從春生,李玉斌,2
綜 述
超家族轉(zhuǎn)座子研究進(jìn)展
從春生1,李玉斌1,2
1. 中國(guó)農(nóng)業(yè)科學(xué)院生物技術(shù)研究所,北京 100081 2. 青島農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,青島 266109
轉(zhuǎn)座子是一類(lèi)可以在基因組中不同遺傳位點(diǎn)間移動(dòng)的DNA序列,在其轉(zhuǎn)移過(guò)程中有時(shí)會(huì)伴隨自身拷貝數(shù)的增加。作為基因組的重要組成部分,轉(zhuǎn)座子可以通過(guò)多種方式影響宿主基因及基因組的結(jié)構(gòu)與功能,進(jìn)而在宿主的演化過(guò)程中扮演重要角色。目前依據(jù)轉(zhuǎn)座過(guò)程中間體類(lèi)型的不同可以將其分為I類(lèi)轉(zhuǎn)座子和II類(lèi)轉(zhuǎn)座子。超家族轉(zhuǎn)座子是20世紀(jì)70年代在玉米(L.)中發(fā)現(xiàn)的一類(lèi)特殊的轉(zhuǎn)座子,其屬于II類(lèi)轉(zhuǎn)座子,廣泛存在于真核生物基因組中,包含遺傳特征明晰可分的眾多轉(zhuǎn)座子家族。此外,該超家族轉(zhuǎn)座子轉(zhuǎn)座頻率高,傾向于插入基因富含區(qū)及低拷貝序列區(qū),可快速產(chǎn)生大量新的突變體,目前已被廣泛應(yīng)用于正向及反向遺傳學(xué)研究。本文結(jié)合近年來(lái)相關(guān)研究結(jié)果,圍繞超家族轉(zhuǎn)座子的分類(lèi)組成、結(jié)構(gòu)特征、轉(zhuǎn)座機(jī)制、插入偏好、靶位點(diǎn)重復(fù)序列以及玉米自主性元件展開(kāi)綜述,并對(duì)轉(zhuǎn)座子研究面臨的問(wèn)題及未來(lái)研究方向進(jìn)行了探討,旨在與研究領(lǐng)域內(nèi)的同行探討相關(guān)研究的可能突破點(diǎn)、未來(lái)發(fā)展方向及可能產(chǎn)生的重大影響。
超家族;家族;元件;轉(zhuǎn)座機(jī)制;插入偏好;靶位點(diǎn)重復(fù)序列
20世紀(jì)40年代美國(guó)遺傳學(xué)家Barbara McClin-tock在玉米中發(fā)現(xiàn)了一些在染色體上可以移動(dòng)遺傳位置的元件,并于50年代初提出可移動(dòng)的遺傳基因(即“跳躍基因”)學(xué)說(shuō),但直到30年后這一超越時(shí)代的學(xué)說(shuō)才被科學(xué)界同行逐漸理解和接受,并將這些可以在基因組中移動(dòng)的DNA序列統(tǒng)稱(chēng)為轉(zhuǎn)座元件或轉(zhuǎn)座子[1]。現(xiàn)有研究表明,轉(zhuǎn)座子幾乎存在于所有生物基因組中,是基因組的主要組成部分。由于其重復(fù)特性,轉(zhuǎn)座子曾一度被認(rèn)為是垃圾DNA,但越來(lái)越多的證據(jù)表明轉(zhuǎn)座子是塑造基因組的重要因素[2~5]。在許多植物基因組中,半數(shù)以上的序列屬于轉(zhuǎn)座子[6~12],特別在玉米基因組中轉(zhuǎn)座子序列的占比更高達(dá)85%[11],并且這些轉(zhuǎn)座子序列通過(guò)不同方式影響了玉米的馴化[13]、傳播[14,15]及優(yōu)異農(nóng)藝性狀的形成[16,17]等。此外,轉(zhuǎn)座子在自身序列、蛋白功能域和結(jié)構(gòu)等方面具有十分豐富的變異[18]。按照轉(zhuǎn)座過(guò)程中間體的類(lèi)型,真核生物轉(zhuǎn)座子可以劃分為兩大類(lèi):Ⅰ類(lèi)轉(zhuǎn)座子(RNA轉(zhuǎn)座子或反轉(zhuǎn)錄轉(zhuǎn)座子)和Ⅱ類(lèi)轉(zhuǎn)座子(DNA轉(zhuǎn)座子)[19]。Ⅰ類(lèi)轉(zhuǎn)座子的轉(zhuǎn)座反應(yīng)通過(guò)DNA-RNA-DNA形式介導(dǎo)完成,通常以“copy- and-paste”方式進(jìn)行轉(zhuǎn)座,按照其長(zhǎng)末端重復(fù)序列(long terminal repeats, LTR)的有無(wú)又可以分為L(zhǎng)TR反轉(zhuǎn)錄轉(zhuǎn)座子和non-LTR反轉(zhuǎn)錄轉(zhuǎn)座子2個(gè)亞類(lèi);Ⅱ類(lèi)轉(zhuǎn)座子的轉(zhuǎn)座反應(yīng)通過(guò)DNA-DNA形式介導(dǎo)完成,絕大部分以“cut-and-paste”方式進(jìn)行轉(zhuǎn)座,少數(shù)轉(zhuǎn)座子通過(guò)滾環(huán)模型或自我合成途徑完成轉(zhuǎn)座反應(yīng)[20,21]。根據(jù)序列組成和基因結(jié)構(gòu)特征,Ⅰ類(lèi)和Ⅱ類(lèi)轉(zhuǎn)座子又都可分成不同的超家族[22],各超家族間既存在共性,同時(shí)又各有特性,盡管采用的分析方法不盡相同[23~25]。超家族轉(zhuǎn)座子屬于Ⅱ類(lèi)轉(zhuǎn)座子,廣泛存在于真核生物基因組中,包含著遺傳特征明晰可分的眾多轉(zhuǎn)座子家族,并且在轉(zhuǎn)座子遺傳特性方面的研究深入,在功能組學(xué)研究中的應(yīng)用也十分廣泛。本文結(jié)合近年來(lái)的研究結(jié)果,圍繞超家族轉(zhuǎn)座子的分類(lèi)組成、結(jié)構(gòu)特征、轉(zhuǎn)座機(jī)制、插入偏好、靶位點(diǎn)重復(fù)序列以及玉米自主性元件進(jìn)行了概述,同時(shí)對(duì)轉(zhuǎn)座子研究面臨的問(wèn)題及未來(lái)研究方向進(jìn)行了探討,以便相關(guān)科研人員更充分、全面了解超家族轉(zhuǎn)座子的研究進(jìn)展。
1978年,美國(guó)愛(ài)荷華州立大學(xué)(Iowa State University)的Donald Robertson博士報(bào)道了一份高突變頻率玉米材料,其幼苗中的突變頻率接近自發(fā)突變的30倍左右,而這一突變特性的遺傳不符合經(jīng)典的孟德?tīng)栠z傳定律[26]并表現(xiàn)出明顯的表觀沉默[27]。這一遺傳品系由于存在大量一類(lèi)新型轉(zhuǎn)座元件—或[28~30],從而可以發(fā)生高頻突變,也因此被稱(chēng)之為系[31]。目前這些轉(zhuǎn)座元件同屬家族或家族,其中可以編碼轉(zhuǎn)座酶并使其自身發(fā)生轉(zhuǎn)座的元件稱(chēng)為自主性轉(zhuǎn)座子—(-Donald Robertson),而在活性存在時(shí)才能進(jìn)行轉(zhuǎn)座的元件統(tǒng)稱(chēng)為非自主性轉(zhuǎn)座子[32~34]。與大量的非自主性轉(zhuǎn)座子組合可形成高效的突變系統(tǒng),系統(tǒng)是目前被廣泛應(yīng)用的致變能力極強(qiáng)的轉(zhuǎn)座子插入突變體創(chuàng)制系統(tǒng)[35~37]。
另外,minimal系是通過(guò)篩選獲得的只含有單一和一個(gè)位于顏色基因中的非自主性的遺傳品系,成為研究玉米轉(zhuǎn)座子系統(tǒng)及調(diào)控的理想材料[38~40]。例如,從minimal系中發(fā)現(xiàn)了()[41]。作為調(diào)控的顯性遺傳性位點(diǎn),可以沉默一個(gè)或多個(gè)活性,但并不是維持沉默狀態(tài)所必需的,在后代分離個(gè)體中,即使缺失位點(diǎn),仍無(wú)活性并且可以維持多代[42]。的發(fā)現(xiàn)極大地促進(jìn)了轉(zhuǎn)座子表觀沉默的研究,同時(shí)使用于突變體創(chuàng)制的系統(tǒng)變得更為可控。
