• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High Efficient Carbon Quantum Dots/BiOCl Nanocomposite for Photocatalytic Pollutant Degradation

    2020-05-13 00:45:38ZHANGZhijieHUANGHairuiCHENGKunGUOShaoke
    無機材料學(xué)報 2020年4期
    關(guān)鍵詞:羅丹明光催化量子

    ZHANG Zhijie, HUANG Hairui, CHENG Kun, GUO Shaoke

    High Efficient Carbon Quantum Dots/BiOCl Nanocomposite for Photocatalytic Pollutant Degradation

    ZHANG Zhijie, HUANG Hairui, CHENG Kun, GUO Shaoke

    (School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China)

    To overcome the limitation of narrow photo-absorption range and high electron-hole recombination rate of pure BiOCl, a nanocomposite of carbon quantum dots (CQDs) and BiOCl with highly efficient photocatalytic activity was fabricated. The photocatalytic decomposition of rhodamine B (RhB) showed that the CQDs/BiOCl nanocomposite displayed superior photocatalytic performance to pure BiOCl, whichwas about 3.4 times higher than that of the latter. The optimal loading amount of CQDs was 7.1wt%, which could completely decolorize RhB within a short period of only 2 min, while the degradation rate of RhB was only 29.5% by pure BiOCl in the same period. UV-Vis diffuse reflectance spectra (UV-Vis DRS), photoelectrochemical measurement, and radicals trapping experiments were performed to elucidate the possible mechanism for the enhanced photocatalytic activity of the CQDs/BiOCl composite. The results show that CQD can expand the visible light absorption range of BiOCl, which is beneficial for light harvesting and generation of electron-hole pairs. Moreover, CQDs has unique up-converted photoluminescence behavior, as well as photo-induced electron transfer ability, which leads to enhanced photocatalytic performance of the CQDs/BiOCl composite.

    photocatalysis; CQDs/BiOCl; nanocomposite; up-converted photoluminescence

    As a new bismuth-based semiconductor material, BiOCl has recently become the focus of research in the field of photocatalysis and displays enhanced photocatalytic activity than TiO2(P25, Degussa)[1-4]. It possesses a unique layered structure, which can provide large enough space to polarize the related atoms and orbitals[5]. Then the induced dipole can promote the separation of the electron-hole pairs effectively, which accounts for its excellent photocatalytic performance. Nevertheless, BiOCl is a wide bandgap semiconductor (3.6 eV)[2], which means that BiOCl cannot be excited by visible light and can only be excited by UV light. Due to this inherent limitation, the abundant solar energy cannot be utilized efficiently. To expand the excitation wavelength range of BiOCl, many strategies have been applied. For example, Lee,[6]reported that the BiOCl/Bi2O3heterojunction had high efficiency in organic compounds degradation. Zan,[2]prepared black BiOCl by introducing oxygen vacancies, and found that its photocatalytic activity was 20 times higher than that of white BiOCl. Chen,[7]reported a BiOCl/BiOI composite which showed superior photocatalytic performance on degrading Methyl Orange (MO) and RhB.

    Another effective method for enhancing photocatalytic performance is to modify the semiconductor with CQDs, which are attracting intense attention due to their environmentally friendly nature, chemical inertness, simple synthetic routes, ease of functionalization, high aqueous solubility, low cost and so on[8-10]. CQDs display strong up-conversion luminescence behavior, which can absorb two or more photons and emit light with wavelengths shorter than the excitation wavelength. Due to this unique photo-physical characteristics, CQDs have wide applications in such fields as light energy conversion, bioimaging, sensors, photovoltaic devices, electrocatalysis and photocatalysis,[11-15]. In addition, CQDs have unique non-localized electron conjugated structure, which can function as an effective electron trap to promote the separation of photo-generated electron-hole pairs.Therefore, the excellent light capturing ability and photo-induced electron transfer capability make CQDs a promising candidate in the field of photocatalysis. Up to date, many CQDs/semiconductor composites with improved visible light photocatalytic performance have been reported, including CQDs/Fe2O3[16], CQDs/Cu2O[17], CQDs/ZnO[18], CQDs/Ag3PO4[19], CQDs/C3N4[20], CQDs/ TiO2[21-23],.These studies indicate that CQDs are efficient components in the construction of composite pho-tocatalysts.

    In a previous study, Xia,[24]synthesized CQDs modified BiOCl ultrathin nanosheetsa solvothermal method, employing mannitol as solvent and PVP as surfactant. In this work, a modified solvothermal method was used to synthesize CQDs/BiOCl composites, using a more environment-friendly ethanol as the solvent. By adjusting the solvent and reaction parameters such as solvothermal temperature and time, high-performance BiOCl nanosheets were obtained. By further introducing CQDs as electron trap and light harvester, the photocatalytic performance of BiOCl is enhanced significantly. Furthermore, the mechanism for the improved photocatalytic performance was elucidated detailedly.

    1 Experimental procedures

    1.1 Preparation of CQDs/BiOCl nanocomposites

    CQDs were prepared through a modified literature procedure[25]. By thermolyzing citric acid (100 g) in air at 180 ℃for 40 h, an orange-brown liquid of CQDs capped by carboxylic acid was yielded. Then the high viscosity liquid was stirred with 100 mL of deionized water and 50 mL of NaOH aqueous solution (5 mol/L) to dissolve. Subsequently, approximately 25 mL of NaOH aqueous solution (5 mol/L) was added to neutralize the acidic CQDs, producing an orange-brown solution of sodium carboxylate capped CQDs. After isolating the product by freeze-drying, a yellow-orange powder was obtained.

