• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Removal of Volatile Organic Compounds Driven by Platinum Supported on Amorphous Phosphated Titanium Oxide

    2020-05-13 00:43:52HUANGXieyiWANGPengYINGuohengZHANGShaoningZHAOWeiWANGDongBIQingyuanHUANGFuqiang
    無機(jī)材料學(xué)報(bào) 2020年4期
    關(guān)鍵詞:氧化鈦非晶介孔

    HUANG Xieyi, WANG Peng, YIN Guoheng, ZHANG Shaoning, ZHAO Wei,WANG Dong, BI Qingyuan, HUANG Fuqiang,3,4

    Removal of Volatile Organic Compounds Driven by Platinum Supported on Amorphous Phosphated Titanium Oxide

    HUANG Xieyi1,2, WANG Peng2,3, YIN Guoheng1, ZHANG Shaoning1, ZHAO Wei1,WANG Dong1, BI Qingyuan1, HUANG Fuqiang1,3,4

    (1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China; 4. State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China)

    Development of high efficiency catalyst is the key factor to catalytic combustion of volatile organic com-pounds (VOCs). Herein, amorphous mesoporous phosphated TiO2(ATO-P) with high specific surface area supported platinum catalyst was successfully fabricated. P-dopant can increase the surface area (up to 278.9 m2?g?1) of ATO-P, which is 21 times higher than that of pristine TiO2, and make the amorphous titanium oxide structure. The supported Pt catalyst with amorphous mesoporous feature shows impressive performance and excellent thermostability for VOCs oxidation. The Pt/ATO-P catalyst exhibits outstanding catalytic efficiency, the50and90(temperatures required for achieving conversions of 50% and 90%) are respectively 130 ℃and 140 ℃, for toluene oxidation under high gas hourly space velocity (GHSV) of 36000 mL·h?1·g?1and toluene concentration of 10000 mL·m?3. The performance is superior to the reference Pt/TiO2and comparable with the state-of-the-art catalysts. These findings can make a significant contribution on the new applications of amorphous mesoporous phosphated materials in VOCs removal.

    amorphous mesoporous structure; phosphated TiO2; Pt nanoparticle; toluene oxidation; VOCs removal

    Volatile organic compounds (VOCs), like toluene, benzene, esters and hydrocarbons, are emitted from vari-ous industrial sources which can cause serious envi-ronmental pollution and health problems[1?2]. Toluene, one kind of toxic and strong carcinogenic chemical, is frequently used in making paints, adhesives, rubbers, and leather tanning processes because of its excellent ability to dissolve organic substances[3-4]. However, toluene is difficult to degrade due to its stable structure[5]. Several techniques, such as physical and chemical adsorption, photocatalytic and catalytic oxidation methods, are widely used for the combustion of VOCs[6-7]. Among them, catalytic oxidation is regarded as a promising approach owing to its high efficiency and convenient operating conditions[8].

    Researches on catalysts for toluene oxidation have been conducted, including noble metal and metal oxides catalysts[9-10]. Due to the significant reduction on acti-vation energy during the catalytic oxidation process, noble metal based catalysts, such as Pt, Pd, Au, Rh, and Ir have shown impressive performance in toluene remo-val[11-13]. It was found that supported Pt catalysts showed the best catalytic performance compared with other noble metals[14-15]. It should be pointed out that the supports play an important role in the catalytic reaction pro-cesses[16-18]. Many works have focused on the metal- support interac-tion by studying the catalytic properties of TiO2, Al2O3, ZrO2, and ZnO supported Au nanopar-ticles[19], and the shape effect of Pt/CeO2catalysts[10]. Nevertheless, most supports suffer from low specific surface area and few active sites, which are crucial for the overall catalytic activity.

    Due to high specific surface area and variable valence, amorphous materials have attracted increasing interests in VOCs oxidation. And the numerous defects in amo-rphous structures can offer large quantities of oxygen vacancies, which are beneficial for the adsorption of oxygen and organic molecules. Lee,[20]reported that carbon black supported amorphous MnOis highly efficient for oxygen involved reaction. Wang,[21]found that amorphous MnOmodified Co3O4can en-hance the catalytic activity for the VOCs oxidation. It was demonstrated that the amorphous structure of bimetallic Pd-Pt/CeO2-Al2O3-TiO2could provide more vacancies and active sites for catalytic combustion[22]. Therefore, the amorphous catalysts show a tremendous potential in practical catalytic reactions. However, it is still a challenge to develop highly active and robust catalysts based on the amorphous materials for the oxidation of VOCs.

    Herein, we demonstrate an efficient Pt/ATO-P catalyst for the catalytic removal of VOCs under high gas hourly space velocity (GHSV)and high substrate concentration. It should be pointed out that incorporating phosphorus into the framework of TiO2is a widely applied strategy for obtaining amorphous mesoporous feature[23-24]. And the P element can stabilize the TiO2framework and significantly increase the specific surface area[24].

    1 Experimental

    1.1 Preparation of sample

    1.1.1 Preparation of support

    All reagents were of analytical grade and were used without any purification. 3 mL of tetrabutyl titanate was dissolved in 30 mL of ethanol at room temperature, which was marked as solution A. Then 0.125 mL of phosphoric acid (H3PO4) was subsequently dropwisely added into solution A with stirring to form a homogenous mixture, and kept stirring for 24 h. The obtained white solid products were separated by centrifuge, and washed by deionized water and ethanol several times, followed by freeze drying overnight. The as-prepared products were calcined at 400 ℃in air for 4 h at a heating rate of 5 ℃?min?1.

    1.1.2 Preparation of catalyst

    The ATO-P supported platinum (Pt/ATO-P) sample was preparedimpregnation method. A desired amount of ATO-P was transferred into aqueous solution containing appropriate amount of chloroplatinic acid (H2PtCl4). Subsequently, the samples were impregnated at room temperature for 12 h. After drying out the H2O at 80 ℃, the samples were treated at 350 ℃ for 2 h with a H2/Ar mixture (5/95,/).