近年來(lái),伴隨著測(cè)序技術(shù)的發(fā)展以及被測(cè)序物種數(shù)量的不斷增加,在植物[43~47]、真菌[48,49]、原生動(dòng)物[50,51]以及多細(xì)胞動(dòng)物[52,53]中均發(fā)現(xiàn)了與玉米序列相類(lèi)似的轉(zhuǎn)座子,統(tǒng)稱(chēng)為元件(-like transposable elements)。目前大部分鑒定出來(lái)的元件都屬于非自主性轉(zhuǎn)座子,它們自身不能編碼功能完善的轉(zhuǎn)座酶,只有極少數(shù)元件可以進(jìn)行自主轉(zhuǎn)座,例如尖孢鐮刀菌()中的[49],擬南芥()中的[54],玉米中的[55]和[56],水稻()中的[57]以及埃及伊蚊()中的[58]等。另外,大量非自主性元件內(nèi)部有時(shí)攜帶著來(lái)源于宿主的一個(gè)或多個(gè)不同基因的片段,這類(lèi)元件被特別命名為Pack-MULEs。目前在擬南芥、水稻、玉米、百脈根()、西紅柿()及荷花()的基因組中都發(fā)現(xiàn)了Pack-MULEs的存在[59~65],其中水稻中Pack- MULEs的數(shù)量巨大,有關(guān)研究也更為深入。水稻中有些Pack-MULEs元件所攜帶的多個(gè)宿主基因片段可形成嶄新的開(kāi)放閱讀框并轉(zhuǎn)錄出嵌合轉(zhuǎn)錄本。氨基酸序列功能分析及蛋白組學(xué)研究表明,捕獲的基因片段甚至可能具有特定的功能。結(jié)合以上研究結(jié)果及Pack-MULEs在植物中的普遍性,Jiang等[63]推想Pack-MULEs獲取基因片段的方式很可能是高等植株基因進(jìn)化的一種重要機(jī)制。雖然Pack-MULEs捕獲宿主基因組片段的分子機(jī)制目前仍不清楚,但研究發(fā)現(xiàn)Pack-MULEs主要傾向于獲得和保留GC含量高的序列,這種選擇性捕獲使Pack-MULEs更有可能捕獲具有功能性的序列,進(jìn)而為新基因的進(jìn)化及現(xiàn)有基因的修飾提供新的遺傳資源[66~68]。與此同時(shí),相對(duì)于其他超家族轉(zhuǎn)座元件,水稻中Pack- MULEs表現(xiàn)出獨(dú)特的表觀遺傳學(xué)特性,其插入和表達(dá)不僅可以改變水稻染色體的表達(dá)模式,還可以抵消重組對(duì)染色體堿基組成的影響,進(jìn)而對(duì)染色體結(jié)構(gòu)進(jìn)化產(chǎn)生影響[69]。
與其他大多數(shù)DNA超家族轉(zhuǎn)座子相比,超家族轉(zhuǎn)座子兩端具有較長(zhǎng)的末端反向重復(fù)序列(terminal inverted repeats, TIR)。TIR序列中包含有轉(zhuǎn)座酶結(jié)合位點(diǎn)[70],而攜帶單一TIR的轉(zhuǎn)座子無(wú)法正常進(jìn)行轉(zhuǎn)座[60,71]。此外,TIR序列中還含有復(fù)雜的啟動(dòng)子序列,既可以啟動(dòng)轉(zhuǎn)座酶或TIR間序列的轉(zhuǎn)錄,也可以調(diào)控轉(zhuǎn)座酶在不同組織中的表達(dá)[63,72]。玉米家族轉(zhuǎn)座子的TIR比較保守,大多長(zhǎng)約215 bp[73],根據(jù)兩端TIR間序列的差異,又劃分為不同亞家族(~)[74~76]。其中大部分為非自主性轉(zhuǎn)座子,這些非自主性轉(zhuǎn)座子是內(nèi)部片段缺失產(chǎn)生的衍生物或者是其他序列點(diǎn)突變導(dǎo)致轉(zhuǎn)座酶功能喪失的同源序列(homologs, h)。h雖然不能催化轉(zhuǎn)座反應(yīng),但可能在表觀沉默中發(fā)揮增強(qiáng)作用[31]。相對(duì)于玉米家族轉(zhuǎn)座子,各種元件TIR序列變異豐富。有些元件TIR內(nèi)含有串聯(lián)重復(fù)序列,這些串聯(lián)重復(fù)序列可能導(dǎo)致TIR自身形成特殊的二級(jí)結(jié)構(gòu),進(jìn)而影響轉(zhuǎn)座子的轉(zhuǎn)座行為[77]。在植物和真菌中大部分元件具有較長(zhǎng)的TIR (100~ 600 bp),但在擬南芥[65]、荷花[61]、玉米[78]和酵母()[48]基因組中鑒定到少數(shù)non-TIR元件(TIR<50 bp),這些元件雖分布較為廣泛,但其與元件在進(jìn)化中的關(guān)系仍不清楚。另外,在玉米、西紅柿、水稻和擬南芥基因組中還檢測(cè)到一些多TIR元件,這些TIR大多以串聯(lián)形式分布,多TIR元件可能更有利于轉(zhuǎn)座子轉(zhuǎn)座和捕獲宿主基因組序列[60]。
作為家族中的自主性轉(zhuǎn)座子,同時(shí)也是超家族轉(zhuǎn)座子研究的典型代表。編碼兩個(gè)轉(zhuǎn)錄方向相向的基因:和,各自轉(zhuǎn)錄起始于兩端的TIR內(nèi)部序列,兩個(gè)轉(zhuǎn)錄本間沒(méi)有重疊部分,在相距200 bp處終止轉(zhuǎn)錄[32](圖1A)。編碼蛋白MURA (94 kDa),MURA與原核生物轉(zhuǎn)座子的轉(zhuǎn)座酶序列相似[79],含有保守的蛋白結(jié)構(gòu)域[80],被認(rèn)為是轉(zhuǎn)座酶,催化轉(zhuǎn)座子轉(zhuǎn)座。編碼蛋白MURB (23 kDa),MURB并非體細(xì)胞組織轉(zhuǎn)座剪切所必需,可能與生殖類(lèi)細(xì)胞內(nèi)轉(zhuǎn)座子的重新插入相關(guān)[81,82],MURB調(diào)控方式及其在轉(zhuǎn)座過(guò)程中的功能目前還沒(méi)有更為詳盡的報(bào)道。如前所述,在玉米及其他植物、動(dòng)物、微生物中也已經(jīng)鑒定到了少數(shù)幾個(gè)自主性元件,但這些新發(fā)現(xiàn)的自主性元件均只含有同源基因,因此基因可能僅存在于玉米的中。是轉(zhuǎn)座插入并重排形成的2.2 kb反向重復(fù)序列,由兩段反向加倍的TIRA及其下游相鄰部分序列組成,不涉及任何基因序列(圖1B)。插入位點(diǎn)兩翼殘存的兩個(gè)轉(zhuǎn)錄方向相向的基因(和)中僅有啟動(dòng)子起始轉(zhuǎn)錄,由此產(chǎn)生的發(fā)卡狀轉(zhuǎn)錄本生成小RNA (主要是22 nt siRNAs),然后通過(guò)RNA介導(dǎo)的DNA甲基化方式沉默活性[41,42]。
圖1 MuDR和Muk基因結(jié)構(gòu)組成
A:轉(zhuǎn)座子及其基因和的結(jié)構(gòu);B:及其兩翼殘存基因的結(jié)構(gòu)。
