• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Crystal Structure, and Electrical Conductivity of Pd-intercalated NbSe2

    2020-05-13 00:48:36HUANGChongZHAOWeiWANGDongBUKejunWANGSishunHUANGFuqiang
    關(guān)鍵詞:趙偉插層八面體

    HUANG Chong, ZHAO Wei, WANG Dong, BU Kejun, WANG Sishun, HUANG Fuqiang,3

    Synthesis, Crystal Structure, and Electrical Conductivity of Pd-intercalated NbSe2

    HUANG Chong1,2, ZHAO Wei1, WANG Dong1, BU Kejun1,2, WANG Sishun1, HUANG Fuqiang1,3

    (1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. State Key Laboratory of Rare Earth Materials Chemistry and Applications and Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China)

    New intercalated compounds PdNbSe2(=0-0.17) were synthesizedsolid-state reaction. They possess the parent structure of 2H-NbSe2and crystalize in the hexagonal space group ofP63/mmc. The intercalated Pd occupies the octahedral position in the van der Waals gaps of 2H-NbSe2. Unit cell parameterincreases linearly with the Pd content, whileis nearly unchanged. The lattice parameter of Pd0.17NbSe2(==0.34611(2) nm,= 1.27004(11) nm) is identified by single crystal X-ray diffraction. The intercalated Pd stabilizes the crystal structure of NbSe2by connecting the adjacent Nb-Se layers with [PdSe6] octahedra and leads to the enhanced thermostability in air. Temperature dependence of electric resistivity reveals that the residual resistivity ratio of PdNbSe2monotonically decreases with addition of the intercalated Pd content. The decreased superconducting critical temperature of PdNbSe2indicates the suppression effect of Pd intercalation on the superconductivity in the host NbSe2.

    PdNbSe2; transition metal dichalcogenide; crystal structure; superconducting

    Layered transition metal dichalcogenides (TMDs) with the general chemical formula MX2(M represents the transition metal and X is the chalcogen) have been widely studied due to their unique physicochemical properties and diverse applications[1-5]. The metallic Group ⅤB TMDs (where M = V, Nb and Ta) are prized for their fascinating electronic properties, such as charge density wave (CDW), superconductivity and Mott transition[6-7]. Among them, 2H-NbSe2is featured with a high superconducting critical temperature (C) of ~7.3 K and a quasi-two-dimensional incommensurate charge density wave (ICDW) with aCDWof ~33 K[8]. Because of the weak van der Waals (vdW) forces connected interlayers in the crystal structure, 2H-NbSe2can be intercalated by various guests, including atoms, ions, and molecules[9].

    Typically, the incorporation of guest metal atoms into the vdW gaps of TMDs could give rise to the crystallographic transformation and change of electronic structure in the intercalated compounds[10]. Magnetic elements (Fe, Co) inserted into the vdW gaps of NbSe2resulted in the formation of superlattice[11-12]. Alkali metal intercalation was found to remove the CDW instability in NbSe2[13]. Recently, noble metal, such as palladium (Pd), was applied to regulate the electronic structure efficiently for the host TMDs. Our group[14]found that Pd modified the band structure of 2H-TaS2through Pd?S bonding to strengthen the interaction of adjacent Ta-S layers, which led to the enhanced conductivity in Pd0.10TaS2. Pd intercalation was reported to increase the e?ective electron- phonon coupling in 2H-TaSe2and enhance theCin PdTaSe2[15]. Considering that the crystal structure of 2H-NbSe2is identical to that of 2H-TaX2(X=S, Se), Pd intercalation should be applicable to 2H-NbSe2and tune the physical properties.

    In this work, a series of new compounds PdNbSe2(=0~0.17) were synthesized and the crystal structure of Pd0.17NbSe2was determined by single X-ray diffraction method in order to investigate the modification of crystal lattice and electrical conductivity in the Pd intercalated NbSe2.

    1 Experimental

    1.1 Preparation of PdxNbSe2

    PdNbSe2crystals were prepared by solid-state reaction. Pd (99.99%), Nb (99.5%) and Se (99.99%) powders were mixed according to stoichiometric ratio, and ground. Then the mixtures were compacted into a pellet and heated in the evacuated (< 0.133 Pa) silica tube at 1173 K for 48 h. Subsequently, the as-obtained samples were reground, re-pelletized and held at 1173 K for 72 h. Then the samples were cooled down by quenching in water. High quality single crystal of Pd0.17NbSe2was obtained by keeping Pd0.17NbSe2powder with CsI (99.9%) at 1173 K for 1 d and slowly cooling down to 823 K for 3 d.

    1.2 Characterization

    Single crystal data collections of Pd0.17NbSe2was conducted on a Bruker D8 QUEST diffractometer equipped with Mo Kα radiation at room temperature. The crystal structure determination and refinement were performed with the APEX3 program. The crystal structure of Pd0.17NbSe2was drawn by using the VESTA program[16]. The morphology and the composition of the Pd0.17NbSe2were investigated by a scanning electron microscope (SEM, JSM6510) coupled with energy dispersive X-ray spectroscopy (EDXS, Oxford Instruments). The micro-structure of Pd0.17NbSe2was uncovered by a high-resolution transmission electron microscope (HRTEM, JEM-2100F) and the selected area electron diffraction (SAED). The valence analysis of the Pd0.17NbSe2was obtained from X-ray photoelectron spectroscope (XPS) carried out on the RBD upgraded PHI-5000C ESCA system (PerkinElmer) with Mg Kα radiation (=51253.6 eV). The binding energy in XPS analysis was corrected by referencing C 1s peak at 284.6 eV. Powder X-ray diffraction (PXRD) data of these PdNbSe2samples were collected by using a Bruker D8QUEST diffractometer equipped with Cu Kαradiation (=0.15405 nm). Thermogravimetric analysis (TG) and differential thermal analysis (DTA) were carried out on a NETZSCH STA449C thermal analyzer for investigating the thermal stability of Pd0.17NbSe2and NbSe2in air. Resistivity of the as-obtained PdNbSe2at different temperatures was executed on a Physical Properties Measurement System (PPMS, Quantum Design). A four-probe method was adopted for measurements of the resistance. More specifically, the powders were pressed into a disk. Silver paste and copper wire acted as the contact electrode and conduct wire, respectively. Normalized resistivity (/300 K)temperature curves were obtained via dividing the measured resistivity () by the resistivity value (300 K) at room temperature.