    1.2 Characterization

    XRD characterization of the samples was carried out on a German Bruker D8 Advance X-ray diffractometer (XRD) using the Ni-filtered Cu Kα radiation at 40 kV and 40 mA. Nitrogen adsorption-desorption isotherms were measured at –196 ℃ on a Micromeritics ASAP 2460 analyzer. Samples were degassed at 120 ℃ for 24 h prior to the measurement. The specific surface area of the samples was calculated using the Brunauer–Emmett– Teller (BET) method with the adsorption data at the relative pressure (/0) range of 0.05–0.2. The total pore volumes were estimated at/0=0.99. The pore size distribution (PSD) curves were calculated from the adsorption branch using Barrett-Joyner-Halenda (BJH) model. The prepared materials were pressed into tablets with KBr powder and then detected by FT-IR (Perkin Elmer, USA) in the scanning range from 400 to 4000 cm–1. SEM images were obtained by Hitachi-S4800. A JEOL 2011 microscope operating at 200 kV equipped with an EDX unit (Si(Li) detector) was used for the transmission electron microscope (TEM) and high resolution trans-mission electron microscope (HRTEM) investigations. The samples for TEM testing were prepared by dis-persing the powder in ethanol and applying a drop of highly dilute suspension on carbon-coated grids. XPS data were recorded with a Perkin Elmer PHI 5000 C system equipped with a hemispherical electron energy analyzer. The spectrometer was operated at 15 kV and 20 mA, and a magnesium anode (Mg Kα,=1253.6 eV) was used. The C1s line (284.6 eV) was used as the reference to calibrate the binding energies (BE). TG measurements were conducted on a Netzsch STA 449C TG-DSC thermoanalyzer. The flow rate of the carrier gas (air) was 30 mL?min–1. The temperature was raised from room temperature to 800 ℃ at a ramp rate of 10 ℃?min–1. Prior to H2-TPR test, the sample (100 mg) was pretreated at 200 ℃ for 2 h and cooled to 50 ℃ in the flowing He. TPR experiment was carried out in 5vol% H2/He flowing at 30 mL?min–1, with a ramping rate of 5 ℃?min–1to a final temperature of800 ℃. The signal was monitored using a TCD detector.

    1.3 Catalytic activity test

    The catalytic activity of samples was evaluated in a continued-flow fixed-bed quartz reactor with 50 mg catalyst. Toluene was introduced into the reactor with bubbling toluene solution in ice bath with pure air. The concentration of toluene was about 104mL?m?3, and the flow rate was kept at 30 mL?min–1by a mass controller, equivalent to a gas hour space velocity (GHSV) of 36000 mL?h–1?g–1. After steady operation for 100 min, the activity of the catalyst was tested. Toluene con-cen-tration was detected by a gas chromatograph equi-pped with a flame ionization detector. The toluene conversion (toluene) was calculated according to the equation:

    toluene(inout)/in·100% (1)

    whereinandoutare the inlet and outlet toluene concentrations, respectively.

    2 Results and discussion

    2.1 Physicochemical properties of ATO-P support

    Fig. 1 displays the schematic diagram of amorphous ATO-P preparedfacile co-precipitation. XRD patterns of ATO-P and TiO2are shown in Fig. 2. All diffraction peaks of basic TiO2sample are indexed to anatase phase (JCPDS 21-1276). Interestingly, there is no TiO2crystal phase observed for ATO-P sample (Fig. 2), suggesting that ATO-P sample is typically amorphous and phosphorus dopant can markedly restrain the crystallization of anatase[25?26].

    According to the TGA-DSC thermograms (Fig. 3), a thermal decomposition of ATO-P took place in the temperature range of 20?900 ℃. The first DSC peak at 30?80 ℃ is due to the release of physical adsorbed water. When all the water is released, Ti?OH and HPO42?groups start to condense[27]. These processes occur simultaneously in the temperature range of 100?220 ℃ (1.927% of weight loss) and 220?516 ℃ (0.7% of weight loss), resulting in an overlap of the TG data. There is no further weight loss up to 516 ℃. The DSC curve shows two exothermic peaks at 704and 781 ℃, corresponding to a two-step exothermic transformation of ATO-P into a crystalline phase.

    Fig. 1 Structure of amorphous ATO-P prepared via facile co-precipitation

    Fig. 2 XRD patterns of TiO2 and ATO-P samples

    Fig. 3 TG (solid line) and DSC (dashed line) curves for ATO-P

    Fig. 4(a,b) show the SEM images of ATO-P. The ATO-P nanoparticles are homogeneously dispersed with the particle size of ~20 nm, and the sizes are similar to that of TiO2(Fig. S1(a)). HRTEM was employed to characterize the nanostructure of samples. No porous structure is observed in the HRTEM image of TiO2(Fig. S1(b)), while various porous structure is shown in ATO-P (Fig. 4(c)). Moreover, the pores of ATO-P are uniform, and the average diameter is around 10 nm. EDS elemental mappings indicate that the P element homo-geneously distributes in ATO-P (Fig. 4(d)). It is found that H3PO4owns unique effects for synthesizing amorphous mesoporous phosphated TiO2[28-29].

    Fig. 4 SEM (a, b) and HRTEM (c) images, and EDS elemental mapping (d) of ATO-P

    As shown in Fig. 5, the obtained ATO-P sample shows a characteristic type-IV isotherm with clear hysteresis loop locates at the/0range of 0.45?1.0, showing the existence of a large amount of mesopore. Notably, the specific surface area of 278.9 m2·g?1for ATO-P is 21 times higher than that of pristine TiO2. The pore diameters of ATO-P center around 10 nm (Fig. 5 and Table 1), which is consistent with HRTEM result (Fig. 4(c)).

    The results of EDX are listed in Table 1. The actual P concentration is much less than the initial addition amount of H3PO4, suggesting that partial H3PO4is leached during the preparation process.

    FT-IR spectra of TiO2and ATO-P samples are depicted in Fig. 6. The wide absorption bands around 3440 and 1620 cm?1are attributed to the surface adsorbed water and/or hydroxyl groups[30-31]. The bands at 1100 cm?1are ascribed to the stretching vibration of Ti?O?P species, which are absent in TiO2. The weak bands at 610 cm?1are due to the vibration of Ti?O?Ti bond[22]. Compared with TiO2, a weak peak appears in series ATO-P, which may result from the incorporating effect of phosphorus dopant. There is no distinct peak over the range of 700?800 cm?1(Fig. 6), indicating the absence of P?O?P groups in the amorphous mesoporous phosphated TiO2. Therefore, the P element is incorporated into the frameworks of ATO-P by forming Ti?O?P bonds[24].

    Fig. 5 N2 adsorption-desorption isotherms (a) and pore size distributions (b) of ATO-P and TiO2

    Table 1 Textural properties and elemental compositions ofTiO2 and ATO-P samples

    [a] Weight fraction (wt%) are determined by EDX analysis

    Fig. 6 FT-IR spectra of TiO2 and ATO-P

    As shown in Fig. 7(a), the full XPS spectra indicate the existence of P in ATO-P. High-resolution XPS spectra of P 2p, Ti 2p and O 1s are depicted in Fig. 7(b?d). The peak of P 2p of ATO-P is at 134.0 eV, suggesting that phosphorus in ATO-P gives a pentavalent oxidation state of P5+. No peak observed at 128.6 eV, which is the characteristic binding energy of P2p in TiP, indicating the absence of Ti?P bonds in ATO-P samples. As depicted in Fig. 7(c), the peaks of Ti2p3/2and Ti2p1/2in ATO-P show remarkable blue-shift owing to the incorporation effect of phosphorus element. Fig. 7(d) shows the XPS spectra of O1s signals of TiO2and ATO-P. The single peak at 529.5 eV is corresponded to the oxygen in Ti?O bond of TiO2. However, the O1s spectrum of ATO-P contains two peaks at 531.4 and 532.9 eV, which are contributed to Ti?O?P and O?H bond, respectively[32-33].