    In order to synthesize CQDs/BiOCl composites, 1 mmol of NaCl was dissolved into 17 mL of distilled water under stirring, then the solution was added into 17 mL of ethanol which contained 1 mmol of Bi(NO3)3·5H2O. After that, 0.5, 1.0, and 1.5 mL of CQDs solution (20 mg/mL) were dropped into the above mixture, respectively. The samples with 0.5, 1.0, and 1.5 mL of CQDs were denoted as C_0.5/BiOCl, C_1.0/BiOCl, and C_1.5/BiOCl, respectively. Correspondingly, the mass percentages of CQDs were calculated to be 3.7wt%, 7.1wt% and 10.3wt% for C_0.5/BiOCl, C_1.0/BiOCl, and C_1.5/BiOCl, respectively. Then the resulting suspension was transferred into an autoclave and kept at 100 ℃ for 18 h. After cooling to room temperature, the product was separated by centrifugation and washed with distilled water for several times, and then dried in air. For comparison, pure BiOCl was synthesized without the addition of CQDs.

    1.2 Characterization

    X-ray diffraction (XRD) patterns of the products were recorded on an X-ray diffractometer (Rigaku Co. Ltd., Tokyo, Japan) with Cu Kα radiation and in the 2range from 20° to 80°. An FEI tecnaiG2F30 transmission electron microscope (TEM) was used to observe the microstructure of the samples. UV-Vis diffuse reflectance spectra (DRS) of the products were obtained from a PE Lambda 900 UV-Vis spectrophotometer using BaSO4as reference. The photocurrent measurements were conducted on a CHI 650 electrochemical workstation (Shanghai Chenhua, China) using a three-electrode system.

    1.3 Photocatalytic test

    Photocatalytic performances of the CQDs/BiOCl composites were tested by decomposition of RhB under a 500 W Xe lamp to simulate the solar light. During the experiment, 0.05 g of the photocatalyst was added to 50 mL of RhB (10?5mol/L) solution to get a suspension, which was stirred magnetically in the dark for 1 h in order to establish an adsorption-desorption equilibrium between the pollutant molecules and the photocatalyst powders. 3 mL of suspension was collected at regular intervals, which was centrifuged to obtain a clarified solution for subsequent analysis. The concentration of RhB was analysed by recording the variations of the absorption band maximum (552 nm) on a UV-Vis spectrophotometer (754PC).

    2 Results and discussion

    2.1 Crystal structure

    X-ray diffraction patterns of pure BiOCl and CQDs/BiOCl composites with different contents of CQDs are shown in Fig. 1. It can be seen that all the products are well crystallized, with all diffraction peaks consistent with the tetragonal BiOCl according to JCPDS 06-249. The introduction of CQDs has no obvious influence on the phase purity and crystallinity of the products.No diffraction peaks derived from CQDs can be observed, which is probably due to the low content and poor crystallinity of CQDs.

    Fig. 1 XRD patterns of the products

    2.2 Microstructure

    The microstructure of CQDs and the CQDs/BiOCl composite (C_1.0/BiOCl) were observed by the transmission electron microscope (TEM). Fig. 2(A) shows that the as-prepared CQDs are monodisperse with diameters of5 nm. Fig. 2(B, C) show that the CQDs/ BiOCl composite exhibits nanosheet structure of about 200 nm. HRTEM image is further used to investigate the fine structure of the CQDs/BiOCl composite (Fig. 2(D)). The lattice fringes at 0.335 nm in the HRTEM image agrees well with fringe spacing of (101) plane of BiOCl, and the lattice fringes at 0.321 nm coincide with (002) spacing of CQDs. These results further confirm that the CQDs/BiOCl nanocomposite has been successfully constructed with CQDs attached on the surface of BiOCl nanosheets.

    2.3 UV-Vis diffuse reflectance spectra

    UV-Visible diffuse absorption spectra (DRS) of pure BiOCl and CQDs/BiOCl composites are compared in Fig. 3. According to Fig. 3, no absorption in the visible region can be observed for pure BiOCl, and it only has photo-absorption at UV light region with absorption edge located at360 nm. However, when the BiOCl nanosheets are modified with CQDs, the absorption edge of CQDs/BiOCl composites are red-shifted to the visible range. Moreover, as the amount of CQDs increases, the absorption edge shifts monotonically to the longer wavelengths. This result indicates that CQDs play a crucial role in harvesting visible light, which implies that more efficient utilization of the sunlight can be realized.

    Fig. 2 TEM images of CQDs (A) and CQDs/BiOCl composite (B, C) and high resolution TEM image of CQDs/BiOCl composite (D)

    Fig. 3 UV-Vis diffuse re?ectance spectra of pure BiOCl and CQDs/BiOCl composites

    2.4 Photocatalytic activity

    The photocatalytic activities of the as-prepared products are evaluated by degrading RhB under simulated sunlight irradiation. Fig. 4(A) shows the photo-degradation rates of RhB by pure BiOCl, CQDs and CQDs/BiOCl composites. With the CQDs amount increasing, the photo-degradation rate of RhB incre-ases initially and achieves a maximum at CQDs am-ount of 1 mL. Complete degradation of RhB is realized by sample C_1.0/BiOCl within 2 min under simulated solar light irradiation, while the degradation rate of RhB is only 29.5% in the presence of pure BiOCl. However, further increasing the amount of CQDs leads to a decreased photocatalytic activity, which implies that there is an optimal loading amount of CQDs. This can be ascribed to that excess amount of CQDs will compete with BiOCl for light harvest, which decreases the absorption of light for degradation of RhB. Moreover, control experiment by using CQDs only under identical conditions is performed, and the result shows that the decolorization of RhB is negligible in the presence of CQDs alone. This result indicates that the decolorization is due to the photocatalysis but not the adsorption of dye molecules on the surface of CQDs.

