• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vapor-Liquid-Solid Growth of Bi2O2Se Nanoribbons for High-Performance Transistors

    2020-04-02 02:53:06CongweiTanMengshiYuShipuXuJinxiongWuShulinChenYanZhaoCongLiuYichiZhangTengTuTianranLiPengGaoHailinPeng
    物理化學(xué)學(xué)報(bào) 2020年1期

    Congwei Tan, Mengshi Yu, Shipu Xu, Jinxiong Wu, Shulin Chen, Yan Zhao,2, Cong Liu,Yichi Zhang, Teng Tu, Tianran Li, Peng Gao, Hailin Peng,2,*

    1 Center for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China.

    2 Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R.China.

    3 Electron Microscopy Laboratory, International Center for Quantum Materials, School of Physics, Peking University,Beijing 100871, P.R.China.

    Abstract:Nanostructured bismuth oxyselenide (Bi2O2Se)semiconductor, a two-dimensional (2D) materials with highmobility, air-stability, and tunable bandgap, has recently emerged as a candidate of channel material for future digital (electronic and optoelectronic) applications.In terms of material morphology, some basic issues will be addressed when a twodimensional layered crystal is shaped into a one-dimensional(1D) geometry due to size effect; these include the spaceconfined transport in a plane, which leads to dramatic changes in electronic, optical, and thermal properties.These novel 1D nanostructures with unique properties are an optimal choice for fabricating next-generation integrated circuits and functional devices within the nanometer scale such as gate-all-around field-effect transistors, single-electron transistors,chemical sensors, and THz detectors.As one of the high-mobility 2D semiconductor, 1D high-quality Bi2O2Se nanoribbons could be promising for applications in high-performance transistors; however, their synthesis has not been completely developed yet.In our study, we report on the facile growth of Bi2O2Se nanoribbons on mica substrates via a bismuthcatalyzed vapor-liquid-solid (VLS) mechanism.The preparation of Bi2O2Se nanoribbons is based on a previous work that emphasized on the oxidation of Bi2Se3 in a chemical vapor deposition (CVD) system and the use of bismuth (Bi) particles as the precursor of Bi catalysis.The morphology, composition, and structure of the as-grown Bi2O2Se nanoribbons were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, transmission electron microscopy (TEM), as well as other methods.For a Bi mediated VLS growth process, the growth of Bi2O2Se nanoribbons can be self-assembled; further, in this process, as-grown epitaxial Bi2O2Se nanoribbons are free-standing with out-of-plane morphology on the mica substrate.Additionally, combining the spherical aberration corrected transmission electron microscope (ACTEM) and selected electron diffraction (SAED) methods, we discovered that the assynthesized Bi2O2Se nanoribbons were single crystalline with high quality.We further investigated the controllable growth for domain size by optimizing the growth temperature of the Bi2O2Se nanoribbons.As-synthesized single-crystal Bi2O2Se nanoribbons have widths in the range of 100 nm to 20 μm and lengths in the sub-millimeter range.By employing a polymer poly(methyl methacrylate) (PMMA) assisted clean transfer method with the assistance of deionized water, the Bi2O2Se nanoribbons can be easily transferred onto a SiO2/Si substrate.Fabricated into the top-gated field-effect device, the Bi2O2Se nanoribbon sample (transferred to the SiO2/Si substrate) exhibited high electronic performances; these included a high electron mobility of ~220 cm2·V-1·s-1 at room temperature, good switching behavior with on/off ratio of >106, and high on current density of ~42 μA·μm-1 at a channel length of 10 μm.Therefore, Bi2O2Se nanoribbons are expected to be a promising materials for building high-performance transistors in the future.

    Key Words:Bismuth oxyselenide;Vapor-liquid-solid growth;Nanoribbons;CVD;High mobility

    1 Introduction

    Fabricating advanced technological-node transistors and manipulating electronic properties of two-dimensional (2D)materials hold significance for their future applications in nanoelectronics, for which converting a two-dimensional to onedimensional (1D) structure (nanowires, nanotubes, and nanoribbons) is an effective strategy.For future technology nodes, gate-all-around field effect transistors (FETs) fabricated on a 1D semiconductor nanostructure are promising candidates to replace the fin-field effect transistors (FinFETs) Fin Field Effect Transistors and planner short-channel FETs owing to a better electrostatic control of the channel transport and facilitating further reductions in transistor size with low leakage currentsviafully surrounding gate1,2.As the technology node requires to control channel diameter in the sub-3 nm range,except for 2D semiconductor with 1D geometry, most channel materials (Si, Ge and III-V) face process, mobility or quantum capacitance challenges of such ultra-thin body thickness3,4.Besides, some basic issues will be addressed as 2D layered crystal shape into a 1D geometry, such as space-confined transport in a plane and leads to dramatic changes in electronic,optical, and thermal properties1,2,5.Graphene nanoribbons, as a typical example, varies from pristine 2D graphene nanosheets and exhibits non-zero bandgap useful for room temperature transistor operations with excellent switching speed and high carrier mobility4,6,7.Besides, many other ribbon-like 2D materials, such as MoS28, phosphorene9,10, WSe22, and Bi2Se311nanoribbons, also lead to exceptional control over electronic structure, by which the novel quantum phenomena and unique electric properties can be observed.In this regard, fabrication of 2D materials into 1D nanoribbons (varying from the 2D) is capable of arousing scientific and technological interests.