    2 Results and discussion

    The crystal structure of Pd0.17NbSe2identified by single crystal X-ray diffraction method is shown in Fig. 1(a-b), where the gray, blue, orange spheres represent Pd, Nb, and Se atoms, respectively. The crystal data and structure refinement of Pd0.17NbSe2are given in Table 1. The fractional atomic coordinates and equivalent isotropic displacement parameters are summarized in Table S1. The atomic displacement parameters and the geometric pa rameters are shown in Table S2–S3. The space group of Pd0.17NbSe2is determined to be P63/mmc with lattice parameters of=0.34611(2) nm,=1.27004(11) nm. Pd0.17NbSe2contains one independent Nb site (2), one independent Se site (4) and one independent Pd site (2). Pd0.17NbSe2consists of Nb-Se layer and Pd-Se layer, which are stacked alternately alongaxis. Each Nb atom is coordinated by 6 Se atoms which formed a [NbSe6] triangular prism (Fig. 1(c)). The length of Nb?Se bond in [NbSe6] triangular prism is 0.26006(4) nm which is comparable to 0.25941(5) nm in NbSe2[17]. These [NbSe6] triangular prisms are connected by edge-sharing to form the Nb-Se layer.

    Fig. 1 Crystal structure of Pd0.17NbSe2 along (a) the bc-plane and (b) the ab-plane, (c) [NbSe6] triangular prism in Pd0.17NbSe2, (d) [PdSe6] octahedron in Pd0.17NbSe2

    Table 1 Crystal data and structure refinement of Pd0.17NbSe2

    1=Σ||o|?|c||/Σ|o|,2=[Σ(o2?c2)2/Σ(o2)2]1/2,=1/ [2(o2)+()2+], whereois the observed structure factor,cis thecalculated structure factor,is the standard deviation ofc2, and=(o2+2c2)/3.=[Σ(o2?c2)2/(?)]1/2, whereis the number ofreflections andis the total number of parameters refined.

    Each Pd atom is coordinated by 6 Se atoms to form [PdSe6] octahedron (Fig. 1(d)). The average length of Pd?Se bond in [PdSe6] octahedron is 0.25051(4) nm which is comparable to 0.248602(0) nm of PdSe2[18]. These [PdSe6] octahedra partially fill in the vdW gaps of NbSe2, where the occupation of Pd sites is 17%.

    The Pd0.17NbSe2plate with the size about 5 μm was observed by SEM (Fig. 2(a)). The Pd atoms are in a homogenous dispersion in Pd0.17NbSe2, which is confirmed by the elemental mapping analysis of Pd0.17NbSe2. HRTEM image of Pd0.17NbSe2(Fig. 2(b)) reveals that the lattice fringes with a spacing of 0.301 nm are assigned to (101) plane and (11ˉ1) plane between which the angle is 60°. This result is also verified by the corresponding SAED.

    XPS data was obtained to confirm the valence state variation of the elements in Pd0.17NbSe2. As displayed in Fig. 3(a), the Pd 3d region is the only difference between Pd0.17NbSe2and NbSe2. The Pd 3d region of Pd0.17NbSe2shows two peaks, which locate at the binding energy of 341.95 eV (3d3/2) and 336.70 eV (3d5/2) (Fig. 3(b)). The valance state of Pd in Pd0.17NbSe2is identified as +2 according to these two peaks[14]. There are two peaks locating at 55.27 (Se 3d3/2) and 54.50 eV (Se 3d5/2) in the Se 3d region of Pd0.17NbSe2, similar to those in the Se 3d region of NbSe2(Se 3d3/2at 55.25 eV and Se 3d5/2at 54.49 eV) (Fig. 3(c)). Therefore, the valance state of Se in Pd0.17NbSe2is considered as –2. The Nb 3d region shows a mixture of oxidation states because of the slightly oxidation of the samples (Fig. 3(d))[19]. The peaks locating at 206.93 and 204.20 eV are attributed to the Nb?Se bonding in Pd0.17NbSe2. In comparison with these two peaks in pristine NbSe2(207.01 and 204.25 eV), there is a slight redshift in Pd0.17NbSe2, implying the partial reduction of Nb as a result of Pd intercalation[14].

    Fig. 2 (a) SEM images of Pd0.17NbSe2 and the corresponding elemental mapping analysis, and (b) HRTEM image of Pd0.17NbSe2 along [101ˉ] zone axis with inset showing the corresponding SAED pattern

    Fig. 3 XPS results of Pd0.17NbSe2 and NbSe2

    (a) Survey spectra, (b) Pd 3d spectrum of Pd0.17NbSe2, (c) Se 3d spectrum, and (d) Nb 3d spectrum

    The intercalated amounts of Pd in NbSe2could be variable, resulting in the formation of a series of PdNbSe2. The powder XRD patterns of PdNbSe2are displayed in Fig. 4(a), with the pristine NbSe2as reference. The peaks of Pd0.17NbSe2are well matched to the simulated one obtained from single crystal data, which suggests a high degree of phase purity. The NbSe2still maintains its space group (P63/mmc) after Pd intercalation. The (004) peak gradually shifts to a lower angle compared with 2H-NbSe2. Furthermore, the lattice parameterundergoes a negligible change. In a sharp contrast, lattice parameterincreases remarkably because of Pd intercalation enlarging the interlayer space of NbSe2(Fig. 4(b)).