    Fig. 4 (A) Photocatalytic degradation of RhB by CQDs, pure BiOCl and CQDs/BiOCl composites under simulated sunlight irradiation, and (B) stability test of the CQDs/BiOCl composite

    Moreover, the cycling stability of theCQDs/BiOCl composite is tested through circulating runs. As shown in Fig. 4(B), the photocatalytic activity of the CQDs/BiOCl composite remains basically unchanged after being reused for five runs, which indicates that the CQDs/BiOCl composite has good photocatalytic stability and recyclability.

    2.5 Mechanism of the enhanced photo-activity

    It has been reported that the upconversion emission of CQDs can enhance the photocatalytic activities of CQDs modified composite photocatalysts under visible light irradiation[26]. Upconversion emission has been frequently cited as an important feature in CQDs. For instance, Kang,[27]reported that CQDs can be used as spectrum converters in photoelectro-chemical hydrogen generation systems due to their up-conversion luminescence property. In a previous report[28], we also found that the upconversion emission from CQDs can excite Bi2WO6to produce photo-induced charge carriers, thus increasing the availability of sunlight. When CQDs are introduced into the composite system, a portion of visible light is transformed into ultraviolet light. Then the ultraviolet light excites BiOCl to produce photo-induced charge carriers, which leads to an enhanced photo-activity of the composite.

    Another crucial factor that determines the photocatalytic performance is the separation rate of the photo- induced charge carriers, which can be reflected directly by the photocurrent produced by the photocatalyst[29]. The photocurrent generated by pure BiOCl and CQDs/ BiOCl composite (C_1.0/BiOCl) are compared in Fig. 5. Obviously, the introduction of CQDs can significantly enhance the photocurrent of BiOCl. The photocurrent generated by CQDs/BiOCl composite is about 2.1 times higher than that of pure BiOCl electrode, indicating an improved separation rate of charge carriers of the CQDs/ BiOCl composite. The enhancement of photocurrent can be attributed to the contribution of CQDs, which act as electron reservoirs. Electrons from the conduction band of BiOCl can be trapped by the CQDs electron reservoirs, thus suppressing the recombination of the photo-generated charge carriers.

    Fig. 5 Photocurrent responses of BiOCl and CQDs/BiOCl composite

    In order to further elucidate the photocatalytic mechanism, the main oxidative species are determined by radicals trapping experiments, using benzoquinone as superoxide radical (?O2?) scavenger, EDTA-2Na as holes scavenger and tert-butanol (-BuOH) as hydroxyl radical (?OH) scavenger, respectively[30-31]. As shown in Fig. 6, the additions of EDTA-2Na and benzoquinone cause a severe depression of the photocatalytic activity, which indicates that both holes and ?O2?are the main oxidative species and play crucial roles in the photocatalytic process. On the contrary, the addition of-BuOH has a negligible influence on the photocatalytic activity, implying that ?OH is not the main oxidative species.

    Based on the above experimental results, a mechanism is proposed to explain the enhanced photo-activity of the CQDs/BiOCl composite, as illustrated in Fig. 7. Under the irradiation of visible light, CQDs with upconversion luminescence behavior can convert the visible light into ultraviolet light, which can be absorbed by BiOCl to generate electron-hole pairs. On the other hand, CQDs as an excellent electron reservoir can trap electrons from the conduction band of BiOCl, and then transfer the electrons quickly to the surface of the photocatalyst. In thisway, the charge recombination is restricted effectively, while the migration of the charge carriers is promoted significantly. The transferred electrons as good reducing agents can react with the adsorbed O2on the surface ofCQDs to yield superoxide radicals (?O2?), which are highly oxidative agents and can oxidize the pollutant molecules. Moreover, the long-lived holes on the valence band of BiOCl with strong oxidability can react with the RhB molecules directly, as confirmed by the radicals trapping experiments. Above all,due to the efficient harvest of sunlight, as well as the fast separation and migration of the photo-induced electron-hole pairs, the CQDs/BiOCl composite exhibits excellent photocatalytic performance, which can decolorize RhB in a short period of only 2 min.

    Fig. 6 Trapping experiments of oxidative species during photo-degradation of RhB by CQDs/BiOCl composite

    Fig. 7 Schematic illustration for the improved photo-activity of the CQDs/BiOCl composite

    3 Conclusions

    In summary, a highly efficient CQDs/BiOCl composite photocatalyst has been successfully prepared througha modified solvothermal process. Due to upconversion luminescence effect and photo-induced electron transfer ability of CQDs, the photo-absorption range of BiOCl is extended, while the recombination of photo-generated charge carriers is effectively suppressed. Consequently, the as-synthesized CQDs/BiOCl composite shows excellent photocatalytic performance under simulated solar light irradiation, which can decolorize RhB within only 2 min. This study demonstrates that introducing CQDs is an effective way to enhance the photocatalytic activity of the semiconductors.

    [1] LEI Y, WANG G, SONG S,. Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties., 2009, 11: 1857–1862.

    [2] YE L Q, DENG K J, XU F,. Increasing visible-light absorption for photocatalysis with black BiOCl., 2012, 14: 82–85.

    [3] ZHANG X, AI Z, JIA F,. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres., 2008, 112: 747–753.

    [4] HENLE J, SIMON P, FRENZEL A,. Nanosized BiOX (X=Cl, Br, I) particles synthesized in reverse microemulsions., 2007, 19: 366–373.

    [5] ZHANG K L, LIU C M, HUANG F Q,. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst., 2006, 68: 125–129.

