看片| 日韩av不卡免费在线播放| 日本午夜av视频| 亚洲一级一片aⅴ在线观看| 精品一区在线观看国产| 一区二区三区免费毛片| 欧美成人午夜免费资源| 色5月婷婷丁香| 一区二区三区高清视频在线| 菩萨蛮人人尽说江南好唐韦庄| 激情 狠狠 欧美| 老司机影院成人| 蜜桃久久精品国产亚洲av| 国产伦在线观看视频一区| 男人舔奶头视频| 午夜激情久久久久久久| 成年人午夜在线观看视频 | 老司机影院成人| 国产亚洲一区二区精品| videos熟女内射| 久久久久久久久久成人| 日韩伦理黄色片| 少妇裸体淫交视频免费看高清| 国产v大片淫在线免费观看| 黄色配什么色好看| 国产av在哪里看| 99九九线精品视频在线观看视频| 麻豆av噜噜一区二区三区| 中文字幕av在线有码专区| 91午夜精品亚洲一区二区三区| 97在线视频观看| 男人爽女人下面视频在线观看| 国产淫语在线视频| 亚洲av中文av极速乱| 综合色丁香网| 国产在线一区二区三区精| av福利片在线观看| 亚洲国产精品专区欧美| 亚洲va在线va天堂va国产| 亚洲在线观看片| 久久精品人妻少妇| 91久久精品国产一区二区三区| 18禁裸乳无遮挡免费网站照片| 亚洲精品国产av蜜桃| 精品国产露脸久久av麻豆 | 国产成人精品婷婷| 久久99热6这里只有精品| 女人久久www免费人成看片| 亚洲美女视频黄频| 国产高清有码在线观看视频| 久久久久久久亚洲中文字幕| 22中文网久久字幕| 少妇裸体淫交视频免费看高清| 午夜精品在线福利| 18+在线观看网站| 国内少妇人妻偷人精品xxx网站| 亚洲国产av新网站| a级毛片免费高清观看在线播放| 啦啦啦啦在线视频资源| 联通29元200g的流量卡| 亚洲av国产av综合av卡| 国产成人福利小说| 精品久久久精品久久久| 成人欧美大片| 国内精品美女久久久久久| 亚洲18禁久久av| 亚洲va在线va天堂va国产| 亚洲精品一区蜜桃| 色综合色国产| 哪个播放器可以免费观看大片| 搡老乐熟女国产| 亚洲四区av| 国产大屁股一区二区在线视频| 内射极品少妇av片p| 美女大奶头视频| 一级二级三级毛片免费看| 韩国av在线不卡| 91精品一卡2卡3卡4卡| 午夜福利在线在线| 狂野欧美激情性xxxx在线观看| 成人无遮挡网站| 久久久久久久久久久丰满| 国产精品.久久久| 七月丁香在线播放| 国产精品人妻久久久影院| 国产在视频线精品| 亚洲av成人精品一区久久| 久久久久久久久久人人人人人人| 久久久久精品久久久久真实原创| 69人妻影院| 女的被弄到高潮叫床怎么办| 99re6热这里在线精品视频| 91aial.com中文字幕在线观看| 日韩强制内射视频| 午夜激情福利司机影院| 日韩欧美一区视频在线观看 | 十八禁国产超污无遮挡网站| 国产乱人视频| 国产精品久久久久久av不卡| 99久久精品一区二区三区| 男女下面进入的视频免费午夜| 国产人妻一区二区三区在| 精品酒店卫生间| 男女边吃奶边做爰视频| 欧美日韩亚洲高清精品| 国产一级毛片七仙女欲春2| 一个人免费在线观看电影| 老师上课跳d突然被开到最大视频| 男人舔奶头视频| 黄片无遮挡物在线观看| 精品久久久久久电影网| 亚洲成人精品中文字幕电影| 中文欧美无线码| 天天躁夜夜躁狠狠久久av| 日本免费在线观看一区| 久久久久网色| 