    In terms of 2D materials, a currently arising member, bismuth oxyselenide (Bi2O2Se), joins the family of layered 2D materials and emerges as a promising candidate for future electronic and optoelectronic applications12-15.Bi2O2Se has been demonstrated to be of among remarkable characteristics, such as air stability against oxidation and moisture12, tunable bandgap with the thickness down to a few atomic layers12,16, high electron mobility (> 20000 cm2·V-1·s-1at 1.9 K)12,16-18, being accessible to single crystal films on a wafer-scale19.In addition, Bi2O2Se exhibits high sensitivity, ultrafast broadband photoresponse(0.3-1.7 μm of wavelength)13, and ultrabroadband saturable absorption for the mid-infrared (5.0 μm)20.Interestingly, a strain may even induce the giant polarizations, resulting in piezoelectricity and ferroelectricity of Bi2O2Se21.These attractive properties make 2D Bi2O2Se became a candidate for creating future infrared photodetector and high-performance electronic devices.Therefore, similar with other 2D materials, it is highly motivated that synthesizing 1D Bi2O2Se nanoribbons for realizing potential applications of Bi2O2Se among highperformance transistors, but the reliable preparation of Bi2O2Se nanoribbons with chemical method remains challenging.

    Here,viafacial bismuth (Bi)-catalyzed vapor-liquid-solid(VLS) growth mechanism, we present a chemical vapor deposition (CVD) method to synthesize high-quality Bi2O2Se nanoribbons.In this mean, Bi is used as catalyst to induce the orientated growth of the Bi2O2Se, especially at out-of-plane,resulting in formation of one-dimensional nanoribbons.The bottom-up synthesized Bi2O2Se nanoribbons have typical width down to ~100 nm, thickness down to 5 nm and length up to 200 μm.A polymer assisted clean transfer method was developed to transfer the Bi2O2Se nanoribbons onto the SiO2/Si substrate.Fabricated into the FET, the Bi2O2Se nanoribbon sample(transferred to the SiO2/Si substrate) exhibited high electronic performances: high electron mobility of ~220 cm2·V-1·s-1and large current on/off ratios of > 106.

    2 Experimental and computational section

    2.1 Synthesis of Bi2O2Se nanoribbons

    The preparation of Bi2O2Se crystal is based on previous work on the oxidation of Bi2Se3 in CVD system16.Here, we further extend this methodology to prepare Bi2O2Se nanoribbonsviaBicatalyzed VLS growth.The Bi2O2Se nanoribbons were synthesized by the home-made double-zone CVD system(Thermo Inc.), which equipped with a 12-inch-long and 30-mmdiameter quartz tube.Typically, Bi particles (Alfa Aesar,99.999%) were place in the upstream zone, and Bi2Se3bulks(Alfa Aesar, 99.999%) were place in the second zone.The freshly cleaved mica substrates were place on top of Bi2Se3bulks with a gap of ~3-5 mm.The mixed carrier gas was high-purity Ar/O2gas with typical flow rate of 100 sccm/30 ppm (sccm:standard-state cubic centimetre per minute, 1 ppm = 1 × 10-6(volume fraction)), and the pressure of the system was kept at 400 Torr (1 Torr = 133 Pa).The growth range was about 590-620 °C.

    2.2 Characterization of Bi2O2Se nanoribbons

    The morphology of the Bi2O2Se nanoribbons was characterized by OM (Olympus DX51 microscope), AFM(Bruker icon), and SEM (Hitachi S4800 field emission).The structure and crystallinity of as-grown Bi2O2Se nanoribbons was performed using transmission electron microscopy (TEM, FEI Tecnai F30 and FET Titan Themis G2 operating at 300 kV) with energy-dispersive X-ray (EDX) mapping capabilities.Samples for TEM characterization were transferred onto the carbon film supported gold grids by a polymethyl methacrylate (PMMA)-mediated transfer method with the assistance of deionized water22.Raman spectra and mapping was performed at a wavelength of 633 nm on Scanning near-field Raman spectrometer (Witec RSA300+ optical microscope).

    2.3 Fabrication of Bi2O2Se-nanoribbon-based FET device

    To build top-gate FETs, the Bi2O2Se nanoribbons were transferred onto 300 nm SiO2/Si substrates with the location markers using PMMA-mediated transfer method under the assistance of deionized water.The electron beam lithography(EBL, FEI Inc.) was adopted to pattern the electrodes (source,drain, and top-gate electrode) in two steps.Firstly, the source and drain electrodes were patterned with standard EBL process,followed with the metal deposition (Pd/Au, 5 nm/40 nm) by thermal evaporation.Secondly, the top-gated electrodes required a second EBL exposure to exploit the ‘window’ for the deposition of the high-κ top-gate dielectric HfO2(20 nm) by atomic layer deposition (ALD), then 5 nm/40 nm Pd/Au films were deposited as the top-gate electrode.The as-fabricated Bi2O2Se-nanoribbon-based top-gate FETs were measured under ambient conditions on a semiconductor analyzer (Keithley, SCS-4200) combined with micromanipulator 6200 probe station at room temperature.