轉(zhuǎn)座酶是自然界中最豐富、最普遍存在的基因編碼產(chǎn)物[83]。所有真核生物“cut-and-paste”類(lèi)型超家族轉(zhuǎn)座子其轉(zhuǎn)座酶均具有DDE/D三氨基酸特征結(jié)構(gòu)域[84],及其他自主性元件轉(zhuǎn)座酶同樣具有這樣的特征(圖2)。Liu等[58]根據(jù)保守的DDE/D結(jié)構(gòu)域并通過(guò)生物信息學(xué)方法在埃及伊蚊基因組中發(fā)現(xiàn)了自主性元件—,通過(guò)定點(diǎn)突變首次證實(shí)了元件轉(zhuǎn)座酶中DDE/D結(jié)構(gòu)域3個(gè)特征氨基酸的重要性:其中任何單一氨基酸的改變都足以使轉(zhuǎn)座酶的活性完全喪失。此外,與另一類(lèi)DNA轉(zhuǎn)座子超家族—超家族的轉(zhuǎn)座酶類(lèi)似,大部分超家族成員的轉(zhuǎn)座酶在DDE結(jié)構(gòu)域的第2個(gè)D和E之間還含有一個(gè)保守的CXXH基序和一個(gè)色氨酸[85](圖2)。CXXH基序可能參與轉(zhuǎn)座酶對(duì)TIR的識(shí)別,當(dāng)CXXH基序中的組氨酸突變后,轉(zhuǎn)座酶催化活性消失殆盡[58,86]。而色氨酸不僅與轉(zhuǎn)座酶活性相關(guān),還與轉(zhuǎn)座酶的精確切割或修復(fù)相關(guān)。當(dāng)轉(zhuǎn)座酶中色氨酸突變?yōu)楸彼釙r(shí),轉(zhuǎn)座酶催化活性徹底消失;當(dāng)其突變?yōu)槠渌枷阕灏被釙r(shí),轉(zhuǎn)座酶表現(xiàn)出一定活性,但轉(zhuǎn)座子剪切頻率變低,精確剪切比例也顯著下降[58,85]。
除了DDE/D三氨基酸這一特征結(jié)構(gòu)域以外,在超家族轉(zhuǎn)座子的轉(zhuǎn)座酶中還可以鑒定到其他保守結(jié)構(gòu)域(圖3A)。例如,大部分轉(zhuǎn)座酶的N端具有屬于WRKY-GCM1超家族[87]的DNA結(jié)合結(jié)構(gòu)域(DNA binding domain, DBD),可能通過(guò)結(jié)合轉(zhuǎn)座子特定區(qū)段序列來(lái)調(diào)控轉(zhuǎn)座酶活性及轉(zhuǎn)座子的轉(zhuǎn)座行為。水稻編碼的轉(zhuǎn)座酶DBD上游特定長(zhǎng)度編碼序列發(fā)生缺失突變后,轉(zhuǎn)座子的剪切頻率顯著增高,進(jìn)一步研究發(fā)現(xiàn)這部分片段中氨基酸組合的理化特性對(duì)轉(zhuǎn)座酶活性至關(guān)重要[71]。另外,大量MURA同源蛋白C端也具有相對(duì)保守的基序,如在擬南芥、玉米、水稻和甘蔗(spp.)中先后鑒定到CX2CX4HX4 (或6) C基序[47,65],目前已知的自主性超家族轉(zhuǎn)座子的C端 大多存在這些鋅指基序(圖3B),它們可能通過(guò)結(jié) 合核酸序列(DNA或RNA)參與調(diào)控轉(zhuǎn)座子的轉(zhuǎn)座行為。
圖2 不同自主性轉(zhuǎn)座酶DDE結(jié)構(gòu)域蛋白序列比對(duì)分析
黑色陰影表示氨基酸完全一致,粉色陰影表示同源性≥75%,綠色陰影表示同源性≥50%,保守的氨基酸及結(jié)構(gòu)標(biāo)注在序列底部。
圖3 Mutator超家族轉(zhuǎn)座酶的結(jié)構(gòu)特征
A:及其他自主性元件轉(zhuǎn)座酶的保守結(jié)構(gòu)域;B:超家族轉(zhuǎn)座酶C端的保守基序。
利用家族轉(zhuǎn)座子特有的遺傳組成和轉(zhuǎn)座特性,已經(jīng)構(gòu)建了多個(gè)玉米突變體資源庫(kù)(如TUSC、MTM、RescueMu、UniformMu和ChinaMu等),為正向遺傳學(xué)和反向遺傳學(xué)的研究提供了豐富的突變體遺傳材料[88,89]。然而,關(guān)于超家族轉(zhuǎn)座子轉(zhuǎn)座機(jī)制的認(rèn)識(shí)仍缺乏直接的證據(jù)?;谂c其他超家族DNA轉(zhuǎn)座子的一些共性及大量轉(zhuǎn)座事件分析,推測(cè)超家族轉(zhuǎn)座子的剪切及再次插入可能與某些已知的轉(zhuǎn)座機(jī)制存在相似之處。
真核生物DNA轉(zhuǎn)座子的剪切過(guò)程一般以轉(zhuǎn)座子兩端某一條DNA單鏈的解離為起始,該過(guò)程為親核裂解反應(yīng),通常H2O作為親核試劑,在轉(zhuǎn)座酶的作用下攻擊轉(zhuǎn)座子與側(cè)翼序列連接處的磷酸二酯鍵而形成斷裂口。某些超家族轉(zhuǎn)座子會(huì)在轉(zhuǎn)座子末端暴露出自由的3′-OH,而其他超家族轉(zhuǎn)座子則在側(cè)翼宿主序列末端暴露出自由的3′-OH,隨后,不同類(lèi)型超家族轉(zhuǎn)座酶催化不同位置的3′-OH與不同類(lèi)型DNA底物組合而使第二鏈斷開(kāi),由此形成的DNA雙鏈斷裂(DNA double strand break, DSB)使轉(zhuǎn)座子最終得以從供體位點(diǎn)釋放出來(lái)[90]。最近研究發(fā)現(xiàn),埃及伊蚊第二鏈斷開(kāi)方式與、超家族轉(zhuǎn)座子相類(lèi)似[77]。在轉(zhuǎn)座酶作用下,以H2O作為親核試劑使轉(zhuǎn)座子末端與側(cè)翼DNA連接處的磷酸二酯鍵斷開(kāi)后在側(cè)翼DNA的3′末端暴露出羥基,3′-OH進(jìn)攻另一鏈而在側(cè)翼DNA末端形成發(fā)卡結(jié)構(gòu),最后釋放出轉(zhuǎn)座子(圖4)。剪切位點(diǎn)形成的DSB既可以通過(guò)非同源末端連接(non-homolo-gous end joining, NHEJ)方式修復(fù),留下不同類(lèi)型轉(zhuǎn)座印跡(footprint),還可能通過(guò)同源重組(homologous recombination, HR)方式,以一條姐妹染色單體或同系物作為模板進(jìn)行修復(fù)。但是,側(cè)翼DNA形成的發(fā)卡結(jié)構(gòu)必須在修復(fù)前打開(kāi),相關(guān)的體外實(shí)驗(yàn)表明,這一過(guò)程并不是由轉(zhuǎn)座酶催化完成,而可能是由宿主自身可以切割類(lèi)似發(fā)卡結(jié)構(gòu)的酶來(lái)完成[86]。目前對(duì)于超家族轉(zhuǎn)座酶催化作用下的DNA雙鏈斷裂過(guò)程報(bào)道較少,該過(guò)程是否是超家族轉(zhuǎn)座子的共同遺傳特性亟待其他自主性超家族轉(zhuǎn)座子相關(guān)研究加以驗(yàn)證。
圖4 Muta1轉(zhuǎn)座酶介導(dǎo)的DNA雙鏈斷裂過(guò)程
轉(zhuǎn)座子剪切后導(dǎo)致DNA發(fā)生雙鏈斷裂,目前認(rèn)為植物不同組織細(xì)胞中DSB修復(fù)方式不盡相同[91,92](圖5)。若剪切發(fā)生在生殖類(lèi)細(xì)胞(包括配子體及配子體減數(shù)分裂前的有絲分裂細(xì)胞)的S期或G2期,此時(shí)轉(zhuǎn)座子已經(jīng)隨著染色體發(fā)生了復(fù)制,細(xì)胞能夠以姐妹染色單體為模板進(jìn)行精確修復(fù)。由于剪切位點(diǎn)被完全修復(fù),轉(zhuǎn)座反應(yīng)看似以“copy-and-paste”方式進(jìn)行,但事實(shí)上是轉(zhuǎn)座子剪切后又被重新修復(fù)的結(jié)果,而并非轉(zhuǎn)座子的簡(jiǎn)單加倍。在DSB的修復(fù)過(guò)程中,由于模板內(nèi)存在一些長(zhǎng)短不一、散落分布的微同源序列,修復(fù)復(fù)制鏈發(fā)生位置滑移,便形成了大小有別、序列組成不同的多種缺陷型轉(zhuǎn)座子。而在體細(xì)胞發(fā)育過(guò)程晚期,轉(zhuǎn)座子剪切可能發(fā)生在細(xì)胞S期之前或者剪切形成的DSB主要通過(guò)易錯(cuò)易突變的NHEJ方式進(jìn)行修復(fù),結(jié)果導(dǎo)致轉(zhuǎn)座子原插入位點(diǎn)產(chǎn)生多種類(lèi)型的footprint序列[93,94]。