蜜桃久久精品国产亚洲av| 国产精品不卡视频一区二区| 精品一区二区免费观看| 欧美3d第一页| 免费av不卡在线播放| 一级毛片久久久久久久久女| 欧美97在线视频| 欧美日韩精品成人综合77777| 日韩av在线大香蕉| 91精品一卡2卡3卡4卡| 欧美日韩精品成人综合77777| 久久久久久久大尺度免费视频| 亚洲熟女精品中文字幕| 国产片特级美女逼逼视频| 国产一区二区三区综合在线观看 | 国产淫语在线视频| 男女啪啪激烈高潮av片| 人妻系列 视频| 欧美日韩一区二区视频在线观看视频在线 | 观看美女的网站| 日韩亚洲欧美综合| 日韩 亚洲 欧美在线| 晚上一个人看的免费电影| 搞女人的毛片| 国产欧美另类精品又又久久亚洲欧美| 在现免费观看毛片| 九草在线视频观看| 高清av免费在线| 日韩一区二区视频免费看| 亚洲乱码一区二区免费版| 国产亚洲精品久久久com| 中国美白少妇内射xxxbb| av又黄又爽大尺度在线免费看| 干丝袜人妻中文字幕| 亚洲第一区二区三区不卡| 嫩草影院精品99| 人妻一区二区av| 精品久久久久久久人妻蜜臀av| 亚洲国产欧美人成| 久久久久免费精品人妻一区二区| 乱人视频在线观看| 搞女人的毛片| 搡老乐熟女国产| 国产成人一区二区在线| 麻豆国产97在线/欧美| 午夜福利成人在线免费观看| 久久久午夜欧美精品| 高清欧美精品videossex| 观看免费一级毛片| 99久久精品热视频| 嘟嘟电影网在线观看| 亚洲av日韩在线播放| 天天躁日日操中文字幕| 搞女人的毛片| 视频中文字幕在线观看| 一级爰片在线观看| 亚洲国产欧美人成| 欧美97在线视频| 日韩制服骚丝袜av| 97精品久久久久久久久久精品| 亚洲真实伦在线观看| 亚洲人成网站在线观看播放| 欧美性感艳星| 女人久久www免费人成看片| 午夜福利视频精品| 国产免费福利视频在线观看| 一二三四中文在线观看免费高清| 看免费成人av毛片| av卡一久久| 国产黄片美女视频| 性色avwww在线观看| 国内精品美女久久久久久| 水蜜桃什么品种好| 日本与韩国留学比较| 女的被弄到高潮叫床怎么办| 亚洲欧美精品专区久久| 欧美成人午夜免费资源| 免费观看a级毛片全部| 中文字幕制服av| 看非洲黑人一级黄片| 干丝袜人妻中文字幕| 九九久久精品国产亚洲av麻豆| 精品久久久久久成人av| 欧美bdsm另类| 免费黄网站久久成人精品| 日韩,欧美,国产一区二区三区| 国产黄色小视频在线观看| 亚洲人成网站在线播| 久久久久精品久久久久真实原创| 欧美高清性xxxxhd video| 丰满人妻一区二区三区视频av| 国产在视频线在精品| 国产精品久久久久久精品电影| 日日啪夜夜爽| 久久久久久久久大av| 成年av动漫网址| 97超视频在线观看视频| 亚洲人成网站高清观看| 又粗又硬又长又爽又黄的视频| 免费少妇av软件| 日韩av免费高清视频| 免费人成在线观看视频色| 国产男人的电影天堂91| 日韩成人伦理影院| 成人漫画全彩无遮挡| 日韩在线高清观看一区二区三区| 激情 狠狠 欧美| 久久久久久久久中文| 亚洲av电影在线观看一区二区三区 | 看十八女毛片水多多多| 国产高清有码在线观看视频| 黄色配什么色好看| 亚洲精品国产成人久久av| 午夜精品国产一区二区电影 | 成人毛片60女人毛片免费| 