    2.2 Physicochemical properties of Pt/ATO-P catalysts

    Fig. 8(a) shows that the Pt nanoparticles are well dis-persed over the ATO-P support, and the size is relatively uniform with the average parameter of (1.8±0.3) nm (insert in Fig. 8(a)). Fig. 8(b) and S2 demonstrate a-spacing of 0.23 nm, attributed to the (111) plane of the highly crystalline Pt nanostructure. Furthermore, the actual Pt content was also confirmed by inductively coulped plasma atomic emission spectra (ICP-AES). The mass loadings of Pt in Pt/TiO2and Pt/ATO-P catalysts are 0.90 and 0.92, respectively, which are close to the nominal composition of 1wt%.

    Fig. 8(c) shows the XRD patterns of Pt/ATO-P and Pt/TiO2catalysts. The amorphous structure is still remained for Pt/ATO-P sample. However, no diffraction pattern of Pt nanoparticles is observed, indicating that the Pt nanoparticles are quite small and/or the Pt species are highly dispersed on the ATO-P surface. These results are well consistent with the HRTEM data above mentioned in Fig. 8(a, b).

    Fig. 7 Full XPS spectra (a) of TiO2 and ATO-P; High-resolution XPS P2p (b), Ti2p (c), and O1s (d) of TiO2 and ATO-P

    Fig. 8 TEM (a) and HRTEM (b) images of Pt/ATO-P with insert in (a) indicating the particle size distribution of Pt nanoparticles, XRD patterns (c) and XPS Pt4f (d) of Pt/ATO-P

    The results of XPS analysis of Pt/ATO-P and Pt/TiO2samples are depicted in Fig. 8(d). It is known that the positions of Pt4f7/2binding energy at 71.1, 72.4, and 74.2 eV are attributedto Pt0, Pt2+, and Pt4+species, respec-tively[34]. Similiar XPS profiles arerendered as the indication of a mixture of various valence states for Pt species overthe small Pt nanoparticles. The exisence of Pt+species reflects the strong metal-support interaction (Pt?ATO-P), especially the prominent electronic intera-ction between active Pt and underlying phosphated TiO2support[35]. This is probably due to the changes of the metal- support interaction by doping phosphorus atoms which can make an obvious effect onTi?O?P frameworks.

    The H2-TPR profiles depicted in Fig. S3 show that there are two H2-consumption peaks at low and high temperature attributed to weak and strong interaction of Pt and supports, respectively[36]. Notably, two reduction peaks of Pt/ATO-P catalyst at 78 and 601 ℃ show stro-nger intensity than that of Pt/TiO2at 72 and 433 ℃, indicating strongPt-support interaction for Pt/ATO-P. These results are consistent with the XPS data.

    2.3 Removal of VOCs by Pt/ATO-P catalysts

    The catalytic efficiencies are depicted in Fig. 9. It is clearly observed that reaction temperature can enhance the performance of Pt/ATO-P catalyst. The50and90are widely used to evaluate the catalytic performance[37]. As shown in Fig. 9(a), Pt/ATO-P shows the excellent catalytic activity.50and90values for toluene com-bustion are 130 and 140 ℃, which are much lower than those of Pt/TiO2with50and90of 160 and 190 ℃, res-pectively. Combined with the above XPS data (Fig. 8(d)), it can be concluded that the existance of phosphorus component plays an important role in electronic structure of the active Pt species underlying amorphous meso-porous ATO-P support and thus the catalytic oxidation removal of toluene over Pt/ATO-P catalyst.

    Fig. 9 Toluene conversion (a) of 1wt% Pt/ATO-P with respect to reaction temperature, and thermal stability (b) of Pt/ATO-P at 180 ℃

    It is well known that noble metal loading significantly affects the catalytic behavior for many reactions. Pt/ATO-P catalysts with different Pt loadings were examined, and the results are depicted in Fig. 10. Compared with 0.5wt% and 2wt%, the Pt loading of 1wt% shows better performance (lower50and90) for toluene oxidation. The low catalytic activity of 0.5 wt% Pt/ATO-P results from low density of active platinum nanoparticles anchoring on the surface of ATO-P support. For the Pt/ATO-P catalyst with Pt loading up to 2wt%, larger size of Pt nanopartices (~5 nm) can be obtained (Fig. S4). Larger Pt particles can not only decrease the dispersion of Pt species[38], but also lead to a weaker metal-support (Pt/ATO-P) interactions, thus resulting in the poor activity.

    Stability is critical for the catalysts on the practical application. 1wt% Pt/ATO-P exhibits excellent thermal stability for toluene oxidation over a 50-h period on stream at 180 ℃ without visible loss of activity, as shown in Fig. 9(b). The toluene conversion remains a high level of 95.4% at the end of reaction process and maintains near full selectivity to final products of CO2and H2O. The excellent stability of Pt/ATO-P catalyst is attributed to the unique geometric structure of crystalline Pt nanoparticles and amorphous mesoporous phosphated TiO2with prominent electronic interaction. For the used 1wt% Pt/ATO-P, TEM measurement and XPS analysis (Fig. S5 and Fig. S6) demonstrate no significant change on the morphology, average size of Pt nanoparticles, and the chemical oxidation state of active Pt species. These results suggest the robustness of Pt/ATO-P catalyst for toluene oxidation removal under a relatively mild the-rmal process.

    Given the superb thermocatalytic performance for 1wt% Pt/ATO-P catalyst toward toluene oxidation, we were curious to examine whether the engineered material would also catalyze the removal of a class of VOCs, especially the complete oxidation of benzene,-hexane, ethyl acetate, and mesitylene. As depicted in Fig. 11, the90values for the catalytic oxidation of benzene, ethyl acetate,-hexane, and mesitylene are 216, 331, 271, and 200 ℃, respectively. Notably, high tem-perature is requ-ired for ethyl acetate conversion at 90% due to its strong structural stability[39-40]. These results show a broad scope toward catalytic combustion invo-lving trouble-some organic compounds over Pt/ATO-P and indicate that the Pt/ATO-P catalysts can provide a new insight for the oxidation of VOCs.

