• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    皮亞諾型余項(xiàng)在函數(shù)冪級(jí)數(shù)展開時(shí)的巧用

    2020-05-07 08:01:05洪麗君劉金靈洪曉春
    大學(xué)教育 2020年5期
    關(guān)鍵詞:冪級(jí)數(shù)

    洪麗君 劉金靈 洪曉春

    [摘要]本文使用幾個(gè)實(shí)例闡述了皮亞諾型余項(xiàng)的重要性,說(shuō)明在對(duì)函數(shù)進(jìn)行冪級(jí)數(shù)展開時(shí),巧妙使用皮亞諾型余項(xiàng)證明泰勒公式余項(xiàng)的極限為零極為簡(jiǎn)潔,此方法對(duì)部分函數(shù)非常實(shí)用

    [關(guān)鍵詞]皮亞諾型余項(xiàng);冪級(jí)數(shù);泰勒公式余項(xiàng);泰勒級(jí)數(shù)

    [中圖分類號(hào)]0173.1 [文獻(xiàn)標(biāo)識(shí)碼]A [文章編號(hào)]2095-3437(2020)05-0074-03

    級(jí)數(shù)理論是分析學(xué)的一大分支,它與另一大分支微積分學(xué)作為基礎(chǔ)知識(shí)及工具出現(xiàn)在其余各分支中,二者共同以極限為基本工具,分別從離散和連續(xù)兩方面,結(jié)合起來(lái)研究分析學(xué)的研究對(duì)象一一函數(shù).級(jí)數(shù)是研究函數(shù)的重要工具,在理論上和實(shí)際應(yīng)用中都處于重要地位,原因是,一方面能借助級(jí)數(shù)表示許多常用的非初等函數(shù);另一方面又能將函數(shù)表為級(jí)數(shù),從而借助級(jí)數(shù)去研究函數(shù)。

    文獻(xiàn)[1]研究了在高等數(shù)學(xué)的學(xué)習(xí)中,可以利用級(jí)數(shù)展開法將比較復(fù)雜的變系數(shù)微分方程轉(zhuǎn)化為一組線性代數(shù)方程進(jìn)行研究,是一個(gè)很好的辦法.文獻(xiàn)[2]研究了在高等數(shù)學(xué)學(xué)習(xí)中,針對(duì)無(wú)窮級(jí)數(shù)章節(jié),剖析了學(xué)生學(xué)習(xí)困境產(chǎn)生的原因,然后從“教”與“學(xué)”兩個(gè)方面,給出了幫助學(xué)生擺脫困境的策略.文獻(xiàn)[3]使用級(jí)數(shù)等概念,對(duì)高等數(shù)學(xué)與中等數(shù)學(xué)的學(xué)習(xí)方法進(jìn)行了對(duì)比研究分析,得出學(xué)習(xí)方法需要進(jìn)行轉(zhuǎn)換適應(yīng)等結(jié)論.

    文獻(xiàn)[4]研究了帶皮亞諾型余項(xiàng)的泰勒公式在求極限以及判定極值方面的應(yīng)用.文獻(xiàn)[5]研究了帶皮亞諾型余項(xiàng)的泰勒公式在解決考研試題方面的應(yīng)用.在分析學(xué)中,把函數(shù)在點(diǎn)Xo的鄰域上展開成冪級(jí)數(shù)的方法在函數(shù)理論和實(shí)際計(jì)算中都很實(shí)用,可以用來(lái)判定函數(shù)在點(diǎn)x=xo處解析;而判斷函數(shù)在點(diǎn)xo的鄰域上能夠展開成冪級(jí)數(shù)的關(guān)鍵,又是判斷函數(shù)的泰勒公式余項(xiàng)在該鄰域上的極限為零。本文重點(diǎn)討論如何使用皮亞諾型余項(xiàng)來(lái)判斷函數(shù)在點(diǎn)xo的鄰域上能夠展開成冪級(jí)數(shù).

    一、函數(shù)冪級(jí)數(shù)展開的理論

    三、討論

    對(duì)于例1,為了證明泰勒公式余項(xiàng)Rn(x)在收斂域(-1,1]上的極限為零,文獻(xiàn)[6,9]均使用拉格朗日型余項(xiàng)、柯西型余項(xiàng)進(jìn)行分段證明.對(duì)于例2,為了證明泰勒公式余項(xiàng)Rn(x)在收斂區(qū)間(-1,1)內(nèi)的極限為零,文獻(xiàn)[6,8]均使用柯西型余項(xiàng)進(jìn)行證明,文獻(xiàn)[7,9]的證明過(guò)程更加復(fù)雜,雖然這些證明方法對(duì)同學(xué)們數(shù)學(xué)思維的訓(xùn)練會(huì)有提升,但因冗長(zhǎng),很多同學(xué)不易理解.我們使用皮亞諾型余項(xiàng)來(lái)證明,證法簡(jiǎn)潔,容易理解.

    四、結(jié)論

    本文使用3個(gè)例子闡述了使用皮亞諾型余項(xiàng),證明泰勒公式余項(xiàng)Rn(x)在收斂區(qū)間(-1,1)內(nèi)極限為零,非常簡(jiǎn)潔,同學(xué)們?nèi)菀桌斫猓瑫r(shí)可以節(jié)約大量時(shí)間,在教學(xué)中可以使用此方法進(jìn)行教學(xué)。

    猜你喜歡
    冪級(jí)數(shù)
    基于求冪級(jí)數(shù)和函數(shù)的方法研究
    冪級(jí)數(shù)的求和方法總結(jié)
    矩陣環(huán)的冪級(jí)數(shù)弱McCoy子環(huán)
    一個(gè)重要的冪級(jí)數(shù)
    二元冪級(jí)數(shù)的收斂性
    冪級(jí)數(shù)π-Armendariz環(huán)
    冪級(jí)數(shù)J-Armendariz環(huán)*
    冪級(jí)數(shù)的和函數(shù)
    對(duì)一道冪級(jí)數(shù)展開式例題的思考
    關(guān)于強(qiáng)冪級(jí)數(shù)McCoy環(huán)
    云浮市| 临沭县| 巴东县| 富锦市| 塔城市| 湘潭县| 庆元县| 萍乡市| 云和县| 玉溪市| 抚顺市| 眉山市| 永定县| 巍山| 凤城市| 皮山县| 山西省| 民和| 德州市| 大冶市| 安徽省| 彩票| 临湘市| 东乌珠穆沁旗| 嘉祥县| 吴忠市| 女性| 南郑县| 龙门县| 攀枝花市| 修武县| 钟山县| 东源县| 庆云县| 高邑县| 磐安县| 兴文县| 陕西省| 康保县| 镶黄旗| 邢台县|