    The influence of Pd intercalation on the thermostability of the samples was investigated. As clearly seen in Fig. 5(a), the weight of NbSe2begins to increase slightly at 559 K due to the formation of Nb2Se4O13[20]. Subsequently, TG curve of NbSe2suffers a dramatic decrease because of the complete oxidation of NbSe2to Nb2O5. However, the process of mass increase could not be found in Pd0.17NbSe2, suggesting that the intercalated Pd enhances the thermostability of NbSe2with a higher oxidizing temperature. According to DTA curves (Fig. 5(b)), the oxidizing temperature of Pd0.17NbSe2is 608 K, higher than NbSe2(544 K). The enhanced thermostability in air could stem from the intercalated Pd which stabilizes the crystal structure of NbSe2by connecting the adjacent Nb-Se layers[11,21-22].

    The electrical conductivity of PdNbSe2was measured by PPMS. The resistivity of PdNbSe2increases with the rising temperature (Fig. S1) exhibiting metallic behavior. Moreover, the residual resistivity ratio () [(resistivity at 300 K)/(resistivity just aboveC)] for the Pd0.17NbSe2is ~1.09, extremely lower than NbSe2(~7.67) (Fig. 6(a)). The poorin Pd0.17NbSe2indicates that the intercalated Pd may be an electronically disruptive dopant in NbSe2, which is similar to the copper (Cu) in CuNbSe2and the gallium (Ga) in GaNbSe2[8,23]. All of the PdNbSe2samples exhibit a sharp decrease at low temperature region from 8 K to 2K, indicating that the superconductivity occurs in these samples. Fig. 6(b) shows that theCdecreases with a higher intercalated amount of Pd (7.4 K for NbSe2and 2.7 K for Pd0.17NbSe2). Eventually, the zero resistivity cannot be observed at 2 K in Pd0.17NbSe2. Therefore, it declares that the intercalated Pd has a negative effect on the superconductivity in NbSe2. Similar phenomena are also found in CuNbSe2, GaNbSe2, FeNbSe2and AlNbSe2[8,23-24]. The reason for this might be that Pd intercalation disrupts the coherence of the CDW, and suppresses the pairing channel which contributes to the higherCin NbSe2[8].

    Fig. 4 (a) Powder XRD patterns of PdxNbSe2 (x=0, 0.05, 0.10, 0.15, 0.17), (b) composition dependence of the lattice parameters a and c for PdxNbSe2 (0≤x≤0.17)

    Fig. 5 (a) TG and (b) DTA curves of Pd0.17NbSe2 (blue) and NbSe2 (red)

    Fig. 6 (a) Temperature dependence of the RRR (ρ/ρ300 K) for PdxNbSe2 (0≤x≤0.17) with inset showing enlarged temperature regionof the superconducting transition, (b) composition dependence of TC

    3 Conclusions

    In summary, we introduced noble metal Pd into the vdW gaps of NbSe2, and synthesized a series of new intercalated compounds PdNbSe2. The Pd0.17NbSe2crystalizes in hexagonal structure with cell parameter= 0.34611(2) nm,=1.27004(11) nm. The intercalated Pd stabilizes the crystal structure of NbSe2by connecting the adjacent Nb-Se layers with [PdSe6] octahedra leading to the enhanced thermostability in air. PdNbSe2remains the metallic character, which is verified by the resistivity measurements. In addition, the incorporation of Pd decreases theCof NbSe2, implying that Pd is negative for the superconductivity in NbSe2.

    [1] TAN CHAO-LIANG, CAO XIE-HONG, WU XUE-JUN,. Recent advances in ultrathin two-dimensional nanomaterials., 2017, 117(9): 6225–6331.

    [2] GOPALAKRISHNAN D, LEE A, THANGAVEL N K,. Facile synthesis of electrocatalytically active NbS2nanoflakes for an enhanced hydrogen evolution reaction., 2018, 2(1): 96–102.

    [3] JIN HUAN-YU, GUO CHUN-XIAN, LIU XIN,. Emerging two-dimensional nanomaterials for electrocatalysis., 2018, 118(13): 6337–6408.

    [4] WANG REN-YAN, GAN LIN, ZHAI TIAN-YOU. ReX2(X=S, Se): a new opportunity for development of two-dimensional anisotropic materials., 2019, 34(1): 1–16.

    [5] ZHAO DE-RUI, ZHAI YING-JIAO, LI JIN-HUA,. Preparation and properties of glucose biosensor based on flower-like MoS2micrometer material., 2016, 31(2): 153–158.

    [6] CHIA X, AMBROSI A, LAZAR P,. Electrocatalysis of layered group 5 metallic transition metal dichalcogenides (MX2, M=V, Nb, and Ta; X = S, Se, and Te)., 2016, 4(37): 14241–14253.

    [7] SIPOS B, KUSMARTSEVA A F, AKRAP A,. From Mott state to superconductivity in 1T-TaS2., 2008, 7(12): 960–965.

    [8] LUO HUI-XIA, STRYCHALSKA-NOWAK J, LI JUN,. S-shaped suppression of the superconducting transition temperature in Cu-intercalated NbSe2., 2017, 29(8): 3704–3712.