    3 Results and discussion

    Upon the Vapor-solid-solid (VSS) growth mode, various synthesis process for Bi2O2Se generally tends to form 2D structure (square nanoplates) with a characteristic crystal shape12,16,22-25(Fig.1a).In VSS process, determined by the inherent free energy of crystal edges and surface diffusion kinetics, the gas/vapor phase precursors are converted to solidstate products to form the in-plane 2D nucleiviasurface adsorption on the substrate, resulting in the formation of the native 2D layer structure8,26.To prepare 1D morphology, VLS growth is effective mechanism to guide the directed growth of nanostructure, in which 1D nanostructures are synthesized by precipitation from supersaturated catalytic liquid droplets.To this end, we conducted Bi-catalyzed CVD approach to realize VLS growth mode to synthesize the 1D Bi2O2Se nanoribbons using Bi2Se3 and O2 as precursors (see Experimental for details).Particularly, there are two advantages for using Bi as a catalyst:(1) Bi acts as a catalyst to realize the VLS growth mechanism for preparation of Bi2O2Se nanoribbons27-30; and (2) Bi still acts as a reaction precursor to achieve rapid growth of Bi2O2Se nanoribbons according to the thermodynamic phase diagram of Bi2O2Se16.

    Fig.1 One-step bottom-up synthesis of Bi2O2Se nanoribbons.

    As shown in Fig.1b, the as-grown crystal shows a ribbon-like morphology with the length of sub-millimetre.The atomic force microscopy (AFM) characterization reveals that the surface of the as-grown sample is clean and homogeneous, and its thickness is around 10 nm with a width of 2 μm.Furthermore,Raman spectroscopy indicates that the characteristicA1gpeak of Bi2O2Se located at ~159 cm-1, which is good consistent with the prior reports15, confirming that as-synthesized nanostructures are Bi2O2Se nanoribbons.In addition, the Raman mapping of A1gpeak is very uniform across the whole nanoribbon,demonstrating the high uniformity of as-synthesized Bi2O2Se nanoribbons.

    To study the phase purity and crystalline nature of as-grown Bi2O2Se nanoribbons, we performed characterization of transition electron microscopy (TEM).The as-synthesized Bi2O2Se nanoribbons were transferred onto the holey carbonsupported Au grid for TEM characterizationviaa polymethyl methacrylate (PMMA)-mediated method.Low-magnitude TEM image shows that the Bi2O2Se nanoribbon has a uniform width along the entire length with typical widths of 500 nm (Fig.2a).As shown in Fig.2b, the selected-area electron diffraction(SAED) pattern reveals single set of diffraction peaks with the four-fold symmetry, verifying that it is a single crystal in asgrown Bi2O2Se nanoribbon.High-resolution TEM image of the Bi2O2Se nanoribbon with a schematic of the atomic positions shows well defined lattice spacing of 0.38 nm, which correspond to the theoretical value of lattice for (100) planes in Bi2O2Se15.Besides, no obvious defects, such as vacancies, interstitials, and dislocations are observed, suggesting that as-grown Bi2O2Se nanoribbons have high crystallinity and purity.As characterized by energy-dispersive X-ray spectrometry (EDS), the obvious signal peaks for Bi, O, and Se were observed (Fig.2d) without other signal of impurities, the element ratio of Bi, O, Se was about 2 : 2 : 1, which is in accordance with the stoichiometry of Bi2O2Se.In addition, corresponding elemental mapping analyses(Fig.2e) further indicates the uniformity without any impurities,suggesting that the Bi2O2Se nanoribbons has good stoichiometry and high purity.

    Fig.2 Structural and crystalline quality characterization of Bi2O2Se nanoribbons.

    Similarly, some reports have been demonstrated on the catalysis approach for the VLS growth of nanoribbons and nanowire using Bi as catalyst27-30.As shown in the scanning electron microscopy (SEM) images (Fig.3a), as-synthesized Bi2O2Se nanoribbons is out-of-plane on the mica substrate,indicating a Bi mediated VLS growth process.Notably, together with TEM analysis, almost no Bi droplets are found at the tip of Bi2O2Se nanoribbons, this is owing to the complete evaporation of Bi of the surface during the cooling process27,28.Interestingly,although the external perturbation is slight, long and thin out-ofplane Bi2O2Se nanoribbons can be easily broke from their root.As indicated in Fig.3b, c, the as-synthesized thin Bi2O2Se nanoribbons quickly broken from their root under the lowvoltage SEM irradiation (the voltage is 1 kV).Accordingly, it can be inferred that the nanoribbons on the substrate surface are formed by the fracture of thin out-of-plane Bi2O2Se nanoribbons due to the perturbation of cooling process (Fig.1b and 3d).

    Fig.3 VLS growth of Bi2O2Se nanoribbons on mica substrate.

    Fig.4 Fabrication and characterization of FET transistor based on Bi2O2Se nanoribbons.