    [6] CHAI S Y, KIM Y J, JUNG M H,. Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst., 2009, 262: 144–149.

    [7] LI T B, CHEN G, ZHOU C,. New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances., 2011, 40: 6751–6758.

    [8] LI H T, HE X D, LIU Y,. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties., 2011, 49: 605–609.

    [9] TANG L B, JI R B, CAO X K,. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots., 2012, 6: 5102–5110.

    [10] RAY S C, SAHA A, JANA N R,. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application., 2009, 113: 18546–18551.

    [11] ZONG J, ZHU Y H, YANG X L,. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors., 2011, 47: 764–766.

    [12] SHEN J H, ZHU Y H, YANG X L,. One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light., 2012, 36: 97–101.

    [13] LI Y, HU Y, ZHAO Y,. An electrochemical avenue green- luminescent graphene quantum dots potential electron-acceptors photovoltaics., 2011, 23: 776–780.

    [14] SHI W, LI X H, MA H M. A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells., 2012, 51: 6432–6435.

    [15] BAKER S N, BAKER G A. Luminescent carbon nanodots: emergent nanolights., 2010, 49: 6726–6744.

    [16] ZHANG H C, MING H, LIAN S Y,. Fe2O3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light., 2011, 40: 10822–10825.

    [17] LI H T, LIU R H, LIU Y,. Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior., 2012, 22: 17470–17475.

    [18] YU H, ZHANG H C, HUANG H,. ZnO/carbon quantum dots nanocomposites: one-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature., 2012, 36: 1031–1035.

    [19] ZHANG H, HUANG H, MING H,. Carbon quantum dots/Ag3PO4complex photocatalysts with enhanced photocatalytic activity and stability under visible light., 2012, 22: 10501–10506.

    [20] LIU J Y, LIU N Y, HAN Y Z,. Metal-free efficient photocatalyst for stable visible water splittinga two-electron pathway., 2015, 347: 970–974.

    [21] YU H J, SHI R, ZHAO Y F,. Smart utilization of carbon dots in semiconductor photocatalysis.s, 2016, 28: 9454–9477.

    [22] KE J, LI X Y, ZHAO Q D,. Upconversion carbon quantum dots as visible light responsive component for efficient enhancement of photocatalytic performance., 2017, 496: 425–433.

    [23] HU Y D, XIE X F, WANG X,. Visible-light upconversion carbon quantum dots decorated TiO2for the photodegradation of flowing gaseous acetaldehyde., 2018, 440: 266–274.

    [24] DI J, XIA J X, JI M X,. Carbon quantum dots modified BiOCl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight., 2015, 7: 20111?20123.

    [25] GUO C X, ZHAO D, ZHAO Q,. Na+-functionalized carbon quantum dots: a new draw solute in forward osmosis for seawater desalination., 2014, 50: 7318?7321.

    [26] LI H, HE X, KANG Z,. Water-soluble fluorescent carbon quantum dots and photocatalyst design., 2010, 49: 4430–4434.

    [27] ZHANG X, HUANG H, LIU J,. Carbon quantum dots serving as spectral converters through broadband upconversion of near- infrared photons for photoelectrochemical hydrogen generation., 2013, 1: 11529–11533.

    [28] ZHANG Z J, ZHENG T T, XU J Y,. Carbon quantum dots/Bi2WO6composites for efficient photocatalytic pollutant degradation and hydrogen evolution., 2017, 12: 1750082.

    [29] KIM H G, BORSE P H, CHOI W Y,. Photocatalytic nanodiodes for visible light photocatalysis., 2005, 44: 4585–4589.

    [30] ZHU Y Y, LIU Y F, LV Y H,. Enhancement of photocatalytic activity for BiPO4phase junction., 2014, 2: 13041–13048.

    [31] YUE D, CHEN D M, WANG Z H,. Enhancement of visible photocatalytic performances of a Bi2MoO6-BiOCl nanocomposite with plate-on-plate heterojunction structure., 2014, 16: 26314–26321.

    高效碳量子點/BiOCl納米復(fù)合材料用于光催化污染物降解

    張志潔, 黃海瑞, 程昆, 郭少柯

    (上海應(yīng)用技術(shù)大學(xué) 材料科學(xué)與工程學(xué)院, 上海 201418)

    為了克服單純BiOCl光譜吸收范圍窄和載流子復(fù)合幾率高的缺點, 本研究制備了一種具有高效光催化活性的碳量子點(CQDs)/BiOCl納米復(fù)合材料。光催化降解羅丹明B染料實驗表明CQDs/BiOCl納米復(fù)合材料的光催化性能遠優(yōu)于單純的BiOCl, 其光催化性能約為后者的3.4倍。當(dāng)CQDs的復(fù)合量為7.1wt%時, 樣品的光催化性能最佳, 能夠在2 min之內(nèi)將羅丹明B完全脫色, 而單純的BiOCl在相同時間內(nèi)對羅丹明B的降解率僅為29.5%。通過紫外-可見漫反射譜、光電化學(xué)測試以及自由基捕獲實驗揭示了CQDs/BiOCl納米復(fù)合材料的光催化性能提升機理, 結(jié)果表明CQDs可以拓展BiOCl的可見光吸收范圍, 這有利于增強其光捕獲能力以及促進電子–空穴對的產(chǎn)生。除此之外, CQDs獨特的上轉(zhuǎn)換發(fā)光行為, 以及光誘導(dǎo)的電子轉(zhuǎn)移能力提升了CQDs/BiOCl納米復(fù)合材料光催化性能。

