• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conformational Switching of Verdazyl Radicals on Au(111)

    2020-04-02 02:53:04ZhichaoHuangYazhongDaiXiaojieWenDanLiuYuxuanLinZhenXuJianPeiKaiWu
    物理化學(xué)學(xué)報 2020年1期

    Zhichao Huang, Yazhong Dai, Xiaojie Wen, Dan Liu, Yuxuan Lin, Zhen Xu, Jian Pei, Kai Wu

    Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University,Beijing 100871, P.R.China.

    Abstract:Pure organic radical molecules on metal surfaces are of great significance in exploration of the electron spin behavior.However, only a few of them are investigated in surface studies due to their poor thermal stability.The adsorption and conformational switching of two verdazyl radical molecules, namely, 1,5-biisopropyl-3-(benzo[b]benzo[4,5]thieno[2,3-d]thiophen-2-yl)-6-oxoverdazyl (B2P)and 1,5-biisopropyl-3-(benzo[b]benzo[4,5]thieno[2,3-d]thiophen-4-yl)-6-oxoverdazyl (B4P), are studied by scanning tunneling microscopy(STM) and density functional theory (DFT).The adsorbed B2P molecules on Au(111) form dimers, trimers and tetramers without any ordered assembly structure in which two distinct appearances of B2P in STM images are observed and assigned to be its “P” and “T” conformations.The “P” conformation molecules appear in the STM image with a large elliptical protrusion and two small ones of equal size, while the “T” ones appear with a large protrusion and two small ones of different size.Likewise, the B4P molecules on Au(111) form dimers at low coverage, strip structure at medium coverage and assembled structure at high coverage which also consists of above-mentioned two conformations.Both B2P molecules and B4P molecules are held together by weak intermolecular interaction rather than chemical bond.STM tip induced conformational switching of both verdayzl radicals is observed at the bias voltage of +2.0 V.The “T” conformation of B2P can be switched to the “P” while the “P” conformation of B4P can be switched to the “T”one.For both molecules, such a conformational switching is irreversible.The DFT calculations with Perdew-Burke-Ernzerhof version exchange-correlation functional are used to optimize the model structure and simulate the STM images.STM images of several possible molecular conformations with different isopropyl orientation and different tilt angle between verdazyl radical and Au(111) surface are simulated.For conformations with different isopropyl orientation, the STM simulated images are similar, while different tilt angles of verdazyl radical lead to significantly different STM simulated images.Combined STM experiments and DFT simulations reveal that the conformational switching originates from the change of tilting angle between the verdazyl radical and Au(111) surface.The tilt angles in “P” and “T” conformations are 0° and 50°, respectively.In this study, two different adsorption conformations of verdazyl radicals on the Au(111) surface are presented and their exact adsorption structures are identified.This study provides a possible way to study the relationship between the electron spin and configuration conversion of pure organic radical molecules and a reference for designing more conformational switchable radical molecules that can be employed as interesting molecular switches.

    Key Words: Verdazyl radical;Scanning tunneling microscopy;Density functional theory;Electron spin

    1 Introduction

    Exploration of magnetic molecules on metal surfaces is of great importance in understanding the molecular spin properties including spin interaction.Scanning tunneling microscopy(STM) is one of the most popular and powerful tools in surface spin research due to its capability of measuring the Kondo effect1and its ultrahigh spatial resolution in real-space.The magnetic molecules employed in STM measurements are abundant2,including single molecule magnets containing transition metals3,4,phthalocyanines5-8, porphyrins9, and pure organic radical molecules10.Pure organic radical molecules have been extensively studied in organic chemistry.However, owing to their poor thermal stability, only a few of them are practically applied in surface studies.The first observation of the Kondo resonance for a stable neutral pure organic radical is 1,3,5-Triphenyl-6-oxoverdazyl adsorbed on Au(111)11.Moreover,organic molecules containing the radical nitronyl-nitroxide side group also exhibit the Kondo resonance on metal surfaces10,12,13.In recent years, people have adoptedin situpulse-induced method to create free radical molecules on surface14.These created new organic radical molecules on surface well serve as the models for systematical studies to understand the spin-spin interactions.