    Fig. 10 Toluene conversion over Pt/ATO-P catalysts with different Pt loadings

    Fig. 11 Catalytic activity of Pt/ATO-P for the conversion of benzene (a), ethyl acetate (b), n-hexane (c), and mesitylene (d) with respect to reaction temperature

    3 Conclusions

    In summary, we successfully fabricated the amorphous mesoporous phosphated TiO2supported platinum catalysts for efficient removal of volatile organic compounds. The electronic modifications of supported Pt nanoparticles for the underlying amorphous ATO-P material and Pt loading for the whole catalyst were systematically investigated. The phosphorus dopant played an important role for stabilizing the inflated Ti?O?P frameworks as well as the electronic structure of Pt species. Compared with pristine TiO2, ATO-P with high specific surface area showed signi-ficant enhancement for Pt/ATO-P samples for catalytic overall oxidation of toluene under practical conditions. The performance of the engineered Pt/ATO-P for toluene combustion was superior to the reference Pt/TiO2and comparable with the state-of-the-art catalysts. Additionally, Pt/ATO-P catalyst exhibited excellent stability for toluene oxidation removal under a relatively mild thermal process and could be potentially applied in a broad scope of VOCs. The present work is expected to make a significant contribution on the new application of amorphous mesoporous phosphated material in VOCs removal.

    Supporting Materials

    Supporting Materials related to this article can be found at https://doi.org/10.15541/jim20190154.

    [1] XIE S H, LIU Y X, DENG J G,. Insights into the active sites of ordered mesoporous cobalt oxide catalysts for the total oxidation of-xylene.,2017, 352: 282–292.

    [2] GENUINO H C, DHARMARATHNA S, NJAGI E C,. Gas-phase total oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selective manganese oxide and copper manganese oxide catalysts., 2012, 116(22): 12066–12078.

    [3] SIHAIB Z, PULEO F, GARCIA-VARGAS J M,.Manganese oxide-based catalysts for toluene oxidation.,2017, 209(15): 689–700.

    [4] ROKICI?SKA A, DROZDEK M, DUDEK B,. Cobalt- containing BEA zeolite for catalytic combustion of toluene.,2017, 212: 59–67.

    [5] SANTOS V P, PEREIRA M F R, óRF?O J J M,. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds.,2010, 99(1/2): 353–363.

    [6] ?ULIGOJ A, ?TANGAR U L, RISTI? A,. TiO2-SiO2films from organic-free colloidal TiO2anatase nanoparticles as photocatalyst for removal of volatile organic compounds from indoor air.,2016, 184: 119–131.

    [7] QIAN X F, YUE D T, TIAN Z Y,. Carbon quantum dots decorated Bi2WO6nanocomposite with enhanced photocatalytic oxidation activity for VOCs.,2016, 193: 16–21.

    [8] CHEN J, CHEN X, XU W J,. Homogeneous introduction of CeOinto MnO-based catalyst for oxidation of aromatic VOCs.,2018, 224: 825–835.

    [9] YANG H G, DENG J G, LIU Y X,. Preparation and catalytic performance of Ag, Au, Pd or Pt nanoparticles supported on 3DOM CeO2-Al2O3for toluene oxidation.,2016, 414: 9–18.

    [10] PENG R S, SUN X B, LI S J,. Shape effect of Pt/CeO2catalysts on the catalytic oxidation of toluene.,2016, 306: 1234–1246.

    [11] ALGHAMDI A O, JEDIDI A, AZIZ S G,. Theoretical insights into dehydrogenative chemisorption of alkylaromatics on Pt(100) and Ni(100)., 2018, 363: 197–203.

    [12] ZHANG Z X, JIANG Z, SHANGGUAN W F. Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review.,2016, 264: 270–278.

    [13] XIE S H, LIU Y X, DENG J G,. Effect of transition metal doping on the catalytic performance of Au-Pd/3DOM Mn2O3for the oxidation of methane and-xylene.,2017, 206: 221–232.

    [14] SANTOS V P, CARABINEIRO S A C, TAVARES P B,. Oxidation of CO, ethanol and toluene over TiO2supported noble metal catalysts.,2010, 99(1/2): 198–205.

    [15] FU X R, LIU Y, YAO W Y,. One-step synthesis of bimetallic Pt-Pd/MCM-41 mesoporous materials with superior catalytic performance for toluene oxidation.,2016, 83: 22–26.

    [16] YIN G H, HUANG X Y, CHEN T Y,. Hydrogenated blue titania for efficient solar to chemical conversions: preparation, characterization, and reaction mechanism of CO2reduction.,2018, 8(2): 1009–1017.

    [17] WU D W, ZHANG Q L, LIN T,. Effect of Fe on the selective catalytic reduction of NO by NH3at low temperature over Mn/CeO2-TiO2catalyst.,2012, 27(5): 495–500.

    [18] YU W W, ZHANG Q H, SHI G Y,. Preparation of Pt-loaded TiO2nanotubes/nanocrystals composite photocatalysts and their photocatalytic properties.,2011, 26(7): 747–752.

    [19] COMOTTI M, LI W C, SPLIETHOFF B,. Support effect in high activity gold catalysts for CO oxidation.,2006, 128(3): 917–924.

    [20] LEE J S, PARK G S, LEE H I,. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions.,2011, 11(12): 5362–5366.

    [21] ZHENG Y L, WANG W Z, JIANG D,. Amorphous MnOmodified Co3O4for formaldehyde oxidation: improved low-temperature catalytic and photothermocatalytic activity.,2016, 284: 21–27.

    [22] GUO Y Y, ZHANG S, MU W T,. Methanol total oxidation as model reaction for the effects of different Pd content on Pd-Pt/CeO2-Al2O3-TiO2catalysts.,2017, 429: 18–26.

    [23] CLEARFIELD A, THAKUR D S. Zirconium and titanium phosphates as catalysts: a review.,1986, 26: 1–26.

    [24] YU J C, ZHANG L Z, ZHENG Z,. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity.,2003, 15(11): 2280–2286.

    [25] K?R?SI L, OSZKó A, GALBáCS G,. Structural properties and photocatalytic behaviour of phosphate-modified nanocrystalline titania films.,2007, 77(1/2): 175–183.

    [26] K?R?SI L, PAPP S, BERTóTI I,. Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2.,2007, 19(19): 4811–4819.

    [27] MASLOVA M V, RUSANOVA D, NAYDENOV V,. Synthesis, characterization, and sorption properties of amorphous titanium phosphate and silica-modified titanium phosphates.,2008, 47(23): 11351–11360.

    [28] ZHU Y L, ZHOU W, SUNARSO J,. Phosphorus-doped perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution.,2016, 26(32): 5862–5872.

    [29] HEO Y W, PARK S J, IP K,. Transport properties of phosphorus-doped ZnO thin films.,2003, 83(6): 1128–1130.

    [30] YIN G H, BI Q Y, ZHAO W,. Efficient conversion of CO2to methane photocatalyzed by conductive black titania.,2017, 9(23): 4389–4396.

    [31] PLUMEJEAU S, RIVALLIN M, BROSILLON S,. The reductive dehydration of cellulose by solid/gas reaction with TiCl4at low temperature: a cheap, simple, and green process for preparing anatase nanoplates and TiO2/C composites.,2016, 22(48): 17262–17268.