目前已有多方面證據(jù)支持上述假說(shuō)。在和生殖類(lèi)細(xì)胞轉(zhuǎn)座研究中均可以檢測(cè)到缺陷型轉(zhuǎn)座子,并且這些缺陷型轉(zhuǎn)座子在缺失序列的兩翼存在微同源序列[56,91]。此外,研究還發(fā)現(xiàn)在一些缺陷型轉(zhuǎn)座子序列內(nèi)部含有填充序列(filler DNA),并且這些filler DNA均來(lái)自缺失位點(diǎn)附近序列[56,95]。這正是由于修復(fù)模板內(nèi)存在多組微同源序列,修復(fù)復(fù)制時(shí)發(fā)生了多次復(fù)制鏈滑移造成的。由此可見(jiàn),在生殖類(lèi)細(xì)胞中轉(zhuǎn)座子剪切后是通過(guò)依賴(lài)模板的方式進(jìn)行修復(fù)的。另外,研究發(fā)現(xiàn)在玉米R(shí)AD51突變體中生殖類(lèi)細(xì)胞內(nèi)轉(zhuǎn)座子轉(zhuǎn)座行為異常。RAD51在細(xì)胞減數(shù)分裂的DSB修復(fù)過(guò)程發(fā)揮重要作用,玉米中存在兩個(gè)同源基因,在含有活性的RAD51雙突變材料中,生殖細(xì)胞轉(zhuǎn)座反應(yīng)中內(nèi)部及側(cè)翼序列缺失的頻率比野生型材料高出數(shù)10倍,這也表明玉米生殖類(lèi)細(xì)胞內(nèi)剪切 后需要RAD51介導(dǎo)的HR進(jìn)行修復(fù)[96,97]。與生殖類(lèi)細(xì)胞剪切修復(fù)相比,在體細(xì)胞組織轉(zhuǎn)座過(guò)程中,轉(zhuǎn)座子剪切后往往會(huì)形成多種類(lèi)型footprint序列,大量及體細(xì)胞組織轉(zhuǎn)座事件研究已經(jīng)證實(shí)了這一點(diǎn)[56,93,94]。但體細(xì)胞組織內(nèi)轉(zhuǎn)座子剪切部位絕大多數(shù)不存在微同源序列,因此,體細(xì)胞組織內(nèi)轉(zhuǎn)座子剪切后更可能是通過(guò)非模板修復(fù)方式進(jìn)行修復(fù)的。
圖5 轉(zhuǎn)座子剪切后的DNA雙鏈斷裂修復(fù)
中間圓形表示細(xì)胞周期;左圖表示轉(zhuǎn)座子剪切發(fā)生在體細(xì)胞的S期前,轉(zhuǎn)座子剪切后形成的DSB通過(guò)NHEJ方式修復(fù),產(chǎn)生不同類(lèi)型footprint序列;右圖表示轉(zhuǎn)座子剪切發(fā)生在生殖類(lèi)細(xì)胞的S期或G2期,轉(zhuǎn)座子剪切后形成的DSB通過(guò)HR方式以姐妹染色單體為模板進(jìn)行修復(fù),在斷裂處修復(fù)為原轉(zhuǎn)座子或由于微同源序列導(dǎo)致修復(fù)鏈滑移,修復(fù)為缺陷型轉(zhuǎn)座子。
原核轉(zhuǎn)座元件通過(guò)閉合環(huán)形結(jié)構(gòu)介導(dǎo)轉(zhuǎn)座過(guò)程[98],而早期研究發(fā)現(xiàn),在攜帶活性的玉米材料中,轉(zhuǎn)座子也能夠以染色體外共價(jià)閉合的環(huán)形結(jié)構(gòu)形式存在,并且這些環(huán)形的出現(xiàn)依賴(lài)于活性的存在,因此,其可能是MURA作用下的轉(zhuǎn)座中間體或是剪切后的產(chǎn)物[99]。但由于環(huán)形序列信息的缺乏,難以明確其在轉(zhuǎn)座反應(yīng)中的作用及生物學(xué)意義。Li等[56]對(duì)玉米的研究發(fā)現(xiàn),在含有活性的玉米體細(xì)胞中可以檢測(cè)到共價(jià)閉合的環(huán)形或環(huán)形缺陷型結(jié)構(gòu);序列分析證實(shí),這些環(huán)形結(jié)構(gòu)的確是轉(zhuǎn)座子兩端共價(jià)連接的產(chǎn)物;同時(shí)酶切實(shí)驗(yàn)表明,所有檢測(cè)的環(huán)形結(jié)構(gòu)并不是兩側(cè)TIR末端完美的“頭頂頭(Head- to-Head)”共價(jià)連接,而可能是其他更為復(fù)雜的序列組成;除了預(yù)期大小的擴(kuò)增產(chǎn)物,該研究還檢測(cè)到一些其他擴(kuò)增產(chǎn)物,克隆測(cè)序發(fā)現(xiàn)多數(shù)產(chǎn)物序列在連接點(diǎn)處缺失轉(zhuǎn)座子單側(cè)或兩側(cè)末端序列,缺失長(zhǎng)度不等(<100 bp至>2 kb),有些涉及編碼轉(zhuǎn)座酶的區(qū)段。這些染色體外環(huán)形結(jié)構(gòu)可能與轉(zhuǎn)座子某些特性相關(guān),例如轉(zhuǎn)座子剪切后在非連鎖位點(diǎn)的再次插入。目前,類(lèi)似的轉(zhuǎn)座子共價(jià)閉合環(huán)形結(jié)構(gòu)在其他轉(zhuǎn)座子研究中也有所報(bào)道[54,100,101],但不同轉(zhuǎn)座子的染色體外環(huán)形結(jié)構(gòu)是否參與轉(zhuǎn)座反應(yīng),它們?nèi)绾伟l(fā)揮作用及其生物學(xué)意義仍不明確。
超家族轉(zhuǎn)座子在基因組內(nèi)的轉(zhuǎn)座并非隨機(jī)插入而具有一定的偏好性。目前通過(guò)多個(gè)突變系已經(jīng)獲得了數(shù)萬(wàn)份玉米插入突變體,這些插入遍布整個(gè)玉米基因組[89,102,103],與插入突變體不同,新插入位點(diǎn)與原初插入位點(diǎn)并不連鎖。值得注意的是,雖然玉米基因組大部分為反轉(zhuǎn)錄轉(zhuǎn)座子序列,但絕大部分插入在基因組低拷貝區(qū)域的基因內(nèi)部或基因附近[103~105]。進(jìn)一步研究發(fā)現(xiàn),更傾向于插入基因的5′末端,且插入?yún)^(qū)段序列GC含量較高,這與玉米及其他單子葉植物基因5′末端GC含量略高相對(duì)應(yīng)[106]。另外,插入位點(diǎn)與開(kāi)放染色質(zhì)表觀遺傳標(biāo)記(如DNA甲基化和組蛋白修飾)緊密相關(guān)[107]。近期的研究也表明,真核生物轉(zhuǎn)座子插入位點(diǎn)的選擇受染色質(zhì)結(jié)構(gòu)影響[108]。在玉米W22基因組中,插入位點(diǎn)與兩翼序列染色質(zhì)開(kāi)放性無(wú)明顯差異,而插入位點(diǎn)染色質(zhì)開(kāi)放性顯著增加。此外,和都傾向于插入CG和CHG甲基化程度極低的區(qū)域,但插入位點(diǎn)通常與CG和CHG高度甲基化區(qū)域相距較遠(yuǎn),而插入位點(diǎn)與這些高度甲基化區(qū)段距離較近[109],這些特征有助于理解更多插入在基因UTR區(qū)而更傾向于插入基因編碼區(qū)。