    光催化; CQDs/BiOCl; 納米復(fù)合材料; 上轉(zhuǎn)換發(fā)光

    O641

    A

    2019-05-09;

    2019-06-20

    National Natural Science Foundation of China (51402194)

    ZHANG Zhijie(1984–), female, PhD. E-mail: zjzhang@sit.edu.cn

    張志潔(1984–),女,博士. E-mail: zjzhang@sit.edu.cn

    1000-324X(2020)04-0491-06

    10.15541/jim20190211

    猜你喜歡
    羅丹明光催化量子
    2022年諾貝爾物理學(xué)獎 從量子糾纏到量子通信
    決定未來的量子計算
    新量子通信線路保障網(wǎng)絡(luò)安全
    單分散TiO2/SrTiO3亞微米球的制備及其光催化性能
    BiOBr1-xIx的制備及光催化降解孔雀石綠
    一種簡便的超聲分散法制備碳量子點及表征
    可見光光催化降解在有機污染防治中的應(yīng)用
    原位合成H4SiW12O40@C協(xié)同UV/H2O2降解羅丹明B模擬廢水
    化工進展(2015年3期)2015-11-11 09:09:13
    光助Fenton法處理羅丹明B廢水的研究
    Nd/ZnO制備及其光催化性能研究
    看片在线看免费视频| 999精品在线视频| 日韩欧美 国产精品| 日韩欧美一区二区三区在线观看| 欧美成人性av电影在线观看| 亚洲欧美激情综合另类| 久久精品亚洲精品国产色婷小说| 日韩精品青青久久久久久| 色综合亚洲欧美另类图片| 亚洲七黄色美女视频| 国产麻豆成人av免费视频| 欧美一级a爱片免费观看看 | 在线观看日韩欧美| 国产精品 欧美亚洲| 蜜桃久久精品国产亚洲av| 亚洲人与动物交配视频| 男人舔女人下体高潮全视频| 天天躁狠狠躁夜夜躁狠狠躁| 日韩精品免费视频一区二区三区| 欧美黄色片欧美黄色片| 免费电影在线观看免费观看| 一区福利在线观看| 亚洲成人国产一区在线观看| 欧美黑人欧美精品刺激| 亚洲,欧美精品.| 久久久水蜜桃国产精品网| 嫩草影院精品99| 午夜福利欧美成人| 国产一区在线观看成人免费| 少妇被粗大的猛进出69影院| 国产高清激情床上av| 欧美黑人精品巨大| 免费搜索国产男女视频| 国产精品久久电影中文字幕| 白带黄色成豆腐渣| 欧美黑人精品巨大| 成人手机av| 日韩欧美国产在线观看| 一区二区三区激情视频| 国产在线观看jvid| 国产精品一区二区三区四区久久| 亚洲五月天丁香| 性欧美人与动物交配| 亚洲在线自拍视频| 欧美精品啪啪一区二区三区| 好男人电影高清在线观看| 一a级毛片在线观看| 亚洲国产欧美人成| 在线视频色国产色| 亚洲精品美女久久久久99蜜臀| 国产亚洲欧美98| 亚洲国产中文字幕在线视频| 91老司机精品| 亚洲av五月六月丁香网| 亚洲国产高清在线一区二区三| 身体一侧抽搐| av免费在线观看网站| 欧美日韩黄片免| 我的老师免费观看完整版| 两个人的视频大全免费| 久久欧美精品欧美久久欧美| 久久99热这里只有精品18| 国产高清视频在线观看网站| 精品国产乱码久久久久久男人| 色播亚洲综合网| 亚洲色图 男人天堂 中文字幕| 在线看三级毛片| 欧美久久黑人一区二区| 日韩欧美 国产精品| 麻豆国产97在线/欧美 | 国产成人精品久久二区二区免费| 亚洲欧美日韩无卡精品| 啪啪无遮挡十八禁网站| 两个人看的免费小视频| 悠悠久久av| 99在线人妻在线中文字幕| 最近在线观看免费完整版| 精品国产乱子伦一区二区三区| 动漫黄色视频在线观看| 国产精品日韩av在线免费观看| 黄色片一级片一级黄色片| 久久久久久久久中文| 波多野结衣高清无吗| 国产精品精品国产色婷婷| 99久久精品国产亚洲精品| 久久精品国产综合久久久| 欧美又色又爽又黄视频| 欧美zozozo另类| svipshipincom国产片| 黑人巨大精品欧美一区二区mp4| 丰满的人妻完整版| av福利片在线| 不卡av一区二区三区| 国产真人三级小视频在线观看| 久久亚洲真实| 免费观看精品视频网站| 成人三级黄色视频| a在线观看视频网站| xxx96com| 久久久久亚洲av毛片大全| 欧美性猛交╳xxx乱大交人| 亚洲免费av在线视频| 亚洲专区字幕在线| 国产免费av片在线观看野外av| 麻豆av在线久日| 两个人看的免费小视频| 免费看a级黄色片| 51午夜福利影视在线观看| 亚洲avbb在线观看| 久久婷婷成人综合色麻豆| 亚洲国产欧美人成| 女人被狂操c到高潮| 欧美日韩瑟瑟在线播放| 亚洲18禁久久av| 日韩有码中文字幕| 757午夜福利合集在线观看| 国产精品av视频在线免费观看| 