    In this study, the adsorption and conformational conversion of two 6-oxoverdazyl radical molecules were investigated by using STM and density functional theory (DFT).The molecular structures of these two molecules, namely, 1,5-biisopropyl-3-(benzo[b]benzo[4,5]thieno[2,3-d]thiophen-2-yl)-6-oxoverdazyl(B2P) and 1,5-biisopropyl-3-(benzo[b]benzo[4,5]thieno[2,3-d]thiophen-4-yl)-6-oxoverdazyl (B4P), are showed in Fig.1a, b,respectively.The thiophene protecting group (termed BTBT)and eight-electron-conjugated six-membered ring15in B2P or B4P lead to high thermal stability of the radicals which are suitable for surface study.Both B2P and B4P remained intact when evaporated on Au(111).More interestingly, they formed two similar conformations named as “P” and “T”.In the “P”conformation, the angle between the BTBT and verdazyl radical ring is near 0°.In the “T” conformation, however, the angle is about 50°.The “T” conformation of B2P could be switched to“P” by tip induction at the bias of +2.0 V, while the “P”conformation of B4P could be switched to “T” under similar condition.Conformational switching of neutral pure organic radicals has hardly been reported in surface science, which offers the opportunity to explore the switching properties of spin carriers.

    2 Experimental and calculation methods

    Sample preparation and data acquisition were performed on commercial STM (Unisoku USM-1300, Japan) working under ultrahigh vacuum (UHV) conditions.The Au(111) single crystal was purchased (MaTeck, 99.999% in purity, Germany), and cleaned and ordered by several cycles of Ar+bombardment (1.5 keV, 10 μA, 10 min) followed by annealing(~750 K, 15 min).The B2P and B4P molecules were synthesized in one of our laboratories (JP group), and evaporated onto the single crystal from a home-made Ta boat.The evaporation rate was monitored by an SQM-160 quartz balance.The Au (111) substrate was kept at room temperature (about 298 K) during the evaporation process.All STM images were acquired at 4.2 K with a background pressure below 2 × 10-10mbar (1 mbar =100 Pa).The tip was simply prepared by cutting of a commercial Pt-Ir wire.

    Fig.1 Molecular structures of (a) B2P and (b) B4P.

    Fig.2 STM topography of B2P molecules on Au(111).(a) Large scale STM image of the B2P molecules on Au(111);(b) B2P monomer with its molecular structure superimposed;(c) dimer; (d) trimer; and (e) tetramer.

    The STM image simulation was performed with the CASTEP module16in the Materials Studio software.A (6 × 6) supercell with 3 layers in thickness was used to simulate the Au(111)substrate.Periodic boundary conditions were used in the calculations.The DFT with Perdew-Burke-Ernzerhof (PBE)17version of the generalized gradient approximation (GGA) for the exchange-correlation functional was employed to optimize the structure and simulate the STM images of the molecules on Au(111).

    3 Results and discussion

    Fig.2a shows a typical STM topographic image of the B2P molecules adsorbed on Au(111).The B2P molecules are randomly dispersed on the Au(111) surface and form monomer,dimer, trimer and tetramer.A close-up of the B2P monomer is given in Fig.2b.Based on the dimension of the B2P molecule,the elliptical large bright and two small round protrusions are attributed to be the BTBT protecting group and the verdazyl radical ring, respectively.With the assignment of the single B2P molecule in the STM image, its dimer, trimer and tetramer are correspondingly depicted in Fig.2c through 2e.