    The ability to tailor the diameter of Bi2O2Se nanoribbons for specific applications is essential for synthetic chemistry.In synthesis of Bi2O2Se nanoribbons, varying growth temperature allows considerable control over the diameter of the products.As show in Fig.3d, the length of as-grown Bi2O2Se nanoribbons reached a large value of ~280 μm as temperature varied from 590 °C to 610 °C, and it shrank gradually as further increasing the growth temperature.The approximate reason for the above phenomenon can be summarized as follows.There are two other factors that affect the Bi-catalyzed VLS growth: the low vapor pressure of Bi and the rapid reaction of Bi in the presence of oxygen and selenide (the reaction is 4Bi (l) + Se2(g) + 2O2(g) →2Bi2O2Se (s/l)).When the growth temperature was relatively low, the absorption rate of the Bi-catalyst on the tip of Bi2O2Se nanoribbons is relatively high, the catalyzed effect is dominated in VLS process, leading to growth of long and thin nanoribbons.As elevate to high temperature, the evaporation and chemical reaction of Bi is superior to catalyzed effect, the absorption rate of Bi-catalyst diminishes and the catalyzed effect gradually becomes the dominating elemental step for the growth, resulting in wider and shorter of Bi2O2Se nanoribbons.Notably, naturally folded without breaking in Bi2O2Se nanoribbons can occasionally be formed (Fig.3d), suggesting that ultrathin nanoribbons are rather flexible.Therefore, upon the aforementioned analysis, as shown in Fig.3e, we can reliably obtain the thin nanoribbons with different widths and thickness of 5 nm by controlling the growth time under the low temperature (590 °C).

    Generally, the direct transfer of Bi2O2Se nanoribbons on SiO2/Si substrates would enable their wide-ranging applications in photonics or electronics because almost all integrated circuits are rooted in the silicon substrate.Hence, as-grown Bi2O2Se nanoribbons were firstly transfer onto 300 nm SiO2/Si substrates to fabricate the FET devices (Fig.4a).As illustrated in Fig.4b,as-synthesized Bi2O2Se nanoribbons can be easily transfer on SiO2/Si substrates with various width from Mica substrates,which allow us to evaluate their electronic properties conveniently.

    To identify the electronic properties of the nanoribbons, a topgated device configuration was adopted to evaluate the switching behavior of Bi2O2Se nanoribbons with a thickness of 15 nm (Fig.S1, Supporting Information).The structure diagram of Bi2O2Se-nanoribbons-based FET devices, and corresponding optical image showing an as-fabricated FET device with a gate length (LG) of 10 μm and width (W) of 3 μm is shown in Fig.4c,d, respectively.As shown in Fig.4e, the measured roomtemperature transfer characteristics verify a n-type transistor behavior with a high current on/off ratio (Ion/Ioff) of ~106at low bias (the level ofIon/Ioffis > 104for practical logic transistors)and small subthreshold slope (SS) of ~75 mV·dec-1.Based on the equationwhereLis the channel length (here,Lequal toLG),Wis the channel width,CGis the capacitance between the channel and the top-gate per unit area(CG=ε0εr/d,ε0 is vacuum permittivity,εr is the relative permittivity, anddis the thickness of HfO2 layer), the field-effect mobility of Bi2O2Se-nanoribbons-based FET devices could be calculated by fitting the linear region in transfer curve (Fig.4f).The field-effect mobility was extracted as ~220 cm2·V-1·s-1, which is the same order as the reported value in a Hall mobility11,18.Besides, the output curves plotted in Fig.4g shows that the high current density (IDS/W) of ~42 μA·μm-1can be achieved.These electronic properties, together with its easy transfer, make Bi2O2Se nanoribbons a promising semiconductor candidate for future low-power logic transistors.

    4 Conclusions

    In conclusion, we have demonstrated the VLS growth of Bi2O2Se nanoribbons on Mica substrateviaBi-catalyzed CVD.The VLS growth mode is probably conducted by the formation of a Bi liquid solution on the tip of Bi2O2Se nanoribbons.The width and length of Bi2O2Se nanoribbons were controlled by tuning the growth condition (growth temperature and time).In particular, the as-grown Bi2O2Se nanoribbons can be easily transfer onto arbitrary substrates (such as SiO2/Si).The high electrical performance (high mobility, high current on/off ratio,and high on current density) of Bi2O2Se-nanoribbon-based transistors suggest that Bi2O2Se nanoribbons is a promising materials for fundamental investigations and high-performance electronic applications such as Gate-all-around FETs31,32and trigate FETs33.

    Supporting Information:available free of chargeviathe internet at http://www.whxb.pku.edu.cn.

