• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Epitaxial growth of ultrathin gallium films on Cd(0001)

    2024-01-25 07:14:58ZuoLi李佐MingxiaShi石明霞GangYao姚鋼MinlongTao陶敏龍andJunzhongWang王俊忠
    Chinese Physics B 2024年1期

    Zuo Li(李佐), Mingxia Shi(石明霞), Gang Yao(姚鋼), Minlong Tao(陶敏龍), and Junzhong Wang(王俊忠),?

    1School of Physical Science and Technology,Southwest University,Chongqing 400715,China

    2School of Science,Guizhou University of Engineering Science,Bijie 551700,China

    Keywords: gallium films,electronic growth,STM/STS,density functional theory

    1.Introduction

    In heteroepitaxial systems, growth of thin films on solid substrates offers the opportunity to create new structures(thinfilm phases)that do not exist in the bulk phases.[1]Serving as the metastable structures,these new phases may exhibit novel physical and chemical properties.In the process of epitaxial growth,elastic strain arising from the lattice mismatch greatly influences the growth mode of thin films.[2]When the lattice misfit is low,the elastic strain energy can be accommodated in the form of pseudomorphic growth,where the thin films adopt the same lateral periodicity as the substrate.[3–5]At higher lattice misfit, the strain energy is relieved by the formation of misfit dislocations at the film/substrate interface.

    The trivalent metal gallium, a liquid metal near room temperature, plays a crucial role in the electronic and optoelectronic devices.[6]In the past decades, the heteroepitaxial thin films of gallium grown on solid surfaces have attracted considerable interest.The Ga bilayer grown on GaN(0001)exhibits a pseudomorphic 1×1 structure and reveals superconductivity with the transition temperature of 5.4 K.[7,8]Furthermore, the quantum Griffiths singularity was observed in this Ga bilayer.[9]Recently, ultrathin gallium films, also known as gallenene, have received considerable interests due to the potential application in the emerging elemental 2D materials.[10–20]By means of solid-melt exfoliation,Kochatet al.fabricated the atomically thin gallium films,i.e.,gallenene sheets,on silicon substrates.[10]Taoet al.realized the epitaxial growth of gallenene monolayer on the Si(111)--Ga template.[11]Ultra-thin Ga islands,analogues of high pressure Ga(III),was found on the Si(111)surface.[14]In particular,gallenene sheets with thickness of one to three atomic layers were intercalated at the interface between epitaxial graphene and silicon carbide through confinement heteroepitaxy.[16]Interestingly,the Ga sheets can be regarded as‘half van der Waals’metal, because they are covalently bonded to the SiC below but present a non-bonded interface to the graphene overlayer.

    In this work,we utilize the hexagonal close-packed metal Cd(0001)thin films as substrates to grow 2D Ga sheets.Compared to the noble metals Au, Ag and Cu, the metal Cd possesses a smaller electronegativity and negative electron affinity.[21,22]Consequently,charge transfer effect between the Ga atoms and Cd(0001)films is expected to be very weak.It is found that the first atomic layer of Ga deposited on Cd(0001)surface forms the pseudomorphic 1×1 phase.Depending on the substrate temperature, Ga films consist of either fractal island when deposited at a low temperature (100 K), or compact islands after room-temperature annealing.Further increasing the Ga coverage leads to Ga multilayers with the pseudomorphic 1×1 lattice.Scanning tunneling spectroscopy(STS)measurements demonstrate that Ga monolayer exhibits metallic behavior.Density functional theory (DFT) calculations indicate that the hcp-hollow site of Cd(0001)is the most energetically favorable site of Ga atoms.

    2.Methods

    2.1.Sample preparation and characterizations

    The experiments were performed in a Unisoku low temperature STM system with the base pressure less than 2.0×10?10Torr.The clean Si(111)-7×7 surface was prepared by flashing the sample to~1500 K for several seconds.A smooth Cd(0001) thin film of 15 monolayers (ML) was obtained by depositing Cd atoms on the Si(111)-7×7 surface at room temperature.Ga atoms were thermally sublimated from a boron nitride crucible heated to 930 K.During the deposition of Ga atoms, the temperature of Cd(0001) substrate was kept at~100 K.An electrochemically etched tungsten tip after electron-beam heating was utilized for STM imaging.STS measurements were performed with the lock-in technique by applying a small modulation of 20 mV to the applied voltage at 373 Hz at 77 K.The STM images were analyzed using Gwyddion software.[23]

    2.2.Density functional theory calculations

    Optimization of geometric structures has been calculated using the generalized gradient approximation (GGA)of Perdew–Burke–Ernzerhof formula[24]and the normconserving Vanderbilt pseudopotentials[25]within the QUANTUM ESPRESSO package.[26]The slab model was constructed by consisting of Ga atomic layers,six Cd atomic layers, and a vacuum layer of 20 ?A was inserted to avoid the coupling between atomic layers along thecaxis.After the convergence test, the kinetic-energy cutoff and the chargedensity cutoff were chosen to be 60 Ry and 480 Ry, respectively.The charge densities were calculated on an unshifted mesh of 17×17×2 points in combination with a marzarivanderbilt smearing of 0.02 Ry.[27]The geometry optimization was performed until all components of all forces became less than 1×10?4Ry/Bohr.Based on the optimized structure,we carried out band structure calculations.