    To verify the interaction in multimers, STM tip manipulation was applied to the B2P dimer.The experimental results showed that the B2P trimer could be feasibly separated into one monomer and one dimer, demonstrating that the B2P molecules are actually held together by weak intermolecular interaction rather than chemical bond.For most B2P molecules scrutinized in this work, the monomer exhibited two conformations, namely,the “T” and “P” ones.The former appeared in the STM image with a large elliptical protrusion and two small ones of different size, while the latter appeared with a large protrusion and two small ones of equal size.

    Interestingly, the “T” conformation of B2P can be switched to the “P” one by the tip disturbance.As shown in Fig.3a, b, the STM images of B2P before the switching are nearly identical at the bias of +0.5 V and +1.5 V, demonstrating the same conformation at both biases.When the scanning bias changes to+2.0 V, the “T” conformation turns into the “P” one, as shown in Fig.3c.Subsequent STM images of the B2P molecule at biases of +2.0 V and +0.5 V confirm the successful conformational switching from “T” to “P”, as pictorially shown in Fig.3d and e,respectively.However, the switch from the “P” conformation cannot be switched back to the “T” one at all biases tried experimentally.

    To verify the ubiquitousness of the conformational switching,adsorbed B4P molecules on Au(111) were also investigated by STM.As shown in Fig.4, B4P can form various structures at different coverages.The topographic STM images of the B4P molecules at low, medium and high coverages are correspondingly shown in Fig.4a, b and c.At low coverage,most B4Ps exist in dimers and adsorb at the elbow sites on Au(111).The high-resolution STM image and proposed model of the dimer are given in Fig.4d where the verdazyl radical in one B4P faces toward that in the other.At medium coverage, the dimers tend to assemble into a strip structure while some B4Ps form a trimer-like structure, as shown in Fig.4e.At high coverage, the B4Ps form an assembled structure.The basic unit in this structure is marked by the blue circle in Fig.4f which consists of one B4P molecule.In Fig.4f, a unit cell (a= 1.4 nm,b= 1.3 nm,θ= 121°) in blue diamond can also be identified.The STM tip manipulation can also feasibly separate the B4P dimer or other structure into monomers, showing that the B4P molecules stick to each otherviaweak intermolecular interaction rather than chemical bond.As can be seen in Fig.4e and f, the B4P absorbed on Au(111) exhibits two conformations, namely,the “T” and “P” ones, in their STM images which display two protrusions in different and similar brightness, respectively.For B4P, the “T” conformation is more stable upon tip disturbance at the bias of +2.0 V and below while the “P” conformation undergoes conformational switch under the same condition.

    Fig.3 The conformational switching process of B2P molecules from “T” conformation to “P” conformation.For each part, the top section is the STM image with a regular color bar and the bottom with a more prominent color bar.(a) B2P before switching, bias: +0.5 V.(b) B2P before switching, bias: +1.5 V.(c) B2P is switched at +2.0 V.(d) B2P after switching, bias: +2.0 V.(e) B2P after switching, bias: +0.5 V.

    Fig.4 STM topographic images of B4P molecules on Au(111).Image of B4P molecules on Au(111) at (a) low coverage, (b) medium coverage and (c) high coverage.High-resolution STM images of B4P molecules on Au(111) at (d) low coverage, (e) medium coverage and (f) high coverage.

    Fig.5 demonstrates the conformational switch from “P” to“T”.As shown in Fig.5a and b, all B4P molecules maintain their conformation during the tip scanning over the bias range of +0.5 to +1.5 V.As the bias rises to +2.0 V, one B4P molecule in “P”conformation (marked by the dashed circle) is disturbed by the tip and transforms into the “T” conformation (Fig.5c), which is verified by the STM image after the switching (Fig.5d).It should be noted that such a conformational switch does not necessarily work for all molecules in “P” conformation.It’s experimentally shown that conformational switching of the molecules in the assembled structure turns out to be quite difficult, but rather easy for the molecules in the trimer-like assemblies.