久久精品成人免费网站| 精品久久久久久久人妻蜜臀av| 亚洲真实伦在线观看| 一夜夜www| 国内久久婷婷六月综合欲色啪| 黑人巨大精品欧美一区二区mp4| 中文字幕人妻丝袜一区二区| 国产97色在线日韩免费| 国产精品亚洲一级av第二区| 露出奶头的视频| 可以免费在线观看a视频的电影网站| 曰老女人黄片| 国产精品,欧美在线| 好男人在线观看高清免费视频| 波多野结衣巨乳人妻| 国产成人系列免费观看| 欧美乱妇无乱码| 国产激情偷乱视频一区二区| 午夜影院日韩av| 最近最新中文字幕大全免费视频| 国产视频内射| 国产精品乱码一区二三区的特点| 久久人人精品亚洲av| 在线免费观看的www视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产伦一二天堂av在线观看| 99热只有精品国产| 首页视频小说图片口味搜索| 妹子高潮喷水视频| 亚洲欧美一区二区三区黑人| 国内精品久久久久精免费| 亚洲 国产 在线| 搡老妇女老女人老熟妇| 啦啦啦观看免费观看视频高清| 国产精品久久久久久亚洲av鲁大| 亚洲精品久久国产高清桃花| 好看av亚洲va欧美ⅴa在| 男女那种视频在线观看| 搡老岳熟女国产| 免费看十八禁软件| 精品国产乱子伦一区二区三区| 国产av在哪里看| 69av精品久久久久久| 男女那种视频在线观看| 巨乳人妻的诱惑在线观看| 色精品久久人妻99蜜桃| 亚洲成av人片在线播放无| 国产一区二区在线观看日韩 | 久久久久久久久久黄片| 久久精品国产99精品国产亚洲性色| 国产精品98久久久久久宅男小说| 亚洲精品美女久久久久99蜜臀| 两人在一起打扑克的视频| 国内精品一区二区在线观看| 久久久久久国产a免费观看| 国产精品亚洲av一区麻豆| av免费在线观看网站| 黄色视频不卡| 在线播放国产精品三级| 女人高潮潮喷娇喘18禁视频| 夜夜爽天天搞| 国产成人精品久久二区二区免费| 国产蜜桃级精品一区二区三区| 好男人在线观看高清免费视频| 久久精品亚洲精品国产色婷小说| 99精品欧美一区二区三区四区| 亚洲成a人片在线一区二区| 婷婷精品国产亚洲av| 国产午夜精品久久久久久| 精品午夜福利视频在线观看一区| 黄色成人免费大全| 午夜a级毛片| 母亲3免费完整高清在线观看| √禁漫天堂资源中文www| 日韩精品中文字幕看吧| 男女做爰动态图高潮gif福利片| 欧美黑人巨大hd| 高清在线国产一区| 午夜两性在线视频| 在线永久观看黄色视频| 免费看十八禁软件| 天堂影院成人在线观看| 亚洲色图av天堂| 搡老岳熟女国产| 国产精品自产拍在线观看55亚洲| 男插女下体视频免费在线播放| 美女扒开内裤让男人捅视频| 欧美乱色亚洲激情| 成人国产一区最新在线观看| АⅤ资源中文在线天堂| 久久性视频一级片| 天堂影院成人在线观看| 手机成人av网站| 亚洲成人精品中文字幕电影| 亚洲国产欧美人成| 好男人在线观看高清免费视频| 老司机深夜福利视频在线观看| 88av欧美| 色av中文字幕| 欧美又色又爽又黄视频| 麻豆成人午夜福利视频| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩中文字幕国产精品一区二区三区| 国产久久久一区二区三区| 一进一出抽搐gif免费好疼| 亚洲av第一区精品v没综合| 精品一区二区三区av网在线观看| 久久99热这里只有精品18| 很黄的视频免费| 小说图片视频综合网站| 亚洲欧美一区二区三区黑人| 9191精品国产免费久久| 久久久水蜜桃国产精品网| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美国产一区二区入口| 好男人在线观看高清免费视频| 日本熟妇午夜| 久久久国产精品麻豆| 国产精品永久免费网站| 丁香欧美五月| 桃色一区二区三区在线观看| 精品电影一区二区在线| 国产精华一区二区三区| 三级男女做爰猛烈吃奶摸视频| 久久久精品欧美日韩精品| 九色国产91popny在线| 少妇人妻一区二区三区视频| 99在线视频只有这里精品首页| 欧美不卡视频在线免费观看 | 色老头精品视频在线观看| 久久久久久国产a免费观看| 国产片内射在线| 亚洲美女黄片视频| 亚洲人成伊人成综合网2020| 亚洲成人久久性| 色播亚洲综合网| 欧美高清成人免费视频www| 久久中文看片网| 99久久综合精品五月天人人| 天天躁夜夜躁狠狠躁躁| 亚洲色图 男人天堂 中文字幕| 曰老女人黄片| 亚洲欧美日韩高清专用| 亚洲专区国产一区二区| 国产精品久久久久久人妻精品电影| 啦啦啦韩国在线观看视频| 欧美黑人精品巨大| 夜夜夜夜夜久久久久| 不卡一级毛片| 啪啪无遮挡十八禁网站| 亚洲国产精品合色在线| 男女之事视频高清在线观看| 在线国产一区二区在线| 亚洲国产欧美人成| 91老司机精品| 日韩欧美三级三区| 丰满人妻熟妇乱又伦精品不卡| 2021天堂中文幕一二区在线观| 1024手机看黄色片| 精品国产亚洲在线| 俺也久久电影网| 成人高潮视频无遮挡免费网站| 亚洲国产欧美人成| 日日夜夜操网爽| 国产精品久久久人人做人人爽| 久久久久性生活片| 好男人电影高清在线观看| 日本一二三区视频观看| 国产精品一区二区精品视频观看| 岛国在线免费视频观看| 特级一级黄色大片| 亚洲av电影在线进入| 久久久精品大字幕| 99热只有精品国产| xxx96com| 久久久久久久久久黄片| 亚洲天堂国产精品一区在线| 国产蜜桃级精品一区二区三区| 性欧美人与动物交配| www.