不同超家族轉(zhuǎn)座子插入基因組后會(huì)在其兩側(cè)形成一定長(zhǎng)度的正向重復(fù)序列,這些序列來(lái)自插入位點(diǎn),被稱(chēng)為靶位點(diǎn)重復(fù)序列(target site duplication, TSD)。通常同一家族的轉(zhuǎn)座子重新插入后形成相同長(zhǎng)度甚至固定組成的TSD,因此,TSD序列長(zhǎng)度、固定的序列組成也是進(jìn)行轉(zhuǎn)座子分類(lèi)的依據(jù)之一[20,21]。超家族轉(zhuǎn)座子轉(zhuǎn)座主要形成長(zhǎng)度為9 bp的TSD,并且這些TSD無(wú)明顯的序列組成規(guī)律。近期研究表明,TSD與DNA轉(zhuǎn)座子的轉(zhuǎn)座行為之間關(guān)系密切。例如,在異源酵母系統(tǒng)中研究水稻的轉(zhuǎn)座遺傳特征時(shí)發(fā)現(xiàn),當(dāng)改變一側(cè)TSD中緊鄰的前3個(gè)堿基后,轉(zhuǎn)座子的剪切頻率顯著下降,對(duì)于較長(zhǎng)的非自主性轉(zhuǎn)座子這種影響更為明顯。并且不一致的TSD還會(huì)影響非自主性轉(zhuǎn)座子NA剪切位點(diǎn)的精確修復(fù),而對(duì)轉(zhuǎn)座子重新插入頻率并無(wú)顯著影響[71]。另外,在異源酵母系統(tǒng)中,TSD同樣影響埃及伊蚊的轉(zhuǎn)座行為。當(dāng)非自主性轉(zhuǎn)座子攜帶有8 bp或9 bp TSD時(shí),剪切頻率較無(wú)TSD情況下顯著提高,但與不同的是,當(dāng)攜帶TSD時(shí),相應(yīng)轉(zhuǎn)座子重新插入的頻率也有所提高。此外,TSD的缺失同樣影響相應(yīng)轉(zhuǎn)座子剪切位點(diǎn)的精確修復(fù)。當(dāng)攜帶有8 bp或 9 bp TSD時(shí),90%的回復(fù)突變均為精確剪切;當(dāng)無(wú)TSD時(shí),精確剪切頻率僅占所有回復(fù)突變的10%。而對(duì)于TSD序列組成的研究表明,不同的TSD序列組成對(duì)于轉(zhuǎn)座子的剪切和重新插入均無(wú)顯著影響[58]。由此可見(jiàn),TSD序列的有無(wú)、一致性及其長(zhǎng)度對(duì)元件轉(zhuǎn)座行為的影響更大,而TSD的序列組成對(duì)于轉(zhuǎn)座行為的影響較小。在植物中超家族轉(zhuǎn)座子的轉(zhuǎn)座反應(yīng)受到嚴(yán)格調(diào)控,而異源酵母系統(tǒng)中開(kāi)展的研究可能不足以完全涵蓋和揭示TSD在植物轉(zhuǎn)座過(guò)程中的作用和調(diào)控機(jī)制。
除了以外,目前玉米中還克隆了另外兩個(gè)自主性元件:[55]和[56]。這兩個(gè)轉(zhuǎn)座子與間存在一些共性,例如都具有同源序列,含有較長(zhǎng)的TIR,插入位點(diǎn)形成9 bp TSD。而系統(tǒng)進(jìn)化分析表明,這兩個(gè)轉(zhuǎn)座子各自作為獨(dú)立的自主性轉(zhuǎn)座子已經(jīng)存在了數(shù)百萬(wàn)年[73]。與相比,和共享某些特性:(1)玉米中和的拷貝數(shù)很低;(2)它們?cè)谏愁?lèi)細(xì)胞內(nèi)發(fā)生回復(fù)突變的頻率均高于;(3)兩者都不含有同源序列[55,56]。更為特殊在生殖類(lèi)細(xì)胞和體細(xì)胞組織內(nèi)剪切后的修復(fù)都不留有任何footprint序列。此外,的自主性略顯欠缺,目前只檢測(cè)到玉米e位點(diǎn)的可以發(fā)生剪切,并未檢測(cè)到其重新整合到基因組中,雖然不排除可能與缺少同源基因相關(guān)[55],但更可能是兩端TIR序列微小差異影響了轉(zhuǎn)座剪切后的再次插入。3′端TIR比5′端TIR在末端少了4個(gè)核苷酸(GCTC),生物信息學(xué)分析發(fā)現(xiàn),在其他已測(cè)序的玉米材料中,-like序列兩側(cè)TIR中均含有這4個(gè)核苷酸。因此,很可能原本兩側(cè)TIR序列一致,在轉(zhuǎn)座到位點(diǎn)過(guò)程中3′端TIR發(fā)生了序列丟失進(jìn)而影響到的轉(zhuǎn)座反應(yīng),導(dǎo)致其剪切后不能重新插入到基因組中。另外,其他已鑒定的自主性元件同樣不含有同源基因,但轉(zhuǎn)座后均可以重新插入到基因組其他位點(diǎn)。因此,即使基因確實(shí)與生殖類(lèi)細(xì)胞內(nèi)轉(zhuǎn)座剪切后的重新插入相關(guān),目前鑒定到的這些元件可能在轉(zhuǎn)座剪切后的重新插入方面進(jìn)化出了不同的機(jī)制,不再需要MURB功能蛋白。玉米中除了以上3個(gè)超家族轉(zhuǎn)座子外,遺傳學(xué)實(shí)驗(yàn)還鑒定到另外幾個(gè)自主性元件,但這些轉(zhuǎn)座子完整的基因組序列目前仍未被克隆,如玉米中家族轉(zhuǎn)座子[110]。已有研究表明,缺陷型()的TIR與TIR的序列在前50 bp高度同源,并且可以使發(fā)生移動(dòng)。但關(guān)于自主性轉(zhuǎn)座特性及其與間相互關(guān)系目前仍不清楚,尚需進(jìn)行深入研究。
轉(zhuǎn)座子在真核生物基因和基因組的結(jié)構(gòu)及進(jìn)化過(guò)程中扮演著重要角色,眾多農(nóng)作物在其馴化過(guò)程中優(yōu)異農(nóng)藝形狀和優(yōu)良品質(zhì)的形成以及對(duì)生物脅迫和非生物脅迫的不斷適應(yīng)的遺傳基礎(chǔ)都與轉(zhuǎn)座子引發(fā)的變異密不可分。超家族轉(zhuǎn)座子作為Ⅱ類(lèi)轉(zhuǎn)座子研究的重要方面,是轉(zhuǎn)座子遺傳學(xué)及功能基因組學(xué)的主要研究對(duì)象,而轉(zhuǎn)座子研究中仍有許多科學(xué)問(wèn)題亟待解決,轉(zhuǎn)座子的開(kāi)發(fā)應(yīng)用更有待加強(qiáng)。因此,繼續(xù)深入轉(zhuǎn)座子基礎(chǔ)遺傳學(xué)研究并不斷開(kāi)發(fā)利用轉(zhuǎn)座子資源必將發(fā)揮重要的學(xué)術(shù)及應(yīng)用價(jià)值。隨著高通量測(cè)序、生物信息學(xué)分析及機(jī)器深度學(xué)習(xí)等新技術(shù)的發(fā)展,轉(zhuǎn)座子深入研究的成果勢(shì)必更好地服務(wù)和推動(dòng)生命科學(xué)的發(fā)展。
[1] Ravindran S. Barbara McClintock and the discovery of jumping genes., 2012, 109(50): 20198–20199.
[2] Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvák Z, Levin HL, Macfarlan TS, Mager DL, Feschotte C. Ten things you should know about transposable elements., 2018, 19(1): 199.
[3] Huang CR, Burns KH, Boeke JD. Active transposition in genomes., 2012, 46: 651–675.
[4] Liu Z, Xu JH. The application of the high throughput sequencing technology in the transposable elements., 2015, 37(9): 885–898.劉振, 徐建紅. 高通量測(cè)序技術(shù)在轉(zhuǎn)座子研究中的應(yīng)用. 遺傳, 2015, 37(9): 885–898.
[5] Li SF, Li S, Deng CL, Lu LD, Gao WJ. Role of transposons in origin and evolution of plant XY sex chromosomes., 2015, 37(2): 157–164.李書(shū)粉, 李莎, 鄧傳良, 盧龍斗, 高武軍. 轉(zhuǎn)座子在植物XY性染色體起源與演化過(guò)程中的作用. 遺傳, 2015, 37(2): 157–164.