    久久鲁丝午夜福利片| 欧美人与性动交α欧美精品济南到 | 亚洲精品久久久久久婷婷小说| 91aial.com中文字幕在线观看| 婷婷色综合大香蕉| 国产免费福利视频在线观看| 欧美精品一区二区免费开放| 蜜桃在线观看..| 国产毛片在线视频| 如何舔出高潮| 国产精品一区www在线观看| 美女cb高潮喷水在线观看| a级毛片免费高清观看在线播放| 亚洲国产精品专区欧美| 啦啦啦在线观看免费高清www| 一级二级三级毛片免费看| 一区二区三区免费毛片| 久久久久国产精品人妻一区二区| 超碰97精品在线观看| 国产精品一二三区在线看| 三级国产精品片| 男人爽女人下面视频在线观看| 免费观看的影片在线观看| 曰老女人黄片| 简卡轻食公司| 国产 精品1| 三级国产精品片| 久久久久久久国产电影| 在线亚洲精品国产二区图片欧美 | 大香蕉久久网| 欧美最新免费一区二区三区| 另类亚洲欧美激情| 国产亚洲精品第一综合不卡 | 丝袜在线中文字幕| 国产日韩欧美视频二区| 久久精品国产亚洲av天美| 国产日韩欧美在线精品| 国产日韩欧美在线精品| 精品一品国产午夜福利视频| 亚洲,欧美,日韩| 国产成人freesex在线| 久久国产精品大桥未久av| 欧美老熟妇乱子伦牲交| 男女无遮挡免费网站观看| 99久久精品一区二区三区| 婷婷成人精品国产| 午夜影院在线不卡| 91精品三级在线观看| 精品酒店卫生间| 美女大奶头黄色视频| 美女国产视频在线观看| 亚洲欧洲日产国产| 日韩强制内射视频| 少妇的逼好多水| 久久久精品94久久精品| 久久影院123| 最近中文字幕高清免费大全6| 精品人妻熟女av久视频| videos熟女内射| 欧美日本中文国产一区发布| 岛国毛片在线播放| 两个人的视频大全免费| 美女大奶头黄色视频| 中文欧美无线码| 亚洲色图 男人天堂 中文字幕 | 成年女人在线观看亚洲视频| tube8黄色片| 在线观看人妻少妇| 国产在线一区二区三区精| 国产日韩欧美亚洲二区| 免费黄网站久久成人精品| 国产色爽女视频免费观看| 欧美成人午夜免费资源| 久久精品国产鲁丝片午夜精品| 另类精品久久| 蜜桃久久精品国产亚洲av| 精品亚洲乱码少妇综合久久| 赤兔流量卡办理| 国产在线免费精品| 亚洲国产精品一区二区三区在线| 日韩一本色道免费dvd| 大码成人一级视频| 热99国产精品久久久久久7| 99久久人妻综合| 欧美+日韩+精品| 成年美女黄网站色视频大全免费 | 日韩 亚洲 欧美在线| 又黄又爽又刺激的免费视频.| kizo精华| 美女大奶头黄色视频| 国产男女内射视频| 插阴视频在线观看视频| 一区二区三区免费毛片| 国产精品99久久99久久久不卡 | 免费看av在线观看网站| 天堂俺去俺来也www色官网| 香蕉精品网在线| 国产在线一区二区三区精| 久久久a久久爽久久v久久| 80岁老熟妇乱子伦牲交| 午夜免费观看性视频| 国产色爽女视频免费观看| kizo精华| 插逼视频在线观看| 成人国语在线视频| 国模一区二区三区四区视频| 黑人巨大精品欧美一区二区蜜桃 | 看十八女毛片水多多多| 边亲边吃奶的免费视频| 成人国语在线视频| 夜夜骑夜夜射夜夜干| 91成人精品电影| 久久久久久久久久人人人人人人| 成人国产麻豆网| 亚洲欧洲精品一区二区精品久久久 | 久久久精品94久久精品| 亚洲欧美日韩另类电影网站| 亚洲精品成人av观看孕妇| 三上悠亚av全集在线观看| 久久精品国产a三级三级三级| 国产精品麻豆人妻色哟哟久久| 久久鲁丝午夜福利片| 日韩人妻高清精品专区| 七月丁香在线播放| 国精品久久久久久国模美| 热re99久久精品国产66热6| 99久久精品一区二区三区| 日本黄大片高清| 亚洲怡红院男人天堂| 亚洲欧美日韩卡通动漫| 99久国产av精品国产电影| 999精品在线视频| 久久久精品区二区三区| 曰老女人黄片| 国产精品蜜桃在线观看| 久久久欧美国产精品| 免费高清在线观看日韩| 在线天堂最新版资源| 国产精品国产三级专区第一集| 精品久久国产蜜桃| 最近手机中文字幕大全| 久久久久久久国产电影| 精品一区二区三卡| 成人亚洲精品一区在线观看| 日韩精品有码人妻一区| 亚洲高清免费不卡视频| 久久精品久久久久久久性| 久久久a久久爽久久v久久| 久久久久久久久久人人人人人人| 日韩中字成人| 黄色毛片三级朝国网站| 高清在线视频一区二区三区| 人体艺术视频欧美日本| 99久久中文字幕三级久久日本| 