    [9] WANG MENG-JING, WILLIAMS D, LAHTI G,. Chemical intercalation of heavy metal, semimetal, and semiconductor atoms into 2D layered chalcogenides., 2018, 5(4): 045005.

    [10] HAO QIAO-YAN, WANG DA-KE, ZHU BAI-CHUAN,. Facile synthesis, structure and physical properties of 3R-ANbS2(A=Li, Na)., 2016, 663: 225–229.

    [11] PRODAN A, MARINKOVIC V, ROJSEK M,. The surface superstructures in niobium disulfide and diselenide intercalated by Cu, Co and Fe., 2001, 476(1): 71–77.

    [12] HUGHES T A, KEVAN S D, COX D E,. Synthesis of superlattices of intercalated transition metal dichalcogenides., 2000, 122(37): 8910–8915.

    [13] LIAN CHAO-SHENG, SI CHEN, WU JIAN,. First-principles study of Na-intercalated bilayer NbSe2: suppressed charge-density wave and strain-enhanced superconductivity., 2017, 96(23): 235426.

    [14] WANG DONG, WANG XIN, LU YUE,. Atom-scale dispersed palladium in a conductive Pd0.1TaS2lattice with a unique electronic structure for efficient hydrogen evolution., 2017, 5(43): 22618–22624.

    [15] BHOI D, KHIM S, NAM W,. Interplay of charge density wave and multiband superconductivity in 2H-PdTaSe2., 2016, 6: 24068.

    [16] MOMMA K, IZUMI F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data., 2011, 44(6): 1272–1276.

    [17] MAREZIO M, DERNIER P, MENTH A,. The crystal structure of NbSe2at 15 K., 1972, 4(3): 425–429.

    [18] HAMIDANI A, BENNECER B, ZANAT K. Structural and electronic properties of the pseudo-binary compounds PdX2(X=P, S and Se)., 2010, 71(1): 42–46.

    [19] ZHAO BEN-LIANG, HUANG JIAN, FU QI,. MoS2/NbSe2hybrid nanobelts for enhanced hydrogen evolution., 2016, 163(6): H384–H387.

    [20] HALASYAMANI P S, O'HARE D. Synthesis and characterization of Se4Nb2O13:? a new ternary Se4+?Nb5+?oxide with monoselenite and diselenite groups., 1998, 10(2): 646–649.

    [21] BU KE-JUN, HUANG JIAN, LUO MENG-JIA,. Observation of high Seebeck coefficient and low thermal conductivity in [SrO]- intercalated CuSbSe2compound., 2018, 30(16): 5539–5543.

    [22] WANG QIN-CHAO, MENG JING-KE, YUE XIN-YANG,. Tuning P2-structured cathode material by Na-site Mg substitution for Na-Ion batteries., 2019, 141(2): 840–848.

    [23] NAIK I, RASTOGI A K. Transport properties of 2H-NbSe2: effect of Ga-intercalation., 2010, 405(3): 955–957.

    [24] HAUDER J J, ROBBINS M, DISALVO F J. Effect of 3d impurities on the superconducting transition temperature of the layered compound NbSe2., 1973, 8(3): 1038–1042.

    Pd插層NbSe2化合物的制備、晶體結(jié)構(gòu)和電學(xué)性質(zhì)研究

    黃沖1,2, 趙偉1, 王東1, 卜克軍1,2, 王思順1, 黃富強(qiáng)1,3

    (1. 中國(guó)科學(xué)院 上海硅酸鹽研究所, 高性能陶瓷和超微結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 上海 200050; 2. 中國(guó)科學(xué)院大學(xué), 北京 100049; 3. 北京大學(xué) 化學(xué)與分子工程學(xué)院, 北京分子科學(xué)國(guó)家實(shí)驗(yàn)室, 稀土材料化學(xué)及應(yīng)用國(guó)家重點(diǎn)實(shí)驗(yàn)室, 北京 100871)

    通過(guò)固相反應(yīng)法合成一系列插層化合物PdNbSe2(=0~0.17)。它們與2H-NbSe2相同, 屬于六方晶格, 空間群為P63/mmc。Pd占據(jù)NbSe2層間的八面體空位。隨著Pd含量的增加, 晶格常數(shù)線性增大, 而幾乎不變。X射線單晶衍射結(jié)果表明, Pd0.17NbSe2的晶格常數(shù)為==0.34611(2) nm,=1.27004(11) nm。每個(gè)Pd原子與六個(gè)Se原子鍵合形成[PdSe6]八面體來(lái)連接相鄰的Nb-Se層, 使晶體結(jié)構(gòu)變得更加穩(wěn)定, 從而提高化合物的熱穩(wěn)定性。電學(xué)測(cè)試表明, 隨著Pd含量的增加, PdNbSe2的剩余電阻比減小。此外, 超導(dǎo)轉(zhuǎn)變溫度也隨著Pd含量的增加而下降, 說(shuō)明Pd的引入不利于NbSe2的超導(dǎo)態(tài)。

    PdNbSe2; 過(guò)渡金屬硫族化合物; 晶體結(jié)構(gòu); 超導(dǎo)

    O782

    A

    2019-03-26;

    2019-04-30

    National Key Research and Development Program (2016YFB0901600); Science and Technology Commission of Shanghai (16JC1401700, 16ZR1440500); National Natural Science Foundation of China (Y93GJ11101); The Key Research Program of Chinese Academy of Sciences (QYZDJ-SSW-JSC013, KGZD-EW-T06); CAS Center for Excellence in Superconducting Electronics, and Youth Innovation Promotion Association CAS

    HUANG Chong (1994–), male, Master candidate. E-mail: huangchong@student.sic.ac.cn