[6] Li MM, Zhang DF, Gao Q, Luo YF, Zhang H, Ma B, Chen CH, Whibley A, Zhang YE, Cao YH, Li Q, Guo H, Li JH, Song YZ, Zhang Y, Copsey L, Li Y, Li XX, Qi M, Wang JW, Chen Y, Wang D, Zhao JY, Liu GC, Wu B, Yu LL, Xu CY, Li J, Zhao SC, Zhang YJ, Hu SN, Liang CZ, Yin Y, Coen E, Xue YB. Genome structure and evolution ofL., 2019, 5(2): 174–183.
[7] Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang XQ, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, ?imkováH, Staňková H, Vrána J, Chan S, Mu?oz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, Mccooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Dolezel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer FXK, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N. A chromosome conformation capture ordered sequence of the barley genome., 2017, 544(7651): 427–433.
[8] Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, Borrill P, Kettleborough G, Heavens D, Chapman H, Lipscombe J, Barker T, Lu FH, Mckenzie N, Raats D, Ramirez-Gonzalez RH, Coince A, Peel N, Percival-Alwyn L, Duncan O, Tr?sch J, Yu G, Bolser DM, Namaati G, Kerhornou A, Spannagl M, Gundlach H, Haberer G, Davey RP, Fosker C, Palma FD, Phillips AL, Millar AH, Kersey PJ, Uauy C, Krasileva KV, Swarbreck D, Bevan MW, Clark MD. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations., 2017, 27(5): 885–896.
[9] Li FG, Fan GY, Lu CR, Xiao GH, Zou CS, Kohel RJ, Ma ZY, Shang HH, Ma XF, Wu JY, Liang XM, Huang G, Percy RG, Liu K, Yang WH, Chen WB, Du XM, Shi CC, Yuan YL, Ye WW, Liu X, Zhang XY, Liu WQ, Wei HL, Wei SJ, Huang GD, Zhang XL, Zhu SJ, Zhang H, Sun FM, Wang XF, Liang J, Wang JH, He Q, Huang LH, Wang J, Cui JJ, Song GL, Wang KB, Xu X, Yu JZ, Zhu YX, Yu SX. Genome sequence of cultivated upland cotton (TM-1) provides insights into genome evolution., 2015, 33(5): 524–530.
[10] Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA. Genome sequence of the palaeopolyploid soybean., 2010, 463(7278): 178–183.
[11] Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, Mcmahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, Mccann MC, Sanmiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, Mccombie WR, Wing RA, Wilson RK. The B73 maize genome: complexity, diversity, and dynamics., 2009, 326(5956): 1112–1115.
[12] Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, Mccann MC, Ming R, Peterson DG, Mehboob-Ur-Rahman, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS. The Sorghum bicolor genome and the diversification of grasses., 2009, 457(7229): 551–556.
[13] Studer A, Zhao Q, Ross-Ibarra J, Doebley J. Identification of a functional transposon insertion in the maize domestication gene., 2011, 43(11): 1160–1163.
[14] Yang Q, Li Z, Li WQ, Ku LX, Wang C, Ye JR, Li K, Yang N, Li YP, Zhong T, Li JS, Chen YH, Yan JB, Yang XH, Xu ML. CACTA-like transposable element inattenuated photoperiod sensitivity and accelerated the postdomestication spread of maize., 2013, 110(42): 16969–16974.
[15] Castelletti S, Tuberosa R, Pindo M, Salvi S. A MITE transposon insertion is associated with differential methylation at the maize flowering time QTL., 2014, 4(5): 805–812.
[16] Wang C, Yang Q, Wang WX, Li YP, Guo YL, Zhang DF, Ma XM, Song W, Zhao JR, Xu ML. A transposon-directed epigenetic change inunderlies quantitative resistance tostalk rot in maize., 2017, 215(4): 1503–1515.
[17] Zhang ZH, Zhang X, Lin ZL, Wang J, Liu HQ, Zhou LN, Zhong SY, Li Y, Zhu C, Lai JS, Li XR, Yu JM, Lin ZW. A large transposon insertion in thepromoter increases stalk strength in maize., 2019, DOI: 10.1105/tpc.19.00486.
[18] Kojima KK. Structural and sequence diversity of eukaryotic transposable elements., 2018, DOI: 10.1266/ggs.18–00024
[19] Finnegan DJ. Eukaryotic transposable elements and genome evolution., 1989, 5(4): 103–107.
[20] Kapitonov VV, Jurka J. A universal classification of eukaryotic transposable elements implemented in Repbase., 2008, 9(5): 411–412, 414.
[21] Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, Sanmiguel P, Schulman AH. A unified classification system for eukaryotic transposable elements., 2007, 8(12): 973–982.
[22] Bao WD, Kojima KK, Kohany O. Repbase update, a database of repetitive elements in eukaryotic genomes., 2015, 6: 11.
[23] Xu HE, Zhang HH, Han MJ, Sheng YH, Huang XZ, Xiang ZH, Zhang Z. Computational approaches for identification and classification of transposable elements in eukaryotic genomes., 2012, 34(8): 1009–1019.許紅恩, 張化浩, 韓民錦, 沈以紅, 黃先智, 向仲懷, 張澤. 真核生物轉(zhuǎn)座子鑒定和分類(lèi)計(jì)算方法. 遺傳, 2012, 34(8): 1009–1019.
[24] Hou XG, Zhang X, Guo DL. Identification and analysis methods of plant LTR retrotransposon sequences., 2012, 34(11): 1491–1500.侯小改, 張曦, 郭大龍. 植物L(fēng)TR類(lèi)反轉(zhuǎn)錄轉(zhuǎn)座子序列分析識(shí)別方法. 遺傳, 2012, 34(11): 1491–1500.
[25] Shen D, Chen C, Wang SS, Chen W, Gao B, Song CY. Research progress of Tc1/Mariner superfamily., 2017, 39(1): 1–13.沈丹, 陳才, 王賽賽, 陳偉, 高波, 宋成義. Tc1/Mariner轉(zhuǎn)座子超家族的研究進(jìn)展. 遺傳, 2017, 39(1): 1–13.
[26] Robertson DS. Characterization of a mutator system in maize., 1978, 51(1): 21–28.
[27] Robertson DS. Genetic studies on the loss ofmutator activity in maize., 1986, 113(3): 765–773.
[28] Strommer JN, Hake S, Bennetzen J, Taylor WC, Freeling M. Regulatory mutants of the maizegene caused by DNA insertions., 1982, 300(5892): 542–544.
[29] Bennetzen JL. Transposable elementis found in multiple copies only in Robertson's Mutator maize lines., 1984, 2(6): 519–524.
[30] Taylor LP, Walbot V. Isolation and characterization of a 1.7-kb transposable element from a mutator line of maize., 1987, 117(2): 297–307.
[31] Lisch D, Jiang N.andtransposons. In: Bennetzen JL, Hake S, eds. Handbook of Maize: Genetics and Genomics. New York, NY:Springer New York, 2009, 277–306.
[32] Hershberger RJ, Warren CA, Walbot V. Mutator activity in maize correlates with the presence and expression of thetransposable element., 1991, 88(22): 10198–10202.
[33] Chomet P, Lisch D, Hardeman KJ, Chandler VL, Freeling M. Identification of a regulatory transposon that controls thetransposable element system in maize., 1991, 129(1): 261–270.
[34] Qin MM, Robertson DS, Ellingboe AH. Cloning of thetransposable element, a putative regulator of somatic mutability of theallele in maize., 1991, 129(3): 845–854.
[35] Mccarty DR, Settles AM, Suzuki M, Tan BC, Latshaw S, Porch T, Robin K, Baier J, Avigne W, Lai J, Messing J, Koch KE, Hannah LC. Steady-state transposon mutagenesis in inbred maize., 2005, 44(1): 52–61.
[36] May BP, Liu H, Vollbrecht E, Senior L, Rabinowicz PD, Roh D, Pan XK, Stein L, Freeling M, Alexander D, Martienssen R. Maize-targeted mutagenesis: A knockout resource for maize., 2003, 100(20): 11541–11546.
[37] Raizada MN.protocols for maize functional genomics., 2003, 236: 37–58.
[38] Qian YX, Cheng X, Liu Y, Jiang HY, Zhu SW, Cheng BJ. Reactivation of a silenced minimaltransposable element system following low-energy nitrogen ion implantation in maize., 2010, 29(12): 1365–1376.