    [32] REN T Z, YUAN Z Y, AZIOUNE A,. Tailoring the porous hierarchy of titanium phosphates.,2006, 22(8): 3886–3894.

    [33] YOSHIDA H, YAZAWA Y, HATTORI T. Effects of support and additive on oxidation state and activity of Pt catalyst in propane combustion.,2003, 87(1-4): 19–28.

    [34] TIERNAN M J, FINLAYSON O E. Effects of ceria on the combustion activity and surface properties of Pt/Al2O3catalysts.,1998, 19(1): 23–25.

    [35] LYKHACH Y, FAISAL F, SKáLA T,. Interplay between the metal-support interaction and stability in Pt/Co3O4(111) model catalysts.,2018, 6: 23078–23086.

    [36] ZHANG C B, HE H, TANAKA KI. Catalytic performance and mechanism of a Pt/TiO2catalyst for the oxidation of formaldehyde at room temperature.,2006, 65: 37–43.

    [37] RAHMANI F, HAGHIGHI M, ESTIFAEE P. Synthesis and characterization of Pt/Al2O3-CeO2nanocatalyst used for toluene abatement from waste gas streams at low temperature: conventionalplasma-ultrasound hybrid synthesis methods.,2014, 185(1): 213–223.

    [38] CHEN C Y, CHEN F, ZHANG L,. Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts.,2015, 51: 5936–5938.

    [39] LI S M, HAO Q L, ZHAO R Z,. Highly efficient catalytic removal of ethyl acetate over Ce/Zr promoted copper/ZSM-5 catalysts.,2016, 285: 536–543.

    [40] CARABINEIRO S A C, CHEN X, MARTYNYUK O,. Gold supported on metal oxides for volatile organic compounds total oxidation.,2015, 244: 103–114.

    摻磷非晶氧化鈦負(fù)載鉑用于高效催化氧化揮發(fā)性有機(jī)化合物

    黃謝意1,2, 王鵬2,3, 尹國恒1, 張紹寧1, 趙偉1, 王東1, 畢慶員1, 黃富強(qiáng)1,3,4

    (1. 中國科學(xué)院 上海硅酸鹽研究所, 高性能陶瓷和超微結(jié)構(gòu)國家重點(diǎn)實(shí)驗(yàn)室, 上海 200050; 2. 中國科學(xué)院大學(xué), 北京 100049; 3. 上??萍即髮W(xué) 物理科學(xué)與技術(shù)學(xué)院, 上海 200050; 4. 北京大學(xué) 化學(xué)與分子工程學(xué)院, 稀土材料化學(xué)及應(yīng)用國家重點(diǎn)實(shí)驗(yàn)室, 北京 100871)

    高活性催化劑是揮發(fā)性有機(jī)化合物(VOCs)催化氧化消除的關(guān)鍵因素。本研究通過簡單的共沉淀法成功制備了具有高比表面積的非晶介孔磷摻雜氧化鈦負(fù)載鉑催化劑(Pt/ATO-P)。通過P摻雜, 既可獲得非晶介孔結(jié)構(gòu), 又可獲得高ATO-P比表面積(可達(dá)278.9 m2?g?1)。非晶介孔Pt/ATO-P催化劑顯示出優(yōu)異的VOCs催化氧化性能和良好的熱穩(wěn)定性。Pt/ATO-P樣品在空速為36000 mL?h?1?g?1、甲苯濃度為10000 mL?m?3的反應(yīng)條件下, 對甲苯催化氧化的50和90(實(shí)現(xiàn)50%和90%轉(zhuǎn)化率所需的溫度)分別為130 ℃和140 ℃, 明顯優(yōu)于無磷催化劑Pt/TiO2。這些發(fā)現(xiàn)可以為拓展非晶介孔磷化材料在環(huán)境凈化和能源轉(zhuǎn)化等領(lǐng)域的應(yīng)用提供重要參考。

    非晶介孔材料; 磷摻雜非晶氧化鈦; 鉑納米顆粒; 甲苯催化氧化; VOCs消除

    O782

    A

    2019-04-12;

    2019-05-24

    National Key Research and Development Program of China (2016YFB0901600); National Natural Science Foundation of China (21872166); Science & Technology Commission of Shanghai (16ZR1440400, 16JC1401700); The Key Research Program of Chinese Academy of Sciences (QYZDJ-SSW-JSC013 and KGZD-EW-T06)

    Huang Xieyi (1994–), male, Master candidate. E-mail: huangxieyi@student.sic.ac.cn

    黃謝意(1994–), 男, 碩士研究生. E-mail: huangxieyi@student.sic.ac.cn

    BI Qingyuan, associate professor. E-mail: biqingyuan@mail.sic.ac.cn;

    HUANG Fuqiang, professor. E-mail: huangfq@mail.sic.ac.cn

    畢慶元, 副研究員. E-mail: huangfq@mail.sic.ac.cn; 黃富強(qiáng), 研究員. E-mail: huangfq@mail.sic.ac.cn