国国产精品蜜臀av免费| 国产精品久久久久久精品电影小说| 国产精品久久久久久久久免| 91成人精品电影| 日韩熟女老妇一区二区性免费视频| 91国产中文字幕| 亚洲欧洲日产国产| 曰老女人黄片| av黄色大香蕉| 午夜福利,免费看| 亚洲av日韩在线播放| 亚洲激情五月婷婷啪啪| 成人国产av品久久久| 18+在线观看网站| 欧美日韩综合久久久久久| 肉色欧美久久久久久久蜜桃| 精品一区二区免费观看| 最后的刺客免费高清国语| 国产亚洲av片在线观看秒播厂| 日韩在线高清观看一区二区三区| 99精国产麻豆久久婷婷| 亚洲精品,欧美精品| 国产av国产精品国产| 91精品国产九色| 91精品一卡2卡3卡4卡| 久久久午夜欧美精品| 国产亚洲欧美精品永久| 免费观看的影片在线观看| h视频一区二区三区| 男女边摸边吃奶| 天堂8中文在线网| 亚洲成人一二三区av| 免费大片黄手机在线观看| 日韩精品有码人妻一区| 精品卡一卡二卡四卡免费| 亚洲av综合色区一区| videos熟女内射| 亚洲国产日韩一区二区| av.在线天堂| 日韩三级伦理在线观看| 免费黄色在线免费观看| 十八禁网站网址无遮挡| 久久久久久久久大av| av电影中文网址| 狠狠精品人妻久久久久久综合| 中国美白少妇内射xxxbb| 男的添女的下面高潮视频| 午夜激情久久久久久久| av一本久久久久| 秋霞在线观看毛片| 亚洲国产精品999| 免费观看a级毛片全部| 能在线免费看毛片的网站| 精品一品国产午夜福利视频| 一区二区三区精品91| 午夜激情久久久久久久| 一本久久精品| a级毛色黄片| 中文字幕久久专区| 母亲3免费完整高清在线观看 | 亚洲av电影在线观看一区二区三区| 丰满饥渴人妻一区二区三| 女性生殖器流出的白浆| 一区二区av电影网| 日日爽夜夜爽网站| 久久精品久久久久久久性| a级片在线免费高清观看视频| 伊人亚洲综合成人网| 丰满迷人的少妇在线观看| 亚洲欧美一区二区三区国产| 亚洲精品成人av观看孕妇| 久久av网站| 又大又黄又爽视频免费| 91精品国产国语对白视频| 乱码一卡2卡4卡精品| 亚洲精品日韩在线中文字幕| 天美传媒精品一区二区| 九九爱精品视频在线观看| 国产女主播在线喷水免费视频网站| 国产精品女同一区二区软件| 自线自在国产av| 精品熟女少妇av免费看| 3wmmmm亚洲av在线观看| 午夜福利视频精品| 中文字幕人妻熟人妻熟丝袜美| 男女免费视频国产| 久久午夜综合久久蜜桃| 亚洲精品成人av观看孕妇| 久久久欧美国产精品| 一区二区三区精品91| 好男人视频免费观看在线| 99久久精品一区二区三区| 国产精品一国产av| 丰满少妇做爰视频| 老女人水多毛片| 日产精品乱码卡一卡2卡三| 在线观看免费高清a一片| 久久精品国产a三级三级三级| 久久av网站| 日本与韩国留学比较| 国精品久久久久久国模美| 少妇被粗大猛烈的视频| 日韩强制内射视频| 美女视频免费永久观看网站| 日韩在线高清观看一区二区三区| 日韩不卡一区二区三区视频在线| 亚洲国产精品成人久久小说| 国产精品麻豆人妻色哟哟久久| 亚洲av日韩在线播放| 校园人妻丝袜中文字幕| 在线观看一区二区三区激情| av在线观看视频网站免费| 王馨瑶露胸无遮挡在线观看| 午夜免费男女啪啪视频观看| 国产极品粉嫩免费观看在线 | 日本91视频免费播放| 人体艺术视频欧美日本| 国产男女内射视频| 成人二区视频| 中文字幕人妻丝袜制服| 多毛熟女@视频| 亚洲不卡免费看| 国产永久视频网站| 久久 成人 亚洲| 色婷婷久久久亚洲欧美| 日韩在线高清观看一区二区三区| 69精品国产乱码久久久| 啦啦啦中文免费视频观看日本| 亚洲精品456在线播放app| 亚洲成人av在线免费| 亚洲内射少妇av| 亚洲精品乱码久久久v下载方式| 九九在线视频观看精品| 欧美日韩在线观看h| videossex国产| 另类亚洲欧美激情| 亚洲国产av新网站| 午夜激情福利司机影院| 亚洲av在线观看美女高潮| 熟女电影av网| 国产精品免费大片| 丝瓜视频免费看黄片| 2022亚洲国产成人精品| 好男人视频免费观看在线| 18+在线观看网站| 十分钟在线观看高清视频www| 国产无遮挡羞羞视频在线观看| 中文字幕人妻丝袜制服| 最近中文字幕高清免费大全6| 男女无遮挡免费网站观看| 亚洲欧洲国产日韩| 黄色视频在线播放观看不卡| 女性生殖器流出的白浆| av天堂久久9| 