    3.Results and discussion

    We utilized the smooth Cd(0001)films as the substrate to grow the ultrathin Ga films.Figure 1(a)show the morphology of the as-grown Cd(0001) films with a thickness of 15 ML.The smooth Cd(0001) films show flat terraces (~200 nm width).The height profile along the blue line in panel (a)reveals a step height of 2.8±0.1 ?A in Fig.1(b), which is consistent with the interlayer spacing of bulk Cd along the[0001] direction.[21]From the high-resolution STM image in Fig.1(c), the in-plane structure of Cd(0001) films exhibits a hexagonal lattice constant ofc0=3.0±0.1 ?A, also consistent with that(0001)plane of bulk Cd.Figure 1(d)shows the atomic model of Cd(0001) films, where four high-symmetric sites are marked as FCC (FCC-hollow), HCP (HCP-hollow),bridge,and top,respectively.

    Fig.1.(a) Large-scale STM image of the Cd(0001) thin film grown on Si(111)-7×7(U =3.0 V,It =20 pA).(b)Height profile along the blue line in panel(a),showing the step height of 2.8±0.1 ?A.(c)Highresolution STM image of the Cd(0001)thin film showing a hexagonal lattice(U=0.65 V,It=35 pA).(d)Atomic model of the Cd(0001)surface.light Orange balls represent Cd atoms.The high-symmetric sites are marked as FCC(FCC-hollow),HCP(HCP-hollow),bridge,and top.

    Fig.2.Low-temperature growth of Ga sheets on Cd(0001).(a)Ramified Ga islands formed on the Cd(0001)surface at 100 K(Θ =0.7 ML,U =2.0 V,It =20 pA).(b)Close-up view of a ramified Ga island and several small Ga islands (U =0.9 V, It =20 pA).Inset: the atomicresolution STM image of monolayer Ga island(U=0.35 V,It=20 pA).(c)Height profile along the blue line in(b)showing the apparent heights of a ramified Ga island and compact Ga islands.(d)Height distribution of the Ga islands appearring in the upper terrace of (a), showing two preferred heights(B and C peaks).

    Firstly, we studied the low-temperature growth of Ga sheets on Cd(0001).In the submonolayer regime, 0.7 ML of Ga atoms was deposited onto the Cd(0001)surface,which was kept at~100 K.It was observed that the Ga atoms aggregate into large ramified islands with flat tops, as shown Fig.2(a).Nearby the substrate steps there exist several stripe-like Ga islands.Based on the nucleation and aggregation theory, the formation of ramified islands with fractal-like shape can be attributed to the suppressed edge diffusion and corner crossing of adatoms around an island.[2]However,close inspection of the island shapes indicates that the islands exhibit a large branch width (~20 nm).Furthermore, the primary branch edges are rather smooth without sub-branches.It means that the deposition temperature of 100 K is not low enough to completely inhibit the edge diffusion and corner crossing of Ga adatoms.

    From the close-up view in Fig.2(b),it is observed that the ramified Ga islands consist of branches with different heights.The highest branches show a height of 8.7±0.1 ?A,while the lowest branches have a height of 2.9±0.1 ?A[Fig.2(c)], corresponding to three-layer and monolayer of Ga, respectively.From the height distribution shown in Fig.2(d), it can be found that the flat-top Ga islands have two preferred heights of 5.6±0.2 ?A(peak B)and 8.9±0.2 ?A(peak C),corresponding to two and three layers of Ga, respectively.Among these Ga islands,those of three-layer height are the most abundant.We notice that this growth mode is similar to the previous‘electronic growth’ mode observed in the Pb and Ag films grown on Si(111)or GaAs.[28–30]The mechanism of electronic growth is attributed to the competition between quantum size effect in the metal films and charge transfer occurring at the interface.[31]

    The inset of Fig.2(b)is a high-resolution STM image of the monolayer Ga island.It exhibits a hexagonal lattice with periodicity of 3.0±0.1 ?A, which is identical to the lattice of Cd(0001) surface.It means that the first Ga layer is pseudomorphic to the Cd(0001) substrate.The elastic strain energy arising from lattice misfit is accommodated by the pseudomorphic 1×1 structure.Moreover, we noticed that the second layer and third layer of ramified Ga islands also reveal the pseudomorphic 1×1 structure.