    黃沖(1994–), 男, 碩士研究生. E-mail: huangchong@student.sic.ac.cn

    HUANG Fuqiang, professor. E-mail: huangfq@mail.sic.ac.cn; ZHAO Wei, associate professor. E-mail: zhaowei220@mail.sic.ac.cn

    黃富強(qiáng), 研究員. E-mail: huangfq@mail.sic.ac.cn; 趙偉, 副研究員. E-mail: zhaowei220@mail.sic.ac.cn

    1000-324X(2020)04-0505-06

    10.15541/jim20190125

    猜你喜歡
    趙偉插層八面體
    到底誰(shuí)會(huì)贏?
    3秒給答案
    假如你有很多錢,該怎么花?
    納米八面體二氧化鈦的制備及光催化性能研究
    紫外吸收劑插層蒙脫土對(duì)瀝青老化性能的影響
    如何求函數(shù)y=Asin(ωx+φ)中φ的值
    數(shù)學(xué)文化原創(chuàng)題(一)
    當(dāng)鈣鈦礦八面體成為孤寡老人
    CO2插層作用下有機(jī)蒙脫土膨脹/結(jié)構(gòu)行為的分子模擬
    十四烷酸插層稀土類水滑石的合成及其對(duì)PVC的熱穩(wěn)定作用
    欧美黑人欧美精品刺激| 在线观看免费视频日本深夜| 亚洲色图av天堂| 午夜两性在线视频| 久久精品国产自在天天线| 国产黄a三级三级三级人| 色播亚洲综合网| 亚洲欧美激情综合另类| 91九色精品人成在线观看| 日韩人妻高清精品专区| 久久久久久大精品| 日韩有码中文字幕| 亚洲中文日韩欧美视频| 波多野结衣高清无吗| 国产av不卡久久| 男插女下体视频免费在线播放| 日韩欧美在线二视频| 在线播放无遮挡| 每晚都被弄得嗷嗷叫到高潮| 精品乱码久久久久久99久播| 欧美乱妇无乱码| 国产在视频线在精品| 白带黄色成豆腐渣| 九九久久精品国产亚洲av麻豆| 精品免费久久久久久久清纯| 特大巨黑吊av在线直播| h日本视频在线播放| 日韩 欧美 亚洲 中文字幕| 99国产综合亚洲精品| 51国产日韩欧美| 免费在线观看日本一区| 久久精品人妻少妇| 亚洲av美国av| 99精品久久久久人妻精品| 国产在线精品亚洲第一网站| 两个人的视频大全免费| 久久久久久久午夜电影| 精品无人区乱码1区二区| av专区在线播放| 欧美一区二区精品小视频在线| 欧美黑人欧美精品刺激| 在线观看日韩欧美| 91九色精品人成在线观看| 婷婷精品国产亚洲av在线| 丰满乱子伦码专区| 少妇的丰满在线观看| 国产成+人综合+亚洲专区| 午夜影院日韩av| 噜噜噜噜噜久久久久久91| bbb黄色大片| 亚洲中文日韩欧美视频| 一级a爱片免费观看的视频| 深爱激情五月婷婷| 欧美中文日本在线观看视频| 国产精品国产高清国产av| av国产免费在线观看| 天堂√8在线中文| 亚洲无线在线观看| 亚洲专区中文字幕在线| 97碰自拍视频| 日本 av在线| 国产欧美日韩精品亚洲av| 国产精品日韩av在线免费观看| 搡老妇女老女人老熟妇| 国产高清有码在线观看视频| 丝袜美腿在线中文| 精品久久久久久久末码| 两人在一起打扑克的视频| 亚洲在线自拍视频| 最近视频中文字幕2019在线8| 精品国产美女av久久久久小说| 亚洲精品日韩av片在线观看 | 观看美女的网站| 嫩草影院入口| 美女cb高潮喷水在线观看| 国模一区二区三区四区视频| 黄片大片在线免费观看| 亚洲人与动物交配视频| 精品一区二区三区av网在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲七黄色美女视频| 亚洲av电影不卡..在线观看| 亚洲国产高清在线一区二区三| 美女黄网站色视频| 国产成人av教育| 午夜免费男女啪啪视频观看 | 亚洲人成网站在线播| 欧美最新免费一区二区三区 | 90打野战视频偷拍视频| 精品午夜福利视频在线观看一区| 九九在线视频观看精品| 欧美一区二区国产精品久久精品| 国产成人欧美在线观看| 中文亚洲av片在线观看爽| 88av欧美| 国产97色在线日韩免费| 757午夜福利合集在线观看| av欧美777| 欧美xxxx黑人xx丫x性爽| 日韩欧美国产在线观看| 免费在线观看影片大全网站| 亚洲av第一区精品v没综合| 熟女少妇亚洲综合色aaa.