自偷自拍.com| 久久久国产成人免费| 精品少妇一区二区三区视频日本电影| 99久久无色码亚洲精品果冻| 欧美日韩瑟瑟在线播放| 国产高清有码在线观看视频 | 国产欧美日韩精品亚洲av| 欧美中文日本在线观看视频| 久久久国产欧美日韩av| av片东京热男人的天堂| 午夜免费成人在线视频| 久久久精品国产亚洲av高清涩受| 日韩免费av在线播放| tocl精华| 曰老女人黄片| 99久久无色码亚洲精品果冻| 免费无遮挡裸体视频| 国产亚洲精品久久久久5区| 99国产精品99久久久久| 亚洲精品国产精品久久久不卡| 99热这里只有是精品50| 岛国视频午夜一区免费看| 丰满人妻熟妇乱又伦精品不卡| av国产免费在线观看| 国产亚洲欧美98| 日韩精品青青久久久久久| 制服诱惑二区| 不卡一级毛片| 欧美人与性动交α欧美精品济南到| 女同久久另类99精品国产91| 日韩av在线大香蕉| 日本熟妇午夜| 搡老妇女老女人老熟妇| 欧美日韩瑟瑟在线播放| 亚洲av电影在线进入| 亚洲第一电影网av| 欧美激情久久久久久爽电影| 国内精品久久久久精免费| 少妇粗大呻吟视频| 欧美日韩亚洲综合一区二区三区_| 桃色一区二区三区在线观看| av免费在线观看网站| 长腿黑丝高跟| 亚洲欧美激情综合另类| 欧美精品啪啪一区二区三区| 久久99热这里只有精品18| 午夜精品在线福利| 91在线观看av| avwww免费| 午夜精品在线福利| 亚洲国产日韩欧美精品在线观看 | 国产aⅴ精品一区二区三区波| 久久久久亚洲av毛片大全| 国产精品久久视频播放| 看片在线看免费视频| 巨乳人妻的诱惑在线观看| 香蕉国产在线看| 欧美不卡视频在线免费观看 | 日本黄大片高清| a在线观看视频网站| 中文亚洲av片在线观看爽| 在线观看午夜福利视频| 精品一区二区三区视频在线观看免费| 欧美色视频一区免费| 国产99白浆流出| 欧美乱妇无乱码| 国产一级毛片七仙女欲春2| 高清毛片免费观看视频网站| 精品国产亚洲在线| 久久久国产成人免费| 两个人的视频大全免费| 99久久国产精品久久久| 女人高潮潮喷娇喘18禁视频| 成年免费大片在线观看| 亚洲成人中文字幕在线播放| 国产精品久久电影中文字幕| 两个人免费观看高清视频| 欧洲精品卡2卡3卡4卡5卡区| 香蕉av资源在线| 欧美大码av| 日韩欧美三级三区| 国产99久久九九免费精品| 老汉色av国产亚洲站长工具| 黄色毛片三级朝国网站| 国产精品自产拍在线观看55亚洲| 欧美 亚洲 国产 日韩一| 欧美日韩乱码在线| 白带黄色成豆腐渣| 高清毛片免费观看视频网站| 老司机靠b影院| 国产熟女午夜一区二区三区| 又粗又爽又猛毛片免费看| 很黄的视频免费| 欧美日本亚洲视频在线播放| 国产精品美女特级片免费视频播放器 | 1024手机看黄色片| 在线十欧美十亚洲十日本专区| 哪里可以看免费的av片| 欧美极品一区二区三区四区| 亚洲 欧美 日韩 在线 免费| 少妇裸体淫交视频免费看高清 | 12—13女人毛片做爰片一| 亚洲七黄色美女视频| 国产1区2区3区精品| 男人舔女人下体高潮全视频| 一进一出抽搐动态| 成人国产综合亚洲| 亚洲熟妇熟女久久| 一卡2卡三卡四卡精品乱码亚洲| 日韩免费av在线播放| 麻豆av在线久日| netflix在线观看网站| av在线播放免费不卡| 午夜精品久久久久久毛片777| 不卡av一区二区三区| 长腿黑丝高跟| 午夜久久久久精精品| 亚洲自拍偷在线| 久久精品国产99精品国产亚洲性色| 欧美日韩精品成人综合77777| 蜜桃久久精品国产亚洲av| 国产成人91sexporn| 久久久久久久亚洲中文字幕| 丰满乱子伦码专区| 久久久久久久久久成人| 免费人成视频x8x8入口观看| 免费观看在线日韩| 欧美xxxx性猛交bbbb| 久久人人精品亚洲av| 中文字幕制服av| 国产精品久久久久久精品电影| 一本精品99久久精品77| 国产精品三级大全| 熟妇人妻久久中文字幕3abv| 久久午夜福利片| av.