[39] Lisch D, Chomet P, Freeling M. Genetic characterizationof thesystem in maize: Behavior and regulation oftransposons in a minimal line., 1995, 139(4): 1777–1796.
[40] Lisch D, Freeling M. Loss ofactivity in a minimal line., 1994, 39(4): 289–300.
[41] Slotkin RK, Freeling M, Lisch D.causes the heritable inactivation of thefamily of transposable elements in, 2003, 165(2): 781–797.
[42] Slotkin RK, Freeling M, Lisch D. Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication., 2005, 37(6): 641–644.
[43] Stawujak K, Startek M, Gambin A, Grzebelus D.: A family of-like transposable elements targeting TA microsatellites in., 2015, 143(4): 433–440.
[44] Yan L, Gu YH, Tao X, Lai XJ, Zhang YZ, Tan XM, Wang HY. Scanning of transposable elements and analyzing expression of transposase genes of sweet potato []., 2014, 9(3): e90895.
[45] Gbadegesin MA, Wills MA, Beeching JR. Diversity of LTR-retrotransposons and-like transposons in cassava (Crantz)., 2008, 280(4): 305–317.
[46] van Leeuwen H, Monfort A, Puigdomenech P.-like elements identified in melon,and rice contain ULP1 protease domains., 2007, 277(4): 357–364.
[47] Rossi M, Araujo PG, de Jesus EM, Varani AM, Van Sluys MA. Comparative analysis of-like transposases in sugarcane., 2004, 272(2): 194–203.
[48] Neuvéglise C, Chalvet F, Wincker P, Gaillardin C, Casaregola S.-like element in the yeastdisplays multiple alternative splicings., 2005, 4(3): 615–624.
[49] Chalvet F, Grimaldi C, Kaper F, Langin T, Daboussi MJ., an active-like element in the genome of the fungus., 2003, 20(8): 1362–1375.
[50] Lopes FR, Silva JC, Benchimol M, Costa GG, Pereira GA, Carareto CM. The protistharbors multiple lineages of transcriptionally active-like elements., 2009, 10: 330.
[51] Pritham EJ, Feschotte C, Wessler SR. Unexpected diversity and differential success of DNA transposons in four species ofprotozoans, 2005, 22(9): 1751–1763.
[52] Jacinto DS, Muniz Hdos S, Venancio TM, Wilson RA, Verjovski-Almeida S, Demarco R. Curupira-1 and Curupira-2, two novel-like DNA transposons from the genomes of human parasitesand, 2011, 138(9): 1124–1133.
[53] Marquez CP, Pritham EJ., a new subclass ofDNA transposons found in insect viruses and widely distributed in animals., 2010, 185(4): 1507–1517.
[54] Singer T, Yordan C, Martienssen RA. Robertson'stransposons inare regulated by the chromatin-remodeling gene., 2001, 15(5): 591–602.
[55] Xu NZ, Yan XH, Maurais S, Fu HH, O'Brien DG, Mottinger J, Dooner HK., adistant relative with a paradoxical mobile behavior: excision without reinsertion., 2004, 16(5): 1105–1114.
[56] Li YB, Harris L, Dooner HK., an autonomous and rare maize transposon of thesuperfamily with a high gametophytic excision frequency., 2013, 25(9): 3251–3265.
[57] Gao DY. Identification of an active-like element (MULE) in rice)., 2012, 287(3): 261–271.
[58] Liu K, Wessler SR. Functional characterization of the active-like transposable element,from the mosquito, 2017, 8: 1.
[59] Ming R, Vanburen R, Liu Y, Yang M, Han Y, Li LT, Zhang Q, Kim MJ, Schatz MC, Campbell M, Li J, Bowers JE, Tang H, Lyons E, Ferguson AA, Narzisi G, Nelson DR, Blaby-Haas CE, Gschwend AR, Jiao Y, Der JP, Zeng F, Han J, Min XJ, Hudson KA, Singh R, Grennan AK, Karpowicz SJ, Watling JR, Ito K, Robinson SA, Hudson ME, Yu Q, Mockler TC, Carroll A, Zheng Y, Sunkar R, Jia R, Chen N, Arro J, Wai CM, Wafula E, Spence A, Han Y, Xu L, Zhang J, Peery R, Haus MJ, Xiong W, Walsh JA, Wu J, Wang ML, Zhu YJ, Paull RE, Britt AB, Du C, Downie SR, Schuler MA, Michael TP, Long SP, Ort DR, Schopf JW, Gang DR, Jiang N, Yandell M, Depamphilis CW, Merchant SS, Paterson AH, Buchanan BB, Li S, Shen-Miller J. Genome of the long-living sacred lotus (Gaertn.)., 2013, 14(5): R41.
[60] Ferguson AA, Jiang N.-like elements with multiple long terminal inverted repeats in plants., 2012, 2012: 695827.
[61] Holligan D, Zhang XY, Jiang N, Pritham EJ, Wessler SR. The transposable element landscape of the model legume, 2006, 174(4): 2215–2228.
[62] Hoen DR, Park KC, Elrouby N, Yu Z, Mohabir N, Cowan RK, Bureau TE. Transposon-mediated expansion and diversification of a family of-like genes., 2006, 23(6): 1254–1268.
[63] Jiang N, Bao ZR, Zhang XY, Eddy SR, Wessler SR. Pack-MULE transposable elements mediate gene evolution in plants., 2004, 431(7008): 569–573.
[64] Lisch D.transposons., 2002, 7(11): 498–504.
[65] Yu Z, Wright SI, Bureau TE.-like elements in: structure, diversity and evolution., 2000, 156(4): 2019–2031.
[66] Wang J, Yu Y, Tao F, Zhang JW, Copetti D, Kudrna D, Talag J, Lee S, Wing RA, Fan CZ. DNA methylation changes facilitated evolution of genes derived from-like transposable elements., 2016, 17(1): 92.
[67] Ferguson AA, Zhao D, Jiang N. Selective acquisition and retention of genomic sequences by Pack--like elements based on guanine-cytosine content and the breadth of expression., 2013, 163(3): 1419–1432.
[68] Jiang N, Ferguson AA, Slotkin RK, Lisch D. Pack--like transposable elements (Pack-MULEs) induce directional modification of genes through biased insertion and DNA acquisition., 2011, 108(4): 1537–1542.
[69] Zhao D, Hamilton JP, Vaillancourt B, Zhang W, Eizenga GC, Cui Y, Jiang J, Buell CR, Jiang N. The unique epigenetic features of Pack-MULEs and their impact on chromosomal base composition and expression spectrum., 2018, 46(5): 2380–2397.
[70] Benito MI, Walbot V. Characterization of the maizetransposable element MURA transposase as a DNA-binding protein., 1997, 17(9): 5165–5175.
[71] Zhao D, Ferguson A, Jiang N. Transposition of a rice-like element in the yeast., 2015, 27(1): 132–148.
[72] Raizada MN, Benito MI, Walbot V. Thetransposon terminal inverted repeat contains a complex plant promoter directing distinct somatic and germinal programs., 2001, 25(1): 79–91.
[73] Lisch D.andtransposons., 2015, 3(2): A3–A32.
[74] Tan BC, Chen ZL, Shen Y, Zhang YF, Lai JS, Sun SSM. Identification of an active newtransposable element in maize., 2011, 1(4): 293–302.
[75] Dietrich CR, Cui F, Packila ML, Li J, Ashlock DA, Nikolau BJ, Schnable PS. Maizetransposons are targeted to the 5' untranslated region of thegene and sequences flankingtarget-site duplications exhibit nonrandom nucleotide composition throughout the genome., 2002, 160(2): 697–716.
[76] Bennetzen JL, Springer P, Cresse AD, Hendrickx M. Specificity and regulation of thetransposable element system in maize., 1993, 12(1–2): 57.
[77] Liu K, Wessler SR. Transposition of-like transposable elements (MULEs) resemblesandelements and V(D)J recombination., 2017, 45(11): 6644–6655.
[78] Wang QH, Dooner HK. Remarkable variation in maize genome structure inferred from haplotype diversity at thelocus., 2006, 103(47): 17644–17649.
[79] Eisen JA, Benito MI, Walbot V. Sequence similarity of putative transposases links the maizeautonomous element and a group of bacterial insertion sequences., 1994, 22(13): 2634–2636.
[80] Hua-Van A, Capy P. Analysis of the DDE motif in the Mutator superfamily., 2008, 67(6): 670–681.