| 欧美日韩瑟瑟在线播放| 人人妻,人人澡人人爽秒播| 国产亚洲欧美98| 久久久久国内视频| 免费人成视频x8x8入口观看| 亚洲aⅴ乱码一区二区在线播放| 男女视频在线观看网站免费| 欧美日韩一级在线毛片| 特大巨黑吊av在线直播| 国产aⅴ精品一区二区三区波| 看黄色毛片网站| 免费无遮挡裸体视频| 一区二区三区高清视频在线| 成人三级黄色视频| 香蕉av资源在线| 色综合站精品国产| 两个人视频免费观看高清| 亚洲av免费高清在线观看| 18禁黄网站禁片午夜丰满| 久久草成人影院| 怎么达到女性高潮| 老汉色∧v一级毛片| 久久久国产精品麻豆| 首页视频小说图片口味搜索| 中文亚洲av片在线观看爽| 亚洲内射少妇av| 夜夜夜夜夜久久久久| 欧美精品啪啪一区二区三区| 亚洲熟妇中文字幕五十中出| 亚洲欧美精品综合久久99| 亚洲av二区三区四区| 亚洲av美国av| 亚洲人与动物交配视频| 久久精品国产亚洲av涩爱 | 国产亚洲欧美在线一区二区| 色av中文字幕| 日韩欧美 国产精品| 18禁在线播放成人免费| 观看免费一级毛片| 国产野战对白在线观看| 男插女下体视频免费在线播放| 国产激情偷乱视频一区二区| 精品久久久久久,| 久久亚洲真实| 成人精品一区二区免费| 久久这里只有精品中国| bbb黄色大片| 成人高潮视频无遮挡免费网站| 色综合亚洲欧美另类图片| www.www免费av| 蜜桃久久精品国产亚洲av| 亚洲中文日韩欧美视频| 九九在线视频观看精品| 亚洲乱码一区二区免费版| 国产一区二区在线av高清观看| 欧美xxxx黑人xx丫x性爽| 国产日本99.免费观看| 人妻久久中文字幕网| 欧美最黄视频在线播放免费| 夜夜看夜夜爽夜夜摸| 一级a爱片免费观看的视频| 亚洲,欧美精品.| 欧美日韩乱码在线| av女优亚洲男人天堂| 亚洲av不卡在线观看| 国产精品野战在线观看| 熟妇人妻久久中文字幕3abv| 亚洲精品在线美女| 一区福利在线观看| 我要搜黄色片| 好男人在线观看高清免费视频| 老司机福利观看| 在线国产一区二区在线| 国产一区二区在线观看日韩 | 免费看光身美女| 高清日韩中文字幕在线| 日本黄色片子视频| 日本黄大片高清| 日本免费a在线| 午夜久久久久精精品| 伊人久久大香线蕉亚洲五| а√天堂www在线а√下载| 黑人欧美特级aaaaaa片| 国产真人三级小视频在线观看| 国产成人影院久久av| 亚洲国产欧美网| 久久99热这里只有精品18| 精品熟女少妇八av免费久了| 99视频精品全部免费 在线| 精品久久久久久久毛片微露脸| 亚洲国产精品久久男人天堂| 午夜免费成人在线视频| 亚洲欧美日韩高清专用| 一个人看的www免费观看视频| 免费大片18禁| 免费观看精品视频网站| 国产免费av片在线观看野外av| 欧美日韩一级在线毛片| 国产亚洲精品久久久久久毛片| 色综合站精品国产| 男女那种视频在线观看| 久久国产乱子伦精品免费另类| 亚洲精品久久国产高清桃花| 欧美绝顶高潮抽搐喷水| 国产亚洲欧美在线一区二区| 一本精品99久久精品77| av国产免费在线观看| 欧美色视频一区免费| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久久久黄片| 99热这里只有精品一区| 亚洲美女黄片视频| 国产成人av教育| 在线观看66精品国产| 嫩草影院精品99| 色av中文字幕| 日本成人三级电影网站| 男人舔女人下体高潮全视频| av在线天堂中文字幕| 一进一出抽搐动态| 免费人成在线观看视频色| 欧美日韩综合久久久久久 | 中国美女看黄片| 久久草成人影院| 欧美激情久久久久久爽电影| 国产成人系列免费观看| 欧美成人性av电影在线观看| www国产在线视频色| 一本综合久久免费| 日本免费一区二区三区高清不卡| 国产亚洲欧美在线一区二区| 亚洲欧美日韩高清专用| 精品国内亚洲2022精品成人| 身体一侧抽搐| 淫秽高清视频在线观看| 美女 人体艺术 gogo| 国产综合懂色| 亚洲电影在线观看av| 国产国拍精品亚洲av在线观看 | 天堂影院成人在线观看| 99久久九九国产精品国产免费| 男女下面进入的视频免费午夜| 欧美在线一区亚洲| 亚洲久久久久久中文字幕| av福利片在线观看| 97碰自拍视频| 久久久久久国产a免费观看| 18禁在线播放成人免费| 精品一区二区三区视频在线 | 人人妻,人人澡人人爽秒播| 美女高潮喷水抽搐中文字幕| 给我免费播放毛片高清在线观看| 国产成人a区在线观看| 全区人妻精品视频| 香蕉av资源在线| 国产精品嫩草影院av在线观看 | 久久99热这里只有精品18| 免费看十八禁软件| 级片在线观看| 在线a可以看的网站| 黄片小视频在线播放| 久久久国产成人免费| 亚洲中文日韩欧美视频| 久久精品国产自在天天线| 欧美性猛交╳xxx乱大交人| 欧美精品啪啪一区二区三区| 在线视频色国产色| 国产三级黄色录像| 国产美女午夜福利| 熟妇人妻久久中文字幕3abv| 一进一出好大好爽视频| 可以在线观看的亚洲视频| 中文字幕av在线有码专区| 国产视频一区二区在线看| 久久这里只有精品中国| 18禁美女被吸乳视频| 91麻豆av在线| 一区二区三区高清视频在线| 国产亚洲欧美在线一区二区| 久久精品国产99精品国产亚洲性色| 婷婷精品国产亚洲av| 五月玫瑰六月丁香| 国产麻豆成人av免费视频| 日韩欧美在线乱码| 久久精品91蜜桃| 久久香蕉国产精品| 精品久久久久久久末码| 夜夜躁狠狠躁天天躁| 国内少妇人妻偷人精品xxx网站| 亚洲内射少妇av| 成年免费大片在线观看| 婷婷亚洲欧美| www.