少妇丰满av| 能在线免费看毛片的网站| 久久久久久久亚洲中文字幕| 亚洲精品乱码久久久久久按摩| 亚洲精品久久午夜乱码| 色视频www国产| 国产成人精品一,二区| 精品少妇黑人巨大在线播放| 我的女老师完整版在线观看| 美女内射精品一级片tv| 高清毛片免费看| 国产免费一级a男人的天堂| 亚洲欧洲日产国产| 特大巨黑吊av在线直播| 网址你懂的国产日韩在线| 乱人视频在线观看| 亚洲人成网站高清观看| 日韩大片免费观看网站| 欧美极品一区二区三区四区| 日产精品乱码卡一卡2卡三| 亚洲综合精品二区| 日日摸夜夜添夜夜添av毛片| 亚州av有码| 国产单亲对白刺激| 国产乱人视频| 午夜免费激情av| 夫妻性生交免费视频一级片| av在线播放精品| 欧美日本视频| 亚洲熟妇中文字幕五十中出| 亚洲不卡免费看| 国产成人精品福利久久| 美女大奶头视频| 女人十人毛片免费观看3o分钟| 国产久久久一区二区三区| 91午夜精品亚洲一区二区三区| 少妇猛男粗大的猛烈进出视频 | 舔av片在线| 熟妇人妻久久中文字幕3abv| 亚洲aⅴ乱码一区二区在线播放| 女人久久www免费人成看片| 精品人妻熟女av久视频| av在线观看视频网站免费| 国产视频内射| 婷婷色综合大香蕉| 亚洲精品一区蜜桃| 国产精品人妻久久久影院| 啦啦啦韩国在线观看视频| 亚洲内射少妇av| 久久久久久久久久久免费av| 一级毛片我不卡| 国产精品一区二区性色av| 久久精品夜色国产| 国产真实伦视频高清在线观看| 亚洲av不卡在线观看| 国产国拍精品亚洲av在线观看| 日韩国内少妇激情av| 国产精品熟女久久久久浪| 黄片wwwwww| 免费人成在线观看视频色| 国产成人a∨麻豆精品| 亚洲精品乱码久久久久久按摩| 高清在线视频一区二区三区| 国产精品女同一区二区软件| 亚洲国产高清在线一区二区三| 美女高潮的动态| 亚洲精品乱久久久久久| 熟妇人妻久久中文字幕3abv| 中文乱码字字幕精品一区二区三区 | 成人午夜高清在线视频| 日韩欧美 国产精品| 欧美高清性xxxxhd video| 日韩强制内射视频| 人体艺术视频欧美日本| a级毛色黄片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费看光身美女| 乱系列少妇在线播放| 草草在线视频免费看| 国产大屁股一区二区在线视频| 中文字幕av成人在线电影| 99热6这里只有精品| 免费av毛片视频| 中国美白少妇内射xxxbb| 午夜精品在线福利| 日韩中字成人| 日韩欧美一区视频在线观看 | av在线蜜桃| 中文字幕亚洲精品专区| 亚洲国产欧美人成| 插逼视频在线观看| 免费看av在线观看网站| 有码 亚洲区| 精品国产一区二区三区久久久樱花 | 热99在线观看视频| 国产又色又爽无遮挡免| 最后的刺客免费高清国语| 亚洲精品日韩av片在线观看| 中文字幕久久专区| 久久久久久久午夜电影| 久久久久久久久久人人人人人人| 在线免费十八禁| 亚洲欧美成人综合另类久久久| 国产探花在线观看一区二区| 青春草亚洲视频在线观看| 天堂中文最新版在线下载 | 国产精品一区二区三区四区久久| 80岁老熟妇乱子伦牲交| 亚洲最大成人av| 黄色配什么色好看| 人妻系列 视频| 色综合亚洲欧美另类图片| 久久这里有精品视频免费|