[81] Raizada MN, Walbot V. The late developmental pattern oftransposon excision is conferred by a cauliflower mosaic virus 35S-driven MURA cDNA in transgenic maize., 2000, 12(1): 5–21.
[82] Lisch D, Girard L, Donlin M, Freeling M. Functional analysis of deletion derivatives of the maize transposondelineates roles for the MURA and MURB proteins., 1999, 151(1): 331–341.
[83] Aziz RK, Breitbart M, Edwards RA. Transposases are the most abundant, most ubiquitous genes in nature., 2010, 38(13): 4207–4217.
[84] Yuan YW, Wessler SR. The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies., 2011, 108(19): 7884–7889.
[85] Hickman AB, Ewis HE, Li X, Knapp JA, Laver T, Doss AL, Tolun G, Steven AC, Grishaev A, Bax A, Atkinson PW, Craig NL, Dyda F. Structural basis oftransposon end recognition by Hermes, an octameric DNA transposase from., 2014, 158(2): 353–367.
[86] Zhou L, Mitra R, Atkinson PW, Hickman AB, Dyda F, Craig NL. Transposition ofelements links transposable elements and V(D)J recombination., 2004, 432(7020): 995–1001.
[87] Babu MM, Iyer LM, Balaji S, Aravind L. The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons., 2006, 34(22): 6505–6520.
[88] Mccarty DR, Meeley RB. Transposon resources for forward and reverse genetics in maize. In: Bennetzen JL, Hake S, eds. Handbook of Maize: Genetics and Genomics.New York, NY:Springer New York, 2009, 561–584.
[89] Liang L, Zhou L, Tang Y, Li N, Song T, Shao W, Zhang Z, Cai P, Feng F, Ma Y, Yao D, Feng Y, Ma Z, Zhao H, Song R. A Sequence-Indexed mutator insertional library for maize functional genomics study., 2019, 181(4): 1404–1414.
[90] Hickman AB, Chandler M, Dyda F. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure., 2010, 45(1): 50–69.
[91] Hsia AP, Schnable PS. DNA sequence analyses support the role of interrupted gap repair in the origin of internal deletions of the maize transposon,., 1996, 142(2): 603–618.
[92] Donlin MJ, Lisch D, Freeling M. Tissue-specific accumulation of MURB, a protein encoded by, the autonomous regulator of thetransposable element family., 1995, 7(12): 1989–2000.
[93] Britt AB, Walbot V. Germinal and somatic products ofexcision from thegene of, 1991, 227(2): 267–276.
[94] Doseff A, Martienssen R, Sundaresan V. Somatic excision of thetransposable element of maize., 1991, 19(3): 579–584.
[95] Raizada MN, Nan GL, Walbot V. Somatic and germinal mobility of thetransposon in transgenic maize., 2001, 13(7): 1587–1608.
[96] Li J, Harper LC, Golubovskaya I, Wang CR, Weber D, Meeley RB, Mcelver J, Bowen B, Cande WZ, Schnable PS. Functional analysis of maize RAD51 in meiosis and double-strand break repair., 2007, 176(3): 1469–1482.
[97] Franklin AE, Mcelver J, Sunjevaric I, Rothstein R, Bowen B, Cande WZ. Three-dimensional microscopy of the Rad51 recombination protein during meiotic prophase., 1999, 11(5): 809–824.
[98] Loessner I, Dietrich K, Dittrich D, Hacker J, Ziebuhr W. Transposase-dependent formation of circular ISderivatives inand., 2002, 184(17): 4709–4714.
[99] Sundaresan V, Freeling M. An extrachromosomal form of thetransposons of maize., 1987, 84(14): 4924–4928.
[100] Gorbunova V, Levy AA. Analysis of extrachromosomaltransposable elements., 2000, 155(1): 349–359.
[101] Gorbunova V, Levy AA. Circularizedtransposons: formation, structure and fate., 1997, 145(4): 1161–1169.
[102] Settles AM, Holding DR, Tan BC, Latshaw SP, Liu J, Suzuki M, Li L, O'Brien BA, Fajardo DS, Wroclawska E, Tseung CW, Lai J, Hunter CT, Avigne WT, Baier J, Messing J, Hannah LC, Koch KE, Becraft PW, Larkins BA, Mccarty DR. Sequence-indexed mutations in maize using the UniformMu transposon-tagging population., 2007, 8: 116.
[103] Fernandes J, Dong QF, Schneider B, Morrow DJ, Nan GL, Brendel V, Walbot V. Genome-wide mutagenesis ofL. usingtransposons., 2004, 5(10): R82.
[104] Cresse AD, Hulbert SH, Brown WE, Lucas JR, Bennetzen JL.-related transposable elements of maize preferentially insert into low copy number DNA., 1995, 140(1): 315–324.
[105] Hanley S, Edwards D, Stevenson D, Haines S, Hegarty M, Schuch W, Edwards KJ. Identification of transposon-tagged genes by the random sequencing of-tagged DNA fragments from., 2000, 23(4): 557–566.
[106] Wong GK, Wang J, Tao L, Tan J, Zhang J, Passey DA, Yu J. Compositional gradients ingenes., 2002, 12(6): 851–856.
[107] Liu S, Yeh CT, Ji T, Ying K, Wu H, Tang HM, Fu Y, Nettleton D, Schnable PS.transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome., 2009, 5(11): e1000733.
[108] Sultana T, Zamborlini A, Cristofari G, Lesage P. Integration site selection by retroviruses and transposable elements in eukaryotes., 2017, 18(5): 292–308.
[109] Springer NM, Anderson SN, Andorf CM, Ahern KR, Bai F, Barad O, Barbazuk WB, Bass HW, Baruch K, Ben-Zvi G, Buckler ES, Bukowski R, Campbell MS, Cannon E, Chomet P, Dawe RK, Davenport R, Dooner HK, Du LH, Du C, Easterling KA, Gault C, Guan JC, Hunter CT, Jander G, Jiao Y, Koch KE, Kol G, K?llner TG, Kudo T, Li Q, Lu F, Mayfield-Jones D, Mei W, Mccarty DR, Noshay JM, Portwood JN, Ronen G, Settles AM, Shem-Tov D, Shi J, Soifer I, Stein JC, Stitzer MC, Suzuki M, Vera DL, Vollbrecht E, Vrebalov JT, Ware D, Wei S, Wimalanathan K, Woodhouse MR, Xiong W, Brutnell TP. The maize W22 genome provides a foundation for functional genomics and transposon biology., 2018, 50(9): 1282–1288.
[110] Shepherd NS, Rhoades MM, Dempsey E. Genetic and molecular characterization of a--, a new mutable system of., 1989, 10(6): 507–519.
Progress onsuperfamily
Chunsheng Cong1, Yubin Li1,2
Transposable elements (TEs) are fragments of DNA sequence, which can mobile from one locus to another within a genome, often replication in the process. Occupying the main component of the genome, TEs can affect the structure and function of gene and/or genome in a variety of ways, and play an important role in the evolution of the host. Based on the transposition intermediate, eukaryotic TEs can be divided into two classes.Thesuperfamily is found in maize (L.) in the 1970s. As the member of class II elements,superfamily transposons are found in all eukaryote genomes and contain many families with clearly distinguishable genetic characteristics. In addition, these TEs transpose at high rates and preferentially insert in gene-rich and low-repetitive genomic regions leading to the rapid generation of massive novel mutations, therefore, they are in great use of both forward and reverse genetics researches. In this review, we summarize the classification, structure characteristic, transposition mechanism, insertion preference and TSD sequence and other autonomousin maize. Moreover, we discuss the problems faced in TEs’ research and research directions in the future, with a view to discuss possible breakthroughs, future development directions and significant impacts with colleagues in the related research field..
superfamily;family;elements; transposition mechanism; insertion preference; target site duplication
2019-09-27;
2019-12-17
國(guó)家自然科學(xué)基金面上項(xiàng)目(編號(hào):31871642)資助[Supported by the National Natural Science Foundation of China (No. 31871642)]
從春生,博士研究生,研究方向:生物化學(xué)及分子生物學(xué)。E-mail: congchunsheng@126.com
李玉斌,研究員,博士生導(dǎo)師,研究方向:生物化學(xué)及分子生物學(xué)。E-mail: liyubin@caas.cn
10.16288/j.yczz.19-301
2020/1/2 18:26:20
URI: http://kns.cnki.net/kcms/detail/11.1913.R.20191231.1146.001.html
(責(zé)任編委: 嚴(yán)建兵)