    Annealing the low-temperature deposited Ga films(0.5 ML)to room temperature leads to formation of compact Ga islands, as shown in Fig.3(a).It is found that the compact islands are hundreds of nanometers in size, and the island edges are very smooth but not straight.The shape change from the small fractal-like island to large compact island can be attributed to the coalescence and reshaping of the small ramified islands in the process of island merging.Moreover,we notice a striking phenomenon that most of the compact Ga islands show the thickness of a single atomic layer, and only a few islands are two atomic layers thick.As shown in Fig.3(b), the compact Ga islands still maintain the pseudomorphic 1×1 structure as in the case of ramified islands.At the high coverage regime(1.1 ML),as shown in the STM images of Fig.3(c),the first-layer islands show a compact shape with smooth edges,the second-layer islands appear on top of the first layer.When the Ga coverage is increased to 2.5 ML,both the second-layer islands and third-layer islands appear simultaneously on top of the first layer,as shown in Fig.3(d).It was also observed that the third Ga layer still show the same pseudomorphic 1×1 lattice as the first and second Ga layers.

    Fig.3.Formation of compact Ga islands after room-temperature annealing.(a)STM image of the compact Ga islands formed on Cd(0001)surface(Θ =0.5 ML,U =2.0 V, It =20 pA).(b) Atomic-resolution STM image of the monolayer Ga island (U =0.35 V, It =20 pA).(c) Morphology of 1.1 ML of Ga sheets formed on Cd(0001),(U =1.5 V,It=20 pA).(d)Topographic image of 2.5 ML of Ga sheets grown on Cd(0001), (U =2.0 V,It =20 pA).Inset: the pseudomorphic 1×1 structure observed in the third layer of Ga(2.5 nm×2.5 nm,0.5 V,25 pA).

    These results mean that room-temperature annealing leads to the transition from electronic growth to conventional SK growth, implying that the observed electronic growth at a low temperature is metastable against the thermal annealing.We notice that such metastability of electronic growth was also observed in the Ag films grown on Si(111),where the plateau islands evolve into huge mounds and pyramids upon annealing to 450 K.[28]

    In Table 1, we summarize the reported lattice constants of monolayer Ga grown on different substrates.It can be found that the Ga films prefer to adopt the same periodicity as the substrates, i.e., pseudomorphic phase, when grown on GaN(0001) and Cd(0001), or intercalated between SiC and graphene.On the other hand,it can be found that the in-plane lattice constants of Ga sheets can be varied significantly from 2.72 ?A to 3.18 ?A.In addition, the adsorption height between 2D Ga monolayer and substrate surfaces is closed to the interlayer height of the GaN(0001), SiC(0001), and Cd(0001)substrates,respectively.Hence,the substrate structures play a crucial role for the epitaxial growth of Ga films.

    We perform DFT calculations for the adsorption energy of Ga monolayer on the Cd(0001) surface to get insight into the experimental results.The adsorption energyEadsis used to evaluate the strength of the adsorbate-substrate interaction.Herein,Eadsis defined as the mean adsorption energy per adatom,

    whereEGa/Cd(0001)andECd(0001)represent the total energy of the Cd(0001)surface after and before Ga adatoms adsorption;nis the number of adatom;andEGais the energy of an isolated Ga atom.According to the definition, the negative value of the adsorption energy represents exothermic, and vice versa.In order to determine the most stable adsorption sites of Ga atoms, relative location models, which are denoted by top,bridge, FCC-hollow, and HCP-hollow sites, have been established for computing the lowest adsorption energy of system.After all geometries have been optimized, the calculated results are shown in Table 2.All energies of four adsorption sites are negative,in particular,the hcp-hollow site is the most energetically favorable site for Ga atom on Cd(0001)because of the adsorption energy of about?0.4 eV.The calculated lattice constant of the 2D Ga layer (c=2.99 ?A) and the adsorption height(h=2.68 ?A)are in good agreement with the experimental results.Additionally,the calculated Ga–Ga bond length of 2D Ga(2.99 ?A)is closed to that ofγ-Ga crystal(2.90 ?A).[32]

    Table 1.Lattice constants of 2D Ga grown on different substrates.

    Table 2.Summary of the calculated Ga adsorption energies,lattice constants(c)of Ga monolayer and height of Ga adatom(h)for the different sites of the Cd(0001)surface.

    Fig.4.Differential conductance spectra acquired in Ga film.(a)Three differential tunneling conductance (dI/dV) spectra (U =0.5 V,It =170 pA) acquired at different positions of the monolayer Ga island:island short-edge(A),island center(B),and island long-edge(C),respectively.Inset: STM image of monolayer Ga island where STS spectra were acquired(U=1 V,It=20 pA).(b)The evolution of dI/dV spectra with layer thickness.Monolayer(U =0.5 V,It =170 pA),bilayer(U =0.8 V,It=150 pA),trilayer(U =0.5 V,It=370 pA).

    We carry out the STS measurement on top of a monolayer Ga island(Fig.4(a))to derive the electronic properties of the Ga sheets.Three differential tunneling conductance (dI/dV)spectra are recorded at different sites of the island: island short-edge (A), island center (B), and island long-edge (C),respectively,as shown in Fig.4(a).All spectra include the two peaks at?0.21 eV and+0.2 eV around Fermi level(EF),reflecting spatial homogeneity of the electronic states.A V-type dip is always observed in the energetic range of?0.21 eV to 0.2 eV,similar to the STS spectra of the high pressure Ga(III)(001) surface.[14]The evolution of dI/dVspectra with layer thickness is shown in Fig.4(b).The STS of Ga monolayer is influenced by the Cd(0001) substrate, which appears the characteristic peak(black arrow)of substrate.[21]However,the STS of bilayer exists the Ga characteristic peak (red arrow)near Fermi level,indicating a weaker influence from substrate.As the Ga films become three layers,this peak moves towards the low energy(blue arrow).These results are consistent with DFT calculations.