在线天堂| 成人av在线播放网站| 舔av片在线| 日韩在线高清观看一区二区三区| 国产高清有码在线观看视频| 国产熟女欧美一区二区| 国产人妻一区二区三区在| 国产极品天堂在线| 午夜福利成人在线免费观看| 爱豆传媒免费全集在线观看| 久久久欧美国产精品| 欧美日韩乱码在线| 成人亚洲欧美一区二区av| 在现免费观看毛片| 人人妻人人澡欧美一区二区| 国产精品久久电影中文字幕| 国产高清视频在线观看网站| 久久亚洲国产成人精品v| 日日干狠狠操夜夜爽| 日本成人三级电影网站| 精品一区二区三区视频在线| 黄片无遮挡物在线观看| 内地一区二区视频在线| 亚洲18禁久久av| 日韩欧美在线乱码| 亚洲aⅴ乱码一区二区在线播放| 国产亚洲精品久久久久久毛片| 成人性生交大片免费视频hd| 美女大奶头视频| 国产av一区在线观看免费| 国产精品一区二区三区四区久久| 尾随美女入室| 欧美成人a在线观看| 日本黄色视频三级网站网址| 久久久久性生活片| 国产伦精品一区二区三区视频9| 亚洲在线自拍视频| 偷拍熟女少妇极品色| 人人妻人人澡人人爽人人夜夜 | 99在线人妻在线中文字幕| 日日摸夜夜添夜夜添av毛片| 嫩草影院入口| 欧美精品一区二区大全| 性欧美人与动物交配| 丰满的人妻完整版| 国产午夜精品一二区理论片| 色播亚洲综合网| 身体一侧抽搐| 又爽又黄无遮挡网站| 国产精品久久久久久亚洲av鲁大| 国产一级毛片在线| 丰满人妻一区二区三区视频av| 国产激情偷乱视频一区二区| 99国产精品一区二区蜜桃av| 日本黄大片高清| 成年免费大片在线观看| 九九久久精品国产亚洲av麻豆| 亚洲三级黄色毛片| 搡老妇女老女人老熟妇| 日本-黄色视频高清免费观看| 99热全是精品| 日韩欧美一区二区三区在线观看| 成人午夜精彩视频在线观看| 一区二区三区四区激情视频 | 夜夜夜夜夜久久久久| 日韩制服骚丝袜av| 波多野结衣巨乳人妻| 亚洲aⅴ乱码一区二区在线播放| 国产一级毛片七仙女欲春2| 欧美色欧美亚洲另类二区| 久久亚洲精品不卡| a级一级毛片免费在线观看| 岛国在线免费视频观看| 人妻夜夜爽99麻豆av| 欧美丝袜亚洲另类| 色综合亚洲欧美另类图片| 看片在线看免费视频| 国产高清有码在线观看视频| 久久久久国产网址| 久久韩国三级中文字幕| 三级经典国产精品| 97热精品久久久久久| 熟女电影av网| 男人和女人高潮做爰伦理| 日本-黄色视频高清免费观看| 高清毛片免费观看视频网站| 夜夜看夜夜爽夜夜摸| 男插女下体视频免费在线播放| 中文亚洲av片在线观看爽| 日本一二三区视频观看| 国产午夜福利久久久久久| 男人和女人高潮做爰伦理| 亚洲成人久久性| 人妻少妇偷人精品九色| 中文字幕av成人在线电影| 国产黄色视频一区二区在线观看 | 少妇人妻一区二区三区视频| 嘟嘟电影网在线观看| 久久精品国产自在天天线| 日本三级黄在线观看| 亚洲av.av天堂| 十八禁国产超污无遮挡网站| 国产高清视频在线观看网站| 国产精品电影一区二区三区| 欧美性猛交黑人性爽| 国产毛片a区久久久久| 精品一区二区三区视频在线| 男人舔女人下体高潮全视频| 看片在线看免费视频| 性插视频无遮挡在线免费观看| 一进一出抽搐gif免费好疼| 一卡2卡三卡四卡精品乱码亚洲| 九色成人免费人妻av| 黄色配什么色好看| 简卡轻食公司| 久久精品国产亚洲av香蕉五月| 中文字幕av在线有码专区| videossex国产| 国产亚洲5aaaaa淫片| 老师上课跳d突然被开到最大视频| 听说在线观看完整版免费高清| av福利片在线观看| 99热这里只有是精品在线观看| 国产精品免费一区二区三区在线| 欧美激情国产日韩精品一区| 好男人在线观看高清免费视频| 欧美日韩精品成人综合77777| 国产精品电影一区二区三区| 夜夜爽天天搞| 国产极品天堂在线| 国产在线精品亚洲第一网站| 日本免费a在线| 悠悠久久av| 九九爱精品视频在线观看| 综合色av麻豆| 成人特级黄色片久久久久久久| 免费看av在线观看网站| 久久人人爽人人爽人人片va| 少妇高潮的动态图| 99热6这里只有精品| 美女黄网站色视频| 亚洲在久久综合| 在现免费观看毛片| av免费观看日本| 99久久精品一区二区三区| videossex国产| 中文欧美无线码| 国产成人精品一,二区 | 国产高潮美女av| 国产久久久一区二区三区| 青春草亚洲视频在线观看| 亚洲中文字幕日韩| 99久国产av精品| 久久精品综合一区二区三区| 99视频精品全部免费 在线| 成人二区视频| 色哟哟·www| 在线观看免费视频日本深夜| 国产一级毛片在线| 久久精品综合一区二区三区| 插逼视频在线观看| 精品日产1卡2卡| 久久精品综合一区二区三区| 高清午夜精品一区二区三区 | 中文精品一卡2卡3卡4更新| 成人高潮视频无遮挡免费网站| 三级毛片av免费| 久久久久久久久久黄片| 婷婷亚洲欧美| 国产视频内射| 99在线人妻在线中文字幕| 在线观看66精品国产| 国产单亲对白刺激| 久久精品综合一区二区三区| 国产熟女欧美一区二区| 老司机福利观看| 噜噜噜噜噜久久久久久91| 亚洲一区二区三区色噜噜| 亚洲图色成人| 日韩成人av中文字幕在线观看| 两个人的视频大全免费| 又爽又黄a免费视频| 国产黄片视频在线免费观看| 亚洲av中文av极速乱|