    1000-324X(2020)04-0482-09

    10.15541/jim20190154

    猜你喜歡
    氧化鈦非晶介孔
    基于JAK/STAT信號通路研究納米氧化鈦致卵巢損傷的分子機(jī)制*
    保健文匯(2022年4期)2022-06-01 10:06:50
    功能介孔碳納米球的合成與應(yīng)用研究進(jìn)展
    氧化鈦對陶瓷結(jié)合劑金剛石磨具性能及結(jié)構(gòu)的影響
    新型介孔碳對DMF吸脫附性能的研究
    非晶Ni-P合金鍍層的制備及應(yīng)力腐蝕研究
    有序介孔材料HMS的合成改性及應(yīng)用新發(fā)展
    非晶硼磷玻璃包覆Li[Li0.2Co0.13Ni0.13Mn0.54]O2正極材料的研究
    介孔二氧化硅制備自修復(fù)的疏水棉織物
    塊體非晶合金及其應(yīng)用
    Fe73.5Cu1Nb3Si13.5B9非晶合金粉體的SPS燒結(jié)特性研究
    少妇粗大呻吟视频| 免费看十八禁软件| 午夜激情av网站| 国产片内射在线| 69精品国产乱码久久久| 亚洲欧美精品自产自拍| 美女午夜性视频免费| 黑人操中国人逼视频| 可以免费在线观看a视频的电影网站| 中文字幕另类日韩欧美亚洲嫩草| 丁香六月天网| 在线十欧美十亚洲十日本专区| 欧美一级毛片孕妇| 中文欧美无线码| 国产三级黄色录像| 国产亚洲av片在线观看秒播厂| 欧美国产精品va在线观看不卡| 欧美另类一区| 少妇的丰满在线观看| 久久精品人人爽人人爽视色| 免费黄频网站在线观看国产| 色婷婷久久久亚洲欧美| 91老司机精品| 日本撒尿小便嘘嘘汇集6| 亚洲五月婷婷丁香| 亚洲av电影在线进入| 日韩 欧美 亚洲 中文字幕| 在线 av 中文字幕| 亚洲精品久久午夜乱码| 欧美一级毛片孕妇| 最新在线观看一区二区三区| 99国产精品一区二区蜜桃av | 亚洲精品粉嫩美女一区| 欧美精品高潮呻吟av久久| 亚洲伊人色综图| 亚洲欧美清纯卡通| 国产精品 欧美亚洲| 欧美成狂野欧美在线观看| 天天添夜夜摸| 日本欧美视频一区| 韩国高清视频一区二区三区| 亚洲av成人一区二区三| 黑人猛操日本美女一级片| 十分钟在线观看高清视频www| 欧美日韩成人在线一区二区| 俄罗斯特黄特色一大片| 18禁国产床啪视频网站| 国产精品久久久av美女十八| 女人被躁到高潮嗷嗷叫费观| 97人妻天天添夜夜摸| 女人爽到高潮嗷嗷叫在线视频| 亚洲伊人久久精品综合| 欧美日韩福利视频一区二区| tocl精华| 汤姆久久久久久久影院中文字幕| 人人妻人人澡人人爽人人夜夜| 他把我摸到了高潮在线观看 | av一本久久久久| 18禁黄网站禁片午夜丰满| 在线看a的网站| 久久女婷五月综合色啪小说| 成年人免费黄色播放视频| 狠狠婷婷综合久久久久久88av| 国产成+人综合+亚洲专区| 91老司机精品| 两个人看的免费小视频| 亚洲色图综合在线观看| e午夜精品久久久久久久| 老鸭窝网址在线观看| 黄色视频不卡| 亚洲成人国产一区在线观看| 午夜福利一区二区在线看| tube8黄色片| 亚洲国产成人一精品久久久| 国产精品一二三区在线看| 欧美性长视频在线观看| 精品久久久精品久久久| 久久午夜综合久久蜜桃| 久久久久久久久久久久大奶| 午夜影院在线不卡| 欧美国产精品va在线观看不卡| 国产福利在线免费观看视频| 亚洲欧美激情在线| 国产97色在线日韩免费| 一区福利在线观看| av电影中文网址| 一区二区三区精品91| 国产日韩欧美亚洲二区| 国产日韩一区二区三区精品不卡| 肉色欧美久久久久久久蜜桃| 悠悠久久av| 两个人看的免费小视频| 欧美中文综合在线视频| 黄色片一级片一级黄色片| 午夜老司机福利片| 波多野结衣一区麻豆| 老司机午夜十八禁免费视频| 极品人妻少妇av视频| 精品国产乱码久久久久久小说| 69精品国产乱码久久久| 男人操女人黄网站| 麻豆国产av国片精品| 18在线观看网站| 国产亚洲av高清不卡| 啦啦啦中文免费视频观看日本| xxxhd国产人妻xxx| 国产精品一区二区免费欧美 | 下体分泌物呈黄色| 亚洲精品成人av观看孕妇| 日韩中文字幕欧美一区二区| 亚洲欧美激情在线| 99久久国产精品久久久| 久久毛片免费看一区二区三区| 美女中出高潮动态图| 久久精品国产a三级三级三级| 在线亚洲精品国产二区图片欧美| 午夜精品国产一区二区电影| 久久久久久免费高清国产稀缺| 天天躁夜夜躁狠狠躁躁| 999久久久国产精品视频| 欧美日韩亚洲高清精品| 国产亚洲精品一区二区www | 满18在线观看网站| 国产一区有黄有色的免费视频| 色婷婷久久久亚洲欧美| 久久ye,这里只有精品| 午夜老司机福利片| 国产精品麻豆人妻色哟哟久久| 精品少妇内射三级| 国产av又大| 99re6热这里在线精品视频| 每晚都被弄得嗷嗷叫到高潮| 丰满人妻熟妇乱又伦精品不卡| 久久中文字幕一级| 精品视频人人做人人爽| 99热全是精品| 免费在线观看日本一区| 国产精品秋霞免费鲁丝片| 深夜精品福利| 久久国产精品人妻蜜桃| 美女视频免费永久观看网站| 999精品在线视频| 97人妻天天添夜夜摸| 97人妻天天添夜夜摸| 久久久精品区二区三区| 丰满饥渴人妻一区二区三| 91字幕亚洲| 日本欧美视频一区| 99国产极品粉嫩在线观看| 久久久精品区二区三区| 超碰97精品在线观看| 啦啦啦啦在线视频资源| 另类精品久久| 亚洲精品成人av观看孕妇| 久久久精品区二区三区| 欧美+亚洲+日韩+国产| 久久久国产欧美日韩av| av天堂在线播放| 国产又爽黄色视频| 国产不卡av网站在线观看| 国产亚洲精品第一综合不卡| 国产高清视频在线播放一区 | 日韩欧美一区视频在线观看| 无遮挡黄片免费观看| 欧美亚洲日本最大视频资源| 成年av动漫网址| videos熟女内射| 男人添女人高潮全过程视频| 国产精品国产av在线观看| 十八禁网站免费在线| 在线永久观看黄色视频| 亚洲少妇的诱惑av| av天堂在线播放| 韩国精品一区二区三区| 午夜两性在线视频| 欧美日韩黄片免| 亚洲欧美激情在线| 另类精品久久| 国产亚洲av高清不卡| 一边摸一边做爽爽视频免费| 欧美亚洲日本最大视频资源| 妹子高潮喷水视频| 丝瓜视频免费看黄片| 久久久国产欧美日韩av| 午夜福利乱码中文字幕| 亚洲精品美女久久av网站| 