    In order to gain insight into the electronic properties of Ga atomic layers on Cd(0001), the band structures are computed using DFT,as illustrated in Fig.5(a).According to the pseudomorphic relationship between the lattices of monolayer Ga and the Cd(0001) substrate, the high-symmetry pointsΓ,M,andKare chosen for describing the energy band properties of hexagonal lattice,resembling to that of Ga atomic layers on SiC(0001).[16]Obviously, the energy bands from monolayer to trilayer become steeper and steeper,indicating the delocalization enhancement of Ga electrons in the thicker film.The contribution of Ga atoms to band structure becomes dominating.This thickness-dependent behavior can be confirmed by the enlarged intensities of local density of states nearEF.Furthermore,to understand the charge transfer between Ga atomic layers and Cd(0001) surface, the charge density difference is calculated based on the geometry optimization.The charge density displacement(Δρ(r))induced by the adatom adsorption is analyzed:

    whereρa(bǔ)ds/suris the charge density of the adsorbate system,ρa(bǔ)dsis the charge density of the isolated adlayer, andρsuris the charge density of the clean surface.As shown in Fig.5(b),most of the charge accumulation appears in the interface region between Ga and Cd atomic layers, with a small amount dispersed between Ga adatoms due to the interfacial Coulomb repulsion for monolayer Ga.The charge accumulation of interface region decreases,as the number of Ga layers increases.In order to further illustrate charge distribution, planar average of the charge density displacement for Ga/Cd(0001) system alongzaxis is displayed in Fig.5(c).The largest change in the electron density distribution occurs in the interface between Ga adatoms and the Cd(0001) surface, resembling the results of the charge density difference.Thus, the charges of 0.033e, 0.031e, and 0.013eare transferred to Ga monolayer,bilayer,and trilayer,respectively.It is revealed that the interfacial charge transfers contribute to the electronic growth of Ga films.

    Fig.5.(a)The contribution of each atom in the band structure.The purple circle and green triangle indicate the contribution of Cd and Ga atoms,respectively.The size of the symbols represents the strength of the contribution.The Fermi level is set to be zero energy.(b)Side view of charge density differences with iso-surface value of 1.5×10?3 e/Bohr3 of Ga atomic layers on Cd(0001).Yellow and blue regions indicate charge accumulation and depletion,respectively.(c)Planar average of the charge density displacement for Ga/Cd(0001)system.

    4.Conclusion

    In summary,pseudomorphic growths have been observed in the monolayer, bilayer, and trilayer of Ga sheets on Cd(0001).Depending on the substrate temperature, Ga islands have a ramified shape at low temperature,and a compact shape after room-temperature annealing.Ga islands reveal a preferred three atomic layer at a low coverage,which implies that the formation of Ga islands follows the electronic growth.Moreover,the room-temperature annealing leads to the transition from electronic growth to conventional SK growth.DFT calculations demonstrate that all the interfacial Ga atoms occupy the energetically favorable hcp-hollow sites of the substrate.STS and DFT calculations demonstrate the metallic nature of Ga monolayer.The charge is transferred from the Cd(0001) surface to the Ga atomic layers, revealing that the interfacial charge transfers contribute to the electronic growth of Ga films.Our finding sheds important light on fabrication of ultrathin Ga films on metal substrates with novel physical properties.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.11874304 and 11574253).