一级爰片在线观看| 男人操女人黄网站| 女性被躁到高潮视频| 十八禁网站网址无遮挡| 亚洲欧洲日产国产| videos熟女内射| 亚洲精品日韩av片在线观看| 五月天丁香电影| 亚洲经典国产精华液单| 国产精品三级大全| 老熟女久久久| 国产午夜精品久久久久久一区二区三区| 国产精品熟女久久久久浪| 亚洲国产精品999| 99热网站在线观看| 午夜激情av网站| 成人亚洲精品一区在线观看| 国产片内射在线| 自线自在国产av| 人成视频在线观看免费观看| 亚洲国产av新网站| 国产 精品1| 欧美激情极品国产一区二区三区 | 亚洲av.av天堂| 国产精品国产三级国产专区5o| 国产成人精品福利久久| 桃花免费在线播放| 国产成人免费无遮挡视频| 成年av动漫网址| 99国产综合亚洲精品| 国产成人91sexporn| 亚洲婷婷狠狠爱综合网| 亚洲国产成人一精品久久久| 女人久久www免费人成看片| 亚洲欧洲国产日韩| 欧美日韩视频高清一区二区三区二| 亚洲精品乱码久久久v下载方式| av有码第一页| 亚洲一级一片aⅴ在线观看| 免费看av在线观看网站| 日韩成人伦理影院| 亚洲av中文av极速乱| 亚洲精品乱久久久久久| 亚洲精品中文字幕在线视频| 亚洲经典国产精华液单| 美女主播在线视频| av国产精品久久久久影院| av在线app专区| 在线看a的网站| 亚洲国产av影院在线观看| 少妇人妻精品综合一区二区| 中文字幕久久专区| 亚洲精品乱码久久久久久按摩| 亚洲精品av麻豆狂野| 熟妇人妻不卡中文字幕| 亚洲精品自拍成人| 男男h啪啪无遮挡| 国产日韩欧美亚洲二区| 2022亚洲国产成人精品| 国产免费一区二区三区四区乱码| 秋霞伦理黄片| 亚洲欧洲国产日韩| 国产免费一区二区三区四区乱码| 80岁老熟妇乱子伦牲交| 草草在线视频免费看| 我要看黄色一级片免费的| 久久精品熟女亚洲av麻豆精品| av福利片在线| 91精品伊人久久大香线蕉| 考比视频在线观看| 精品一区二区免费观看| 秋霞在线观看毛片| 成人亚洲欧美一区二区av| 最新中文字幕久久久久| 成人无遮挡网站| 国产精品.久久久| 亚洲av电影在线观看一区二区三区| 国产亚洲精品第一综合不卡 | 91aial.com中文字幕在线观看| 日韩亚洲欧美综合| 大香蕉久久网| 免费大片18禁| 亚洲精华国产精华液的使用体验| 日本猛色少妇xxxxx猛交久久| 一个人免费看片子| 久久精品国产自在天天线| 好男人视频免费观看在线| 成人午夜精彩视频在线观看| 一区二区av电影网| 韩国av在线不卡| 一区二区日韩欧美中文字幕 | 亚洲国产av新网站| 免费大片18禁| 丝袜喷水一区| 亚洲怡红院男人天堂| 精品99又大又爽又粗少妇毛片| 免费人妻精品一区二区三区视频| 久久精品夜色国产| 天天躁夜夜躁狠狠久久av| av女优亚洲男人天堂| 黄色一级大片看看| av国产精品久久久久影院| 91精品三级在线观看| 青春草亚洲视频在线观看| 国产午夜精品一二区理论片| 久久人人爽人人爽人人片va| 精品久久久噜噜| 色婷婷av一区二区三区视频| 丝瓜视频免费看黄片| 国产国语露脸激情在线看| 精品99又大又爽又粗少妇毛片| 亚洲精品久久久久久婷婷小说| 久久韩国三级中文字幕| 91精品一卡2卡3卡4卡| 有码 亚洲区| 午夜影院在线不卡| 九九久久精品国产亚洲av麻豆| 韩国av在线不卡| 午夜日本视频在线| 最近手机中文字幕大全| 国产有黄有色有爽视频| 亚洲高清免费不卡视频| 黄色一级大片看看| 精品少妇久久久久久888优播| 久久久久久久久久成人| √禁漫天堂资源中文www| 亚洲精品中文字幕在线视频| 人妻夜夜爽99麻豆av| 有码 亚洲区| 亚洲国产毛片av蜜桃av| 久久精品国产自在天天线| 国产 精品1| 岛国毛片在线播放| a级毛片免费高清观看在线播放| 亚洲人成网站在线播| 汤姆久久久久久久影院中文字幕| 大片免费播放器 马上看| 国产午夜精品一二区理论片| 精品午夜福利在线看| 精品亚洲乱码少妇综合久久| 22中文网久久字幕| 精品少妇久久久久久888优播| 日韩一区二区视频免费看| 国产一区二区在线观看av| 少妇熟女欧美另类| av有码第一页| 久久精品久久精品一区二区三区| 国产免费又黄又爽又色| 色婷婷av一区二区三区视频| 欧美日韩亚洲高清精品| 男的添女的下面高潮视频| 精品国产国语对白av| 不卡视频在线观看欧美| 国产亚洲欧美精品永久| 