    In order to determine the “P” and “T” conformations, DFT calculations are employed to simulate the STM images of several possible structures.The used models are first optimized prior to the STM image simulations.Obviously, the main imaging difference between “P” and “T” conformations stems from the feature of the nitrogen heterocycle in two aspects: one is the rotation of the isopropyl and the other, the tilting angle of the nitrogen heterocycle against the Au(111) surface.To discern the above-mentioned two situations, DFT simulation is performed.In terms of the isopropyl rotation, B2P is used an example in the simulation, as shown in Fig.6.In Fig.6a, both the dihedral angles between two nitrogen heterocycles and the isopropyl CN-C-H are 0°.Meanwhile, the methylene group in isopropyl is nearly parallel to the substrate surface.Fig.6b and c show the modelled and simulated results of other two possible conformations.In Fig.6b, the isopropyl marked by the red dashed circle differs from the one in Fig.6a in the dihedral angle C-N-C-H which is about 180°.The green dashed circle in Fig.6c highlights the difference that the dihedral angle C-N-C-H is about 90° and the methylene group in isopropyl is perpendicular to the surface.There exists no apparent difference among these structures, which accordingly suggests that the difference between the “P” and “T” conformations is not the reason for the rotation of the isopropyl moiety.

    Fig.5 The conformational switch of B4P molecules from “P” conformation to “T” conformation.For each part, the top section is the STM image with a regular color bar, the bottom with a prominent color bar.(a) B4P before switching, bias: +0.5 V.(b) B4P before switching, bias: +1.5 V.(c) B4P is switched at +2.0 V.(d) B4P after switching, bias: 0.5 V.

    Fig.6 Models and STM simulation images of B2P with three isopropyl conformations.(a) Model and simulation image of first conformation in which two C-N-C-H dihedral angle are both 0°.(b) Model and simulation image of second conformation in which two C-N-C-H dihedral angle are 0° and 180°, respectively.(c) Model and simulation image of third conformation in which two C-N-C-H dihedral angle are 90° and 0°, respectively.

    Therefore, the conformations are simulated as a function of the tilting angle of the nitrogen heterocycle.In all three conformations simulated in Fig.6, the structure in Fig.6a possesses the lowest energy.Hence subsequent simulation maintains restricts the isopropyl moiety in the conformation in Fig.6a.Fig.7 shows the stimulated results of different 6-oxoverdazyl ring conformations in the B4P model.The dihedral angle between BTBT and the nitrogen heterocycle is 0° (Fig.7a),+50° (Fig.7b) and -50° (Fig.7c), correspondingly.Once the nitrogen heterocycle is parallel to the Au(111) surface (Fig.7a),the brightness of each part in the radical appears similar.However, the tilted nitrogen heterocycle (Fig.7b and c) results in a large brightness difference in the STM images.The farthest part from the surface is brightest in the simulated STM image,which is in excellent agreement with the experimental STM image for the “T” conformation.Thus, the structures of the “P”and “T” conformations for B4P correspond to the modelled ones in Fig.7a and b, respectively.The DFT calculation results also show that the energy for the “T” conformation of B4P is about 0.23 eV lower than the “P” conformation, indicating that the former is more stable.The reason is likely to be that a steric hindrance exists between the nitrogen heterocycle and the BTBT in the “P” conformation.It echoes the experimental result that only the “P” conformation for B4P can be converted to the “T”one.However, the “P” conformation becomes more stable due to the absence of the steric hindrance in B2P.

    4 Conclusions

    The adsorption of two verdazyl radicals like B2P and B4P molecules on Au(111) are explored with STM.Experimental results show that adsorbed B2P exists in monomers, dimers,trimers and tetramers at surface.B4P forms dimers or assembled structures, depending on its coverage.Both B2P and B4P molecules adopt two conformations, namely, the “P”conformation where the nitrogen heterocycle lies parallel to the surface and the “T” one where the nitrogen heterocycle tilts against the surface.At the bias voltage of +2.0 V, the STM tip exerts a disturbance that converts the B2P molecule from “T” to“P” conformation or transforms the B4P from “P” to “T”conformation.