    中文乱码字字幕精品一区二区三区| 一级毛片黄色毛片免费观看视频| 一区二区三区精品91| 免费不卡的大黄色大毛片视频在线观看| 观看美女的网站| 韩国av在线不卡| 99热这里只有是精品50| 亚洲国产高清在线一区二区三| 亚洲av成人精品一二三区| 偷拍熟女少妇极品色| 黄色视频在线播放观看不卡| 国产av一区二区精品久久 | 搡老乐熟女国产| 99久国产av精品国产电影| 国产在线一区二区三区精| 亚洲国产日韩一区二区| 欧美精品一区二区免费开放| 最近中文字幕高清免费大全6| 少妇熟女欧美另类| 亚洲性久久影院| 中文天堂在线官网| 亚洲一级一片aⅴ在线观看| 美女福利国产在线 | 亚洲av日韩在线播放| 少妇丰满av| 人人妻人人添人人爽欧美一区卜 | 久久久久久久久久人人人人人人| 色婷婷av一区二区三区视频| 精品久久久久久久末码| 丝袜喷水一区| 纵有疾风起免费观看全集完整版| 国国产精品蜜臀av免费| 免费在线观看成人毛片| 国产探花极品一区二区| 亚洲成人中文字幕在线播放| 美女福利国产在线 | 欧美精品一区二区免费开放| 免费观看无遮挡的男女| 直男gayav资源| 女性生殖器流出的白浆| 一级毛片 在线播放| 欧美xxxx黑人xx丫x性爽| 99热这里只有精品一区| 国产有黄有色有爽视频| 日日撸夜夜添| 能在线免费看毛片的网站| 国产深夜福利视频在线观看| 一级毛片黄色毛片免费观看视频| 精品久久国产蜜桃| 狂野欧美白嫩少妇大欣赏| 精品视频人人做人人爽| 汤姆久久久久久久影院中文字幕| 免费大片18禁| 内地一区二区视频在线| 日本免费在线观看一区| 搡女人真爽免费视频火全软件| 高清不卡的av网站| 精品99又大又爽又粗少妇毛片| 久久鲁丝午夜福利片| 五月伊人婷婷丁香| 欧美成人一区二区免费高清观看| 又黄又爽又刺激的免费视频.| 亚洲成人av在线免费| 美女国产视频在线观看| videossex国产| 亚洲图色成人| 精品熟女少妇av免费看| 免费久久久久久久精品成人欧美视频 | 久热久热在线精品观看| .国产精品久久| 国产精品秋霞免费鲁丝片| 国产成人a∨麻豆精品| 国产爽快片一区二区三区| 伦理电影大哥的女人| 男女下面进入的视频免费午夜| 日日摸夜夜添夜夜爱| 久久久久久久大尺度免费视频| 国产精品一区二区三区四区免费观看| 高清日韩中文字幕在线| a 毛片基地| 亚洲人成网站高清观看| 岛国毛片在线播放| 精品人妻偷拍中文字幕| 中文欧美无线码| 精品人妻视频免费看| 哪个播放器可以免费观看大片| 国产一区二区三区av在线| 日本与韩国留学比较| 国内揄拍国产精品人妻在线| 亚洲怡红院男人天堂| 国产欧美另类精品又又久久亚洲欧美| 久久影院123| 在线观看免费高清a一片| 午夜福利影视在线免费观看| 国产人妻一区二区三区在| 免费黄色在线免费观看| av视频免费观看在线观看| 午夜免费观看性视频| 亚洲av成人精品一区久久| 国产高清三级在线| 久久国产精品大桥未久av | 大片免费播放器 马上看| 又爽又黄a免费视频| 高清午夜精品一区二区三区| 欧美另类一区| 久久久久久久国产电影| 我的老师免费观看完整版| 亚洲自偷自拍三级| 色视频www国产| 在线精品无人区一区二区三 | 日韩电影二区| 免费观看a级毛片全部| 国产av国产精品国产| 成年av动漫网址| 欧美日韩综合久久久久久| 一本色道久久久久久精品综合| 男人和女人高潮做爰伦理| 观看免费一级毛片| 肉色欧美久久久久久久蜜桃| 国产精品一区二区在线不卡| 国产在线一区二区三区精| 国产免费福利视频在线观看| 99九九线精品视频在线观看视频| 久久久久久久大尺度免费视频| 黑丝袜美女国产一区| 爱豆传媒免费全集在线观看| 青春草国产在线视频| 亚洲国产日韩一区二区| 又粗又硬又长又爽又黄的视频| 亚洲欧美日韩另类电影网站 | 成人特级av手机在线观看| a级毛色黄片| 岛国毛片在线播放| 有码 亚洲区| 青春草国产在线视频| 伦理电影大哥的女人| 国产精品国产三级国产av玫瑰| 亚洲精品日本国产第一区| 小蜜桃在线观看免费完整版高清| 亚洲欧美成人综合另类久久久| 亚洲精品国产av成人精品| 国产淫语在线视频| 欧美日韩精品成人综合77777| 男男h啪啪无遮挡| 久久久久久久亚洲中文字幕| 国产一区二区三区av在线| 18禁在线无遮挡免费观看视频| 免费少妇av软件| 婷婷色麻豆天堂久久| 久久97久久精品| 国产亚洲av片在线观看秒播厂| 交换朋友夫妻互换小说| 