色视频.com| 亚洲最大成人手机在线| 午夜精品一区二区三区免费看| 国产精品综合久久久久久久免费| 亚洲狠狠婷婷综合久久图片| 在线看三级毛片| 又黄又粗又硬又大视频| 一进一出好大好爽视频| 午夜老司机福利剧场| 天堂网av新在线| 久久久久久九九精品二区国产| 偷拍熟女少妇极品色| 尤物成人国产欧美一区二区三区| 国产一区二区三区视频了| 中文字幕人妻丝袜一区二区| 亚洲av免费高清在线观看| 啦啦啦观看免费观看视频高清| 免费在线观看影片大全网站| 欧美性猛交╳xxx乱大交人| 亚洲国产中文字幕在线视频| 午夜福利18| 三级毛片av免费| 不卡一级毛片| 欧美成狂野欧美在线观看| 精品不卡国产一区二区三区| 国产精品 国内视频| 日韩精品中文字幕看吧| 欧美在线一区亚洲| 久久久久国产精品人妻aⅴ院| 叶爱在线成人免费视频播放| 中文资源天堂在线| 我要搜黄色片| 日本熟妇午夜| 日韩av在线大香蕉| 亚洲精品一卡2卡三卡4卡5卡| 亚洲欧美日韩卡通动漫| 亚洲国产精品合色在线| 久久久久久久精品吃奶| 成人国产综合亚洲| 嫩草影院入口| 欧美日韩综合久久久久久 | www.www免费av| 欧美绝顶高潮抽搐喷水| 91在线精品国自产拍蜜月 | 禁无遮挡网站| 欧美日韩黄片免| 桃红色精品国产亚洲av| 国产99白浆流出| 免费观看的影片在线观看| 国产精品1区2区在线观看.| 丝袜美腿在线中文| 黄色成人免费大全| 一区二区三区免费毛片| 全区人妻精品视频| 一本一本综合久久| 国产高清视频在线播放一区| 一进一出抽搐动态| av中文乱码字幕在线| 国产中年淑女户外野战色| 日韩欧美 国产精品| 99在线视频只有这里精品首页| 精品国产超薄肉色丝袜足j| 亚洲五月婷婷丁香| 1000部很黄的大片| 亚洲人成电影免费在线| 成人国产一区最新在线观看| 午夜激情福利司机影院| 午夜影院日韩av| 最新在线观看一区二区三区| 日韩欧美精品v在线| e午夜精品久久久久久久| 此物有八面人人有两片| 亚洲一区高清亚洲精品| 欧美av亚洲av综合av国产av| 老司机福利观看| 色噜噜av男人的天堂激情| 午夜福利成人在线免费观看| 日本 av在线| 日本在线视频免费播放| 中文亚洲av片在线观看爽| 99国产综合亚洲精品| 欧洲精品卡2卡3卡4卡5卡区| 99久久久亚洲精品蜜臀av| 在线观看美女被高潮喷水网站 | 久久久久国内视频| 看黄色毛片网站| 久久久成人免费电影| 国产视频内射| 国产精品久久久久久久电影 | a级一级毛片免费在线观看| 国产真实伦视频高清在线观看 | 热99在线观看视频| 欧美日韩一级在线毛片| 在线观看舔阴道视频| 草草在线视频免费看| 无人区码免费观看不卡| 麻豆成人av在线观看| 欧美日韩中文字幕国产精品一区二区三区| 色综合欧美亚洲国产小说| 九九在线视频观看精品| 香蕉丝袜av| 级片在线观看| 欧美av亚洲av综合av国产av| 精品一区二区三区视频在线 | av视频在线观看入口| 国产探花在线观看一区二区| 97碰自拍视频| 性色avwww在线观看| 国产熟女xx| 日韩欧美三级三区| 欧美一级毛片孕妇| 12—13女人毛片做爰片一| 免费搜索国产男女视频| 中文字幕高清在线视频| 一区福利在线观看| 午夜激情福利司机影院| 三级男女做爰猛烈吃奶摸视频| 欧美日韩乱码在线| 高潮久久久久久久久久久不卡| 好男人电影高清在线观看| 男人的好看免费观看在线视频| 国产精品乱码一区二三区的特点| 亚洲国产欧洲综合997久久,| 色综合欧美亚洲国产小说| 伊人久久大香线蕉亚洲五| 在线观看午夜福利视频| 欧美乱色亚洲激情| 丝袜美腿在线中文| 亚洲 欧美 日韩 在线 免费| 亚洲人与动物交配视频| 91av网一区二区| 久久伊人香网站| 国产91精品成人一区二区三区| 亚洲在线自拍视频| 亚洲av电影在线进入| 欧美绝顶高潮抽搐喷水| 一边摸一边抽搐一进一小说| 国内精品美女久久久久久| 可以在线观看的亚洲视频| 人人妻人人澡欧美一区二区| 国产精品久久电影中文字幕| 亚洲av免费在线观看| 亚洲av中文字字幕乱码综合| 欧美一区二区亚洲| 变态另类成人亚洲欧美熟女| av女优亚洲男人天堂| 人人妻,人人澡人人爽秒播| 国产v大片淫在线免费观看| 99久久精品热视频| 高潮久久久久久久久久久不卡| 亚洲av日韩精品久久久久久密| 香蕉久久夜色| 最近最新免费中文字幕在线| 我的老师免费观看完整版| 三级毛片av免费| 亚洲国产精品999在线| 