90打野战视频偷拍视频| 亚洲欧美一区二区三区黑人| 亚洲精品一区蜜桃| 美国免费a级毛片| 亚洲伊人久久精品综合| 欧美日韩亚洲综合一区二区三区_| 亚洲成人免费av在线播放| 99国产精品一区二区三区| 青春草亚洲视频在线观看| 国产伦人伦偷精品视频| 99久久人妻综合| 色婷婷久久久亚洲欧美| 精品少妇久久久久久888优播| 成人国产av品久久久| 999精品在线视频| 精品人妻一区二区三区麻豆| kizo精华| 十八禁网站网址无遮挡| 亚洲av日韩在线播放| 欧美人与性动交α欧美精品济南到| cao死你这个sao货| 视频在线观看一区二区三区| 制服诱惑二区| 亚洲国产av新网站| av网站在线播放免费| 久久久久久久精品精品| 在线十欧美十亚洲十日本专区| 国产精品国产三级国产专区5o| 久久久久久免费高清国产稀缺| 啦啦啦免费观看视频1| 巨乳人妻的诱惑在线观看| 宅男免费午夜| 国产精品一区二区在线观看99| 男女之事视频高清在线观看| 后天国语完整版免费观看| 老司机午夜十八禁免费视频| 欧美另类一区| 大片免费播放器 马上看| 午夜两性在线视频| 精品亚洲成国产av| 精品乱码久久久久久99久播| 纵有疾风起免费观看全集完整版| av有码第一页| 99香蕉大伊视频| 国产激情久久老熟女| 精品少妇久久久久久888优播| 丰满少妇做爰视频| 久久国产精品影院| 欧美日韩黄片免| 精品亚洲成a人片在线观看| a级片在线免费高清观看视频| 美女高潮到喷水免费观看| 中文字幕人妻丝袜制服| 汤姆久久久久久久影院中文字幕| 日韩制服骚丝袜av| 欧美少妇被猛烈插入视频| 欧美久久黑人一区二区| 国产成人a∨麻豆精品| 老熟妇乱子伦视频在线观看 | 丝瓜视频免费看黄片| 欧美av亚洲av综合av国产av| 日韩三级视频一区二区三区| 美女大奶头黄色视频| 性少妇av在线| 精品一区二区三区av网在线观看 | 嫁个100分男人电影在线观看| 热99re8久久精品国产| 国产成人啪精品午夜网站| 亚洲av成人一区二区三| 欧美 日韩 精品 国产| 美女高潮喷水抽搐中文字幕| 亚洲欧美一区二区三区黑人| 国产成人免费观看mmmm| av天堂久久9| 精品国产国语对白av| 性色av一级| 久久天堂一区二区三区四区| 精品久久久久久久毛片微露脸 | 日韩中文字幕视频在线看片| 精品少妇内射三级| 曰老女人黄片| 黄色 视频免费看| 在线观看免费视频网站a站| 国产三级黄色录像| 亚洲精华国产精华精| 欧美日韩一级在线毛片| av一本久久久久| 午夜91福利影院| av免费在线观看网站| 亚洲国产成人一精品久久久| 精品一品国产午夜福利视频| 日本精品一区二区三区蜜桃| 亚洲av电影在线进入| 免费在线观看黄色视频的| 午夜免费鲁丝| 一级a爱视频在线免费观看| 国产在线观看jvid| 免费女性裸体啪啪无遮挡网站| 老司机午夜十八禁免费视频| 一本综合久久免费| 婷婷成人精品国产| 久久精品aⅴ一区二区三区四区| 人人妻人人澡人人爽人人夜夜| 最近最新免费中文字幕在线| 可以免费在线观看a视频的电影网站| 9色porny在线观看| 日韩中文字幕欧美一区二区| 国产主播在线观看一区二区| 91av网站免费观看| 精品熟女少妇八av免费久了| 久久ye,这里只有精品| 欧美国产精品va在线观看不卡| 自线自在国产av| 十八禁网站网址无遮挡| 日韩大码丰满熟妇| 女人精品久久久久毛片| 人人澡人人妻人| av免费在线观看网站| 亚洲第一av免费看| 老司机影院毛片| 超色免费av| 午夜久久久在线观看| 中文字幕精品免费在线观看视频| 中文字幕制服av| 久久中文看片网| 欧美精品人与动牲交sv欧美| 老司机福利观看| 欧美乱码精品一区二区三区| 中文字幕制服av| 人人妻人人爽人人添夜夜欢视频| 1024视频免费在线观看| 一本—道久久a久久精品蜜桃钙片| 久久国产精品人妻蜜桃| 亚洲精品一卡2卡三卡4卡5卡 | 欧美变态另类bdsm刘玥| 狠狠狠狠99中文字幕| 日本撒尿小便嘘嘘汇集6| 久久 成人 亚洲| 美女视频免费永久观看网站| 18禁国产床啪视频网站| 最近最新免费中文字幕在线| 亚洲第一欧美日韩一区二区三区 | 国产国语露脸激情在线看| 色视频在线一区二区三区| 国产亚洲av高清不卡| 80岁老熟妇乱子伦牲交| 日韩人妻精品一区2区三区| 日韩中文字幕视频在线看片| 99久久99久久久精品蜜桃| 亚洲专区中文字幕在线| 亚洲精品粉嫩美女一区| 亚洲美女黄色视频免费看| 亚洲国产精品一区三区| 亚洲五月色婷婷综合| av视频免费观看在线观看| 伊人亚洲综合成人网| 午夜福利视频在线观看免费| 国产成人精品久久二区二区91| 久久久久久久久免费视频了| 激情视频va一区二区三区| 午夜福利,免费看| 亚洲五月婷婷丁香| 久久青草综合色| 午夜免费成人在线视频| 狠狠婷婷综合久久久久久88av| 99热网站在线观看| 国产精品熟女久久久久浪| 亚洲第一青青草原| 99香蕉大伊视频| 亚洲精品av麻豆狂野| 女人高潮潮喷娇喘18禁视频| 99精国产麻豆久久婷婷| 精品欧美一区二区三区在线| 亚洲国产精品成人久久小说| 人妻 亚洲 视频| 亚洲激情五月婷婷啪啪| 欧美另类一区| 国产精品国产三级国产专区5o| 免费在线观看完整版高清| 久久久国产成人免费| 久久综合国产亚洲精品| 午夜视频精品福利| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久免费高清国产稀缺| 热99久久久久精品小说推荐| 久久天躁狠狠躁夜夜2o2o| 法律面前人人平等表现在哪些方面 | 激情视频va一区二区三区| 黄色视频不卡| 自拍欧美九色日韩亚洲蝌蚪91| 一本大道久久a久久精品| av欧美777| 中文欧美无线码| 天堂8中文在线网| 飞空精品影院首页| 久久精品人人爽人人爽视色| 免费不卡黄色视频| 又黄又粗又硬又大视频| 在线观看人妻少妇| 51午夜福利影视在线观看| 熟女少妇亚洲综合色aaa.