亚洲欧美日韩卡通动漫| 男女无遮挡免费网站观看| 2022亚洲国产成人精品| 亚洲成人手机| 国产又色又爽无遮挡免| 99久久中文字幕三级久久日本| 国产美女午夜福利| 国产在线视频一区二区| 欧美精品国产亚洲| 三级国产精品片| 人人妻人人澡人人爽人人夜夜| 亚洲精品色激情综合| 51国产日韩欧美| 久久久欧美国产精品| 欧美日韩精品成人综合77777| 亚洲精品国产av成人精品| 亚洲人成网站在线观看播放| 亚洲伊人久久精品综合| 免费在线观看成人毛片| 欧美xxⅹ黑人| 我要看日韩黄色一级片| 久久久a久久爽久久v久久| 亚洲激情五月婷婷啪啪| 最后的刺客免费高清国语| 亚洲丝袜综合中文字幕| 一区二区av电影网| 韩国高清视频一区二区三区| 亚洲第一区二区三区不卡| 男女国产视频网站| av在线app专区| 国产永久视频网站| 一级毛片我不卡| 国产在线男女| 久久久成人免费电影| 最近2019中文字幕mv第一页| 国产黄片美女视频| 成人影院久久| videos熟女内射| 日韩一本色道免费dvd| 亚洲,一卡二卡三卡| 美女中出高潮动态图| 中文欧美无线码| 婷婷色综合www| 在线播放无遮挡| 成人国产麻豆网| 女性被躁到高潮视频| 精品少妇黑人巨大在线播放| 国产男人的电影天堂91| 国产久久久一区二区三区| 亚洲精品aⅴ在线观看| 在线观看美女被高潮喷水网站| 免费黄频网站在线观看国产| 亚洲成人中文字幕在线播放| 国产老妇伦熟女老妇高清| 99re6热这里在线精品视频| 18禁裸乳无遮挡动漫免费视频| 国产精品国产三级国产专区5o| 大陆偷拍与自拍| av一本久久久久| 九九爱精品视频在线观看| 国内少妇人妻偷人精品xxx网站| 免费观看无遮挡的男女| 中国美白少妇内射xxxbb| 十分钟在线观看高清视频www | 丝瓜视频免费看黄片| 国产爱豆传媒在线观看| 性色avwww在线观看| 欧美高清成人免费视频www| 欧美bdsm另类| 99久久综合免费| 成年av动漫网址| 亚洲av电影在线观看一区二区三区| 久久久色成人| 欧美激情国产日韩精品一区| 欧美精品一区二区免费开放| 王馨瑶露胸无遮挡在线观看| 夜夜爽夜夜爽视频| 在线看a的网站| 欧美国产精品一级二级三级 | 99久国产av精品国产电影| a级一级毛片免费在线观看| 国产黄片美女视频| 亚洲真实伦在线观看| 一二三四中文在线观看免费高清| 成年av动漫网址| 插逼视频在线观看| 亚洲国产欧美在线一区| 少妇人妻久久综合中文| 国产精品爽爽va在线观看网站| 一本久久精品| 99久久人妻综合| 高清视频免费观看一区二区| 国产亚洲5aaaaa淫片| 日韩中文字幕视频在线看片 | 男女免费视频国产| 精品久久久久久久久亚洲| 久久青草综合色| 建设人人有责人人尽责人人享有的 | 亚洲最大成人中文| 26uuu在线亚洲综合色| 王馨瑶露胸无遮挡在线观看| 亚洲欧美日韩东京热| 多毛熟女@视频| 涩涩av久久男人的天堂| 日本色播在线视频| 水蜜桃什么品种好| av天堂中文字幕网| 国产成人免费无遮挡视频| 成人午夜精彩视频在线观看| 日韩中文字幕视频在线看片 | 高清av免费在线| 99久久人妻综合| 国产精品无大码| 精品人妻熟女av久视频| 1000部很黄的大片| 亚洲综合精品二区| 波野结衣二区三区在线| 一级二级三级毛片免费看| 国产免费又黄又爽又色| av免费在线看不卡| av线在线观看网站| 最新中文字幕久久久久| 亚洲av不卡在线观看| 男女边摸边吃奶| 一本一本综合久久| 日本免费在线观看一区| 18禁裸乳无遮挡免费网站照片| 内射极品少妇av片p| 国产男女内射视频| tube8黄色片| 国内揄拍国产精品人妻在线| 午夜精品国产一区二区电影| 精华霜和精华液先用哪个| 国产片特级美女逼逼视频| av天堂中文字幕网| 国产免费一区二区三区四区乱码| 国产精品一区二区三区四区免费观看| 久久精品久久精品一区二区三区| 亚洲在久久综合| 一级a做视频免费观看| 一个人免费看片子| 亚洲欧洲国产日韩| 欧美高清性xxxxhd video| 国产真实伦视频高清在线观看| 51国产日韩欧美| 国产成人精品久久久久久| 国模一区二区三区四区视频| 伊人久久精品亚洲午夜| 一级毛片久久久久久久久女| 国产又色又爽无遮挡免| 日韩强制内射视频| 午夜视频国产福利| av一本久久久久| 中文字幕久久专区| 国产男人的电影天堂91| 国产色婷婷99| 2018国产大陆天天弄谢| 亚洲三级黄色毛片| 一本—道久久a久久精品蜜桃钙片| 欧美极品一区二区三区四区| 黄片wwwwww| 免费看av在线观看网站| 精品人妻视频免费看| 看十八女毛片水多多多| 啦啦啦在线观看免费高清www| 性色av一级| 全区人妻精品视频| 成人漫画全彩无遮挡| 精品亚洲成a人片在线观看 | 99热全是精品| 国产av精品麻豆| 日本爱情动作片www.