欧洲精品卡2卡3卡4卡5卡区| www.999成人在线观看| 亚洲国产欧美网| 最近最新中文字幕大全免费视频| 九九在线视频观看精品| 午夜激情欧美在线| 亚洲精品成人久久久久久| 国产精品 欧美亚洲| 中文字幕人妻丝袜一区二区| 在线观看舔阴道视频| 亚洲国产精品成人综合色| 成人特级黄色片久久久久久久| 一进一出抽搐动态| 中文字幕人成人乱码亚洲影| 午夜激情欧美在线| 无遮挡黄片免费观看| 精品久久久久久成人av| 天堂动漫精品| 欧美+日韩+精品| 国产精品久久久久久人妻精品电影| 九九在线视频观看精品| 非洲黑人性xxxx精品又粗又长| www日本黄色视频网| 国产精品永久免费网站| 18禁国产床啪视频网站| 最近最新中文字幕大全电影3| 搡女人真爽免费视频火全软件 | 久久草成人影院| 色在线成人网| 午夜激情福利司机影院| 老汉色∧v一级毛片| a在线观看视频网站| 国产精品1区2区在线观看.| 亚洲七黄色美女视频| 国产熟女xx| 国产精品爽爽va在线观看网站| 99热精品在线国产| 十八禁网站免费在线| 国产在线精品亚洲第一网站| 国产精品免费一区二区三区在线| 级片在线观看| 高清日韩中文字幕在线| 天堂影院成人在线观看| 国产精品av视频在线免费观看| 亚洲男人的天堂狠狠| 久久精品国产自在天天线| 99久久综合精品五月天人人| av国产免费在线观看| 婷婷丁香在线五月| 久久精品国产自在天天线| 欧美日韩亚洲国产一区二区在线观看| 国产一区二区在线观看日韩 | 欧美最新免费一区二区三区 | 小说图片视频综合网站| 丝袜美腿在线中文| 老司机在亚洲福利影院| 男女视频在线观看网站免费| 国产精品一区二区三区四区免费观看 | 国产亚洲精品综合一区在线观看| 成年女人永久免费观看视频| 两个人看的免费小视频| 美女黄网站色视频| 日韩大尺度精品在线看网址| 亚洲av免费在线观看| 人妻丰满熟妇av一区二区三区| 99精品欧美一区二区三区四区| 国产 一区 欧美 日韩| 99精品欧美一区二区三区四区| 欧美一级a爱片免费观看看| 99在线人妻在线中文字幕| 成人欧美大片| 少妇的逼好多水| 小蜜桃在线观看免费完整版高清| 丰满乱子伦码专区| 亚洲无线观看免费| 在线观看美女被高潮喷水网站 | 高潮久久久久久久久久久不卡| 天堂√8在线中文| 免费一级毛片在线播放高清视频| 欧美一区二区国产精品久久精品| 看黄色毛片网站| 免费看美女性在线毛片视频| 少妇熟女aⅴ在线视频| 免费人成视频x8x8入口观看| 欧美最新免费一区二区三区 | av女优亚洲男人天堂| 啦啦啦免费观看视频1| 久久久久久久亚洲中文字幕 | 亚洲av不卡在线观看| 长腿黑丝高跟| 少妇熟女aⅴ在线视频| 午夜精品久久久久久毛片777| 国产一区二区在线观看日韩 | 精品乱码久久久久久99久播| 无限看片的www在线观看| 欧美成狂野欧美在线观看| 亚洲精品日韩av片在线观看 | 香蕉av资源在线| 91九色精品人成在线观看| 黄片大片在线免费观看| 日韩成人在线观看一区二区三区| 亚洲欧美日韩高清在线视频| 亚洲欧美日韩卡通动漫| 亚洲专区中文字幕在线| 在线播放国产精品三级| 叶爱在线成人免费视频播放| 国产极品精品免费视频能看的| 国产v大片淫在线免费观看| 国产国拍精品亚洲av在线观看 | 免费大片18禁| 老汉色∧v一级毛片| 午夜福利成人在线免费观看| 国产精品日韩av在线免费观看| 黄色日韩在线| 国产日本99.免费观看| 99热只有精品国产| 内射极品少妇av片p| 亚洲国产色片| 九九久久精品国产亚洲av麻豆| 9191精品国产免费久久| 给我免费播放毛片高清在线观看| 欧美在线黄色| 小蜜桃在线观看免费完整版高清| 午夜老司机福利剧场| 精品久久久久久,| 99热精品在线国产| 色精品久久人妻99蜜桃| 2021天堂中文幕一二区在线观| 99热这里只有是精品50| 岛国在线免费视频观看| 中文字幕av成人在线电影| 中文字幕人妻熟人妻熟丝袜美 | 国产老妇女一区| 国产单亲对白刺激| 国产蜜桃级精品一区二区三区| 精品久久久久久久久久免费视频| 女生性感内裤真人,穿戴方法视频| 美女被艹到高潮喷水动态| 最近视频中文字幕2019在线8| 少妇熟女aⅴ在线视频| 精品久久久久久久末码| 国产免费一级a男人的天堂| 欧美3d第一页| 男女做爰动态图高潮gif福利片| 一本精品99久久精品77| 岛国视频午夜一区免费看| 国产精品野战在线观看| 中文字幕熟女人妻在线| 99国产精品一区二区三区| 亚洲五月天丁香| 亚洲一区二区三区色噜噜| 日本撒尿小便嘘嘘汇集6| 欧美bdsm另类| 一本精品99久久精品77| 亚洲精品国产精品久久久不卡| 在线国产一区二区在线| 亚洲欧美日韩卡通动漫| 成人特级黄色片久久久久久久| 熟女人妻精品中文字幕| 美女免费视频网站| 国产高清三级在线| 欧美日韩乱码在线| 亚洲一区二区三区色噜噜| 欧美一级毛片孕妇|