| 亚洲欧美日韩另类电影网站| 老汉色av国产亚洲站长工具| 菩萨蛮人人尽说江南好唐韦庄| 精品卡一卡二卡四卡免费| 99国产极品粉嫩在线观看| 亚洲激情五月婷婷啪啪| 久久热在线av| 嫩草影视91久久| 成年美女黄网站色视频大全免费| 人妻久久中文字幕网| 岛国在线观看网站| 国产不卡av网站在线观看| 欧美人与性动交α欧美精品济南到| 国产免费视频播放在线视频| 无遮挡黄片免费观看| 男女边摸边吃奶| 国产成人精品久久二区二区免费| 精品视频人人做人人爽| 桃红色精品国产亚洲av| 黄色a级毛片大全视频| 精品亚洲成国产av| 啪啪无遮挡十八禁网站| 久久热在线av| 日本五十路高清| 伊人亚洲综合成人网| 亚洲欧美日韩高清在线视频 | 妹子高潮喷水视频| 国产男女超爽视频在线观看| av在线播放精品| 久久久欧美国产精品| 久久精品成人免费网站| 黄色毛片三级朝国网站| 亚洲少妇的诱惑av| 一级片免费观看大全| 亚洲国产精品一区三区| 伊人久久大香线蕉亚洲五| 久久精品国产亚洲av高清一级| 法律面前人人平等表现在哪些方面 | 欧美亚洲日本最大视频资源| videosex国产| 久久久久视频综合| 精品少妇一区二区三区视频日本电影| 十八禁网站网址无遮挡| 国产亚洲欧美精品永久| 高清欧美精品videossex| 999精品在线视频| 国产免费现黄频在线看| 成人三级做爰电影| 九色亚洲精品在线播放| 精品亚洲成国产av| 国产成人精品无人区| 亚洲av男天堂| 亚洲av片天天在线观看| 日韩精品免费视频一区二区三区| 桃红色精品国产亚洲av| 热re99久久国产66热| 免费少妇av软件| 嫁个100分男人电影在线观看| 国产成人免费无遮挡视频| 丁香六月天网| 丝袜人妻中文字幕| 高潮久久久久久久久久久不卡| av线在线观看网站| 国产成人精品无人区| 色视频在线一区二区三区| 极品少妇高潮喷水抽搐| 午夜福利在线观看吧| 在线观看免费高清a一片| 久久国产精品男人的天堂亚洲| 制服人妻中文乱码| 曰老女人黄片| 精品人妻在线不人妻| 久久香蕉激情| 脱女人内裤的视频| 国产在线观看jvid| 国产av又大| 一本久久精品| 免费少妇av软件| 亚洲色图 男人天堂 中文字幕| av电影中文网址| av视频免费观看在线观看| 欧美日韩一级在线毛片| 欧美国产精品va在线观看不卡| 在线精品无人区一区二区三| 一本色道久久久久久精品综合| 一级黄色大片毛片| 国产成人精品在线电影| 久久久久精品国产欧美久久久 | 美女午夜性视频免费| 国产精品成人在线| 日韩免费高清中文字幕av| 亚洲第一青青草原| 成人国语在线视频| 久久久久久久大尺度免费视频| 欧美在线一区亚洲| 日日爽夜夜爽网站| 日韩精品免费视频一区二区三区| 国产熟女午夜一区二区三区| 国产老妇伦熟女老妇高清| 亚洲国产日韩一区二区| 91麻豆av在线| 久久久久久人人人人人| 欧美精品人与动牲交sv欧美| 91精品国产国语对白视频| 国产av一区二区精品久久| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品成人av观看孕妇| 黑丝袜美女国产一区| 黄片播放在线免费| 国产xxxxx性猛交| 一进一出抽搐动态| 一级a爱视频在线免费观看| 久久国产精品大桥未久av| 久久久久精品国产欧美久久久 | www.999成人在线观看| 一级片'在线观看视频| 天天躁夜夜躁狠狠躁躁| 日韩大码丰满熟妇| 欧美 亚洲 国产 日韩一| www.av在线官网国产| 亚洲欧洲日产国产| av天堂在线播放| 欧美精品一区二区免费开放| 免费日韩欧美在线观看| 在线天堂中文资源库| svipshipincom国产片| 亚洲少妇的诱惑av| 男人操女人黄网站| 国产精品一区二区精品视频观看| 人人妻人人澡人人爽人人夜夜| 正在播放国产对白刺激| 亚洲欧美色中文字幕在线| 黄色片一级片一级黄色片| 亚洲熟女毛片儿| 国产成人精品无人区| 在线观看舔阴道视频| 久久久水蜜桃国产精品网| 正在播放国产对白刺激| 国产又爽黄色视频| 极品人妻少妇av视频| 老汉色∧v一级毛片| 久久天躁狠狠躁夜夜2o2o| 夜夜骑夜夜射夜夜干| 成人免费观看视频高清| 久久热在线av| 久久精品aⅴ一区二区三区四区| 国产成人免费观看mmmm| 成年av动漫网址| 国内毛片毛片毛片毛片毛片| 啦啦啦在线免费观看视频4| 亚洲成人国产一区在线观看| 老司机福利观看| 新久久久久国产一级毛片| 中文字幕人妻熟女乱码| 国产精品国产三级国产专区5o| 亚洲黑人精品在线| av不卡在线播放| 天天添夜夜摸| 日日摸夜夜添夜夜添小说| 美女高潮喷水抽搐中文字幕| 国产成人啪精品午夜网站| 国产精品麻豆人妻色哟哟久久| 亚洲国产av新网站| 成人av一区二区三区在线看 | 欧美人与性动交α欧美软件| 午夜福利免费观看在线| 中文字幕av电影在线播放| 美女高潮喷水抽搐中文字幕| 亚洲欧洲精品一区二区精品久久久| 久久精品熟女亚洲av麻豆精品| 各种免费的搞黄视频| 国产野战对白在线观看| 精品国产一区二区久久| 欧美日韩亚洲高清精品| 制服诱惑二区| 日韩中文字幕欧美一区二区| 亚洲精品久久久久久婷婷小说| 欧美日韩av久久| 国产精品久久久久久人妻精品电影 | 国产成人影院久久av| 777久久人妻少妇嫩草av网站| 男女下面插进去视频免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜久久久在线观看| 国产在线一区二区三区精| 国产成人免费观看mmmm| tube8黄色片| 大码成人一级视频| 少妇精品久久久久久久| 亚洲成国产人片在线观看| videos熟女内射| 成年女人毛片免费观看观看9 | 男女之事视频高清在线观看| 亚洲欧美清纯卡通| 国产成人精品在线电影| 女人爽到高潮嗷嗷叫在线视频| 成在线人永久免费视频| 精品久久久精品久久久| 日本a在线网址| 欧美性长视频在线观看| 亚洲av欧美aⅴ国产| 精品福利观看| 纵有疾风起免费观看全集完整版| 免费日韩欧美在线观看| 纵有疾风起免费观看全集完整版| 一二三四在线观看免费中文在| 2018国产大陆天天弄谢| 亚洲午夜精品一区,二区,三区| 69av精品久久久久久 | 91大片在线观看| 亚洲男人天堂网一区| 久久99热这里只频精品6学生| 国产精品九九99| 亚洲av成人一区二区三| 免费观看av网站的网址| netflix在线观看网站| 亚洲性夜色夜夜综合| 老司机影院成人| 久久精品国产亚洲av高清一级| 不卡av一区二区三区| 男女边摸边吃奶| 777久久人妻少妇嫩草av网站| 欧美精品一区二区大全| 午夜激情av网站| 亚洲激情五月婷婷啪啪| 丰满饥渴人妻一区二区三| 亚洲熟女精品中文字幕| 美女视频免费永久观看网站|