在线观看| 99久久精品一区二区三区| 亚洲av.av天堂| 嘟嘟电影网在线观看| 日本黄大片高清| 国产精品一区二区在线不卡| 亚洲国产精品国产精品| 国产高潮美女av| 啦啦啦中文免费视频观看日本| 亚洲国产精品国产精品| 中文天堂在线官网| 黄色怎么调成土黄色| 啦啦啦啦在线视频资源| 国产av码专区亚洲av| 日韩中文字幕视频在线看片 | 亚洲欧美一区二区三区黑人 | 亚洲成人中文字幕在线播放| 91在线精品国自产拍蜜月| 高清在线视频一区二区三区| 三级国产精品欧美在线观看| 爱豆传媒免费全集在线观看| 国产亚洲一区二区精品| 国产熟女欧美一区二区| 久久久精品94久久精品| 内地一区二区视频在线| 日韩人妻高清精品专区| 春色校园在线视频观看| 亚洲最大成人中文| 亚洲国产欧美人成| 秋霞伦理黄片| 黑人猛操日本美女一级片| 午夜免费观看性视频| 精品久久久久久久久av| 人妻 亚洲 视频| 一级片'在线观看视频| 日本欧美视频一区| 有码 亚洲区| 99久久精品一区二区三区| 一级a做视频免费观看| 成年女人在线观看亚洲视频| 国产亚洲午夜精品一区二区久久| 亚洲精华国产精华液的使用体验| 欧美性感艳星| 日韩,欧美,国产一区二区三区| 嫩草影院新地址| 国产成人freesex在线| 亚洲精品久久午夜乱码| 女人久久www免费人成看片| 亚洲,一卡二卡三卡| 欧美激情极品国产一区二区三区 | 亚洲欧美精品自产自拍| 女性被躁到高潮视频| 午夜福利网站1000一区二区三区| 精品久久久久久久末码| 国产精品99久久久久久久久| av又黄又爽大尺度在线免费看| 久久午夜福利片| 一级毛片久久久久久久久女| 亚洲国产毛片av蜜桃av| 91aial.com中文字幕在线观看| 中文字幕精品免费在线观看视频 | 国产精品一区二区在线观看99| 日韩强制内射视频| 国产日韩欧美在线精品| 少妇丰满av| 日韩一区二区三区影片| 夫妻性生交免费视频一级片| 啦啦啦在线观看免费高清www| 国产在线一区二区三区精| 国产黄频视频在线观看| 女性被躁到高潮视频| 日本黄大片高清| 亚洲精品国产av成人精品| 免费看不卡的av| 国产成人免费观看mmmm| 亚洲欧美日韩另类电影网站 | 亚州av有码| 亚洲精品中文字幕在线视频 | 少妇高潮的动态图| 亚洲欧洲日产国产| 精品亚洲成a人片在线观看 | 特大巨黑吊av在线直播| 91久久精品电影网| 能在线免费看毛片的网站| 日韩国内少妇激情av| 亚洲内射少妇av| 亚洲av在线观看美女高潮| 久久99精品国语久久久| 男人和女人高潮做爰伦理| 波野结衣二区三区在线| 国产综合精华液| 亚洲av中文字字幕乱码综合| 日韩大片免费观看网站| 狠狠精品人妻久久久久久综合| 亚洲美女黄色视频免费看| 日韩 亚洲 欧美在线| 中文天堂在线官网| av女优亚洲男人天堂| 高清午夜精品一区二区三区| 97热精品久久久久久| 黄色配什么色好看| 噜噜噜噜噜久久久久久91| 91精品国产国语对白视频| 久久6这里有精品| 一个人看视频在线观看www免费| 亚洲国产av新网站| 插阴视频在线观看视频| 日日摸夜夜添夜夜添av毛片| 亚洲av福利一区| 伊人久久国产一区二区| 日本黄大片高清| 亚洲欧美日韩卡通动漫| 亚洲欧美成人精品一区二区| 国产精品人妻久久久影院| av在线app专区| 日韩一本色道免费dvd| 国产老妇伦熟女老妇高清| 九草在线视频观看| 啦啦啦视频在线资源免费观看| 国产毛片在线视频| 久久人人爽av亚洲精品天堂 | 色婷婷av一区二区三区视频| 欧美高清性xxxxhd video| 日本色播在线视频| 青春草国产在线视频| 久久精品人妻少妇| 熟女人妻精品中文字幕| 亚洲精品aⅴ在线观看| 一本一本综合久久| 国产有黄有色有爽视频| 18禁裸乳无遮挡免费网站照片| 免费av不卡在线播放| 人人妻人人添人人爽欧美一区卜 | 久久99精品国语久久久| 亚洲精品第二区| 九九在线视频观看精品| 国产高清有码在线观看视频| 国产成人午夜福利电影在线观看| 久久久久国产精品人妻一区二区| 国产av码专区亚洲av| 