国产一区有黄有色的免费视频| 精品久久蜜臀av无| 日韩电影二区| 黑人猛操日本美女一级片| 丁香六月天网| 亚洲天堂av无毛| 国产精品嫩草影院av在线观看| 亚洲欧美一区二区三区黑人 | 亚洲天堂av无毛| 老司机亚洲免费影院| 国产免费视频播放在线视频| 天堂8中文在线网| 女人精品久久久久毛片| 一级毛片黄色毛片免费观看视频| 欧美+日韩+精品| 国产有黄有色有爽视频| 久久99一区二区三区| 一本色道久久久久久精品综合| a级毛片免费高清观看在线播放| 亚洲精品日本国产第一区| 欧美精品高潮呻吟av久久| 考比视频在线观看| 看十八女毛片水多多多| 91久久精品电影网| 色吧在线观看| 欧美性感艳星| 少妇熟女欧美另类| 内地一区二区视频在线| 欧美人与善性xxx| 日本av免费视频播放| 亚洲精品视频女| 看非洲黑人一级黄片| 免费大片18禁| 精品少妇黑人巨大在线播放| 久久久国产精品麻豆| 欧美亚洲 丝袜 人妻 在线| 成人国产麻豆网| 亚洲精品色激情综合| 99热国产这里只有精品6| 国产一区二区三区av在线| 免费观看在线日韩| 国产成人freesex在线| 热99久久久久精品小说推荐| 国产又色又爽无遮挡免| 少妇被粗大的猛进出69影院 | 日本av手机在线免费观看| 国产精品国产三级国产av玫瑰| 欧美bdsm另类| 久久精品国产自在天天线| 人人妻人人澡人人看| av福利片在线| 亚洲国产av影院在线观看| 国产成人免费观看mmmm| 久久精品久久久久久噜噜老黄| 视频在线观看一区二区三区| 黑人高潮一二区| 国产亚洲精品久久久com| 久久精品国产a三级三级三级| 寂寞人妻少妇视频99o| 亚洲欧洲精品一区二区精品久久久 | 成人综合一区亚洲| 两个人的视频大全免费| 男女边吃奶边做爰视频| 亚洲精品456在线播放app| 亚洲成人av在线免费| 在线观看国产h片| 亚洲国产欧美日韩在线播放| 亚洲av日韩在线播放| 在线观看美女被高潮喷水网站| 国产在线一区二区三区精| 天天躁夜夜躁狠狠久久av| 免费观看无遮挡的男女| 日韩视频在线欧美| 一区在线观看完整版| 高清欧美精品videossex| 日日摸夜夜添夜夜添av毛片| 少妇人妻久久综合中文| 99热全是精品| 99精国产麻豆久久婷婷| 在线观看国产h片| 亚洲av成人精品一区久久| freevideosex欧美| 国产在视频线精品| 亚洲中文av在线| 精品久久国产蜜桃| 自线自在国产av| 亚洲精品乱码久久久久久按摩| 亚洲婷婷狠狠爱综合网| 亚洲人成网站在线观看播放| 视频区图区小说| 麻豆精品久久久久久蜜桃| 免费av不卡在线播放| 少妇的逼好多水| 晚上一个人看的免费电影| 高清黄色对白视频在线免费看| 免费观看无遮挡的男女| 一区二区日韩欧美中文字幕 | 18禁观看日本| 中文天堂在线官网| videossex国产| 亚洲国产精品999| 少妇的逼好多水| 国产高清三级在线| 国产熟女午夜一区二区三区 | 看免费成人av毛片| 亚洲欧洲精品一区二区精品久久久 | 久久鲁丝午夜福利片| 午夜久久久在线观看| 特大巨黑吊av在线直播| 中文欧美无线码| 国产黄色视频一区二区在线观看| 91精品一卡2卡3卡4卡| 永久免费av网站大全| 久久韩国三级中文字幕| 日本黄色日本黄色录像| 欧美日韩视频高清一区二区三区二| 成年女人在线观看亚洲视频| www.色视频.com| 中文字幕免费在线视频6| 国产永久视频网站| 热re99久久国产66热| 亚洲,欧美,日韩| 99九九线精品视频在线观看视频| 亚洲精品一区蜜桃| 黄片无遮挡物在线观看| 免费观看性生交大片5| 午夜免费男女啪啪视频观看| 国产极品天堂在线| 精品国产国语对白av| 成年女人在线观看亚洲视频| 国产一区二区在线观看日韩| 91精品伊人久久大香线蕉| 在线亚洲精品国产二区图片欧美 | 少妇人妻 视频| 一级二级三级毛片免费看| 丝袜喷水一区| 五月伊人婷婷丁香| av国产久精品久网站免费入址| 久久久久久久久久久丰满| 久久99精品国语久久久| 2021少妇久久久久久久久久久| 国产不卡av网站在线观看| 99热网站在线观看| 热re99久久精品国产66热6| 精品熟女少妇av免费看| 欧美日韩视频高清一区二区三区二| 亚洲国产毛片av蜜桃av| 看非洲黑人一级黄片| 久久人人爽人人片av| 亚洲经典国产精华液单| 日韩av免费高清视频| 日本欧美视频一区| 菩萨蛮人人尽说江南好唐韦庄|