91久久精品国产一区二区成人| 久久久欧美国产精品| 国产国拍精品亚洲av在线观看| 最近最新中文字幕大全电影3| 精品久久久久久电影网| 夜夜爽夜夜爽视频| 超碰av人人做人人爽久久| 亚洲成色77777| 日韩亚洲欧美综合| 国产精品福利在线免费观看| 欧美高清性xxxxhd video| 在线观看三级黄色| 欧美激情国产日韩精品一区| 插阴视频在线观看视频| 日日啪夜夜撸| 久久精品国产a三级三级三级| 自拍欧美九色日韩亚洲蝌蚪91 | 自拍偷自拍亚洲精品老妇| 精品99又大又爽又粗少妇毛片| 日韩中文字幕视频在线看片 | videossex国产| av网站免费在线观看视频| 色视频www国产| 菩萨蛮人人尽说江南好唐韦庄| 久久精品熟女亚洲av麻豆精品| 色视频在线一区二区三区| 欧美最新免费一区二区三区| 亚洲欧美一区二区三区国产| 观看av在线不卡| 免费黄频网站在线观看国产| 中国国产av一级| .国产精品久久| 国产精品一区www在线观看| 亚洲精品日韩av片在线观看| 国产一区有黄有色的免费视频| 中国国产av一级| 亚洲成色77777| 黄色视频在线播放观看不卡| 精品国产乱码久久久久久小说| 亚洲第一av免费看| 久久久久久久精品精品| 天堂中文最新版在线下载| a级毛色黄片| 亚洲综合色惰| 亚洲精品一二三| 99久久综合免费| 精品人妻偷拍中文字幕| 狠狠精品人妻久久久久久综合| 中文精品一卡2卡3卡4更新| 国产精品不卡视频一区二区| 大片免费播放器 马上看| 22中文网久久字幕| 熟妇人妻不卡中文字幕| 精品久久久久久久久av| 女人久久www免费人成看片| 国产精品久久久久久精品电影小说 | 亚洲婷婷狠狠爱综合网| 国产乱人视频| 老熟女久久久| 伦理电影免费视频| 亚洲经典国产精华液单| 国产美女午夜福利| 日本wwww免费看| 国产av一区二区精品久久 | 国产精品99久久久久久久久| 免费观看的影片在线观看| 亚洲美女黄色视频免费看| 丝袜喷水一区| 色视频在线一区二区三区| 天堂中文最新版在线下载| 亚洲精品中文字幕在线视频 | 综合色丁香网| 国产成人精品久久久久久| 国产精品伦人一区二区| 国产一区亚洲一区在线观看| 亚洲,欧美,日韩| 一本久久精品| 亚洲欧美日韩无卡精品| 精品一区二区三卡| 91久久精品国产一区二区成人| 男的添女的下面高潮视频| 内地一区二区视频在线| 伦理电影免费视频| 人体艺术视频欧美日本| 热re99久久精品国产66热6| 国产精品国产三级国产av玫瑰| 国产成人一区二区在线| 99久国产av精品国产电影| 免费观看a级毛片全部| 大又大粗又爽又黄少妇毛片口| 久久6这里有精品| 国内少妇人妻偷人精品xxx网站| 欧美成人午夜免费资源| 国产亚洲最大av| 老司机影院毛片| 国产精品国产三级国产专区5o| 最近最新中文字幕免费大全7| 人妻一区二区av| 一本一本综合久久| 久久精品久久久久久噜噜老黄| 午夜视频国产福利| 国语对白做爰xxxⅹ性视频网站| av在线观看视频网站免费| 国产高清三级在线| 一区二区三区四区激情视频| 在线观看av片永久免费下载| 伊人久久国产一区二区| 久久综合国产亚洲精品| 我的老师免费观看完整版| 蜜桃久久精品国产亚洲av| 一级毛片电影观看| 国产av码专区亚洲av| 国产一级毛片在线| 夫妻午夜视频| 欧美最新免费一区二区三区| 色视频www国产| 国产精品不卡视频一区二区| 亚洲精品国产av成人精品| 亚洲精品日韩av片在线观看| av专区在线播放| 欧美日韩国产mv在线观看视频 | 久久精品国产a三级三级三级| 久久影院123| 国产精品一区二区性色av| 免费黄网站久久成人精品| 在线观看国产h片| 亚洲国产高清在线一区二区三| 极品教师在线视频| 国产精品免费大片| 国产av精品麻豆| 嘟嘟电影网在线观看| 欧美国产精品一级二级三级 | av又黄又爽大尺度在线免费看| 国产精品一区二区三区四区免费观看| 亚洲欧美日韩另类电影网站 | 99久久人妻综合| 一级毛片久久久久久久久女| 纵有疾风起免费观看全集完整版| 99久久人妻综合| 色视频在线一区二区三区| 国内少妇人妻偷人精品xxx网站| av在线app专区| 国产高清有码在线观看视频| 亚洲精品视频女| 国产 一区 欧美 日韩| 啦啦啦视频在线资源免费观看| 日产精品乱码卡一卡2卡三| 夜夜爽夜夜爽视频| 好男人视频免费观看在线| 黄片无遮挡物在线观看| 国产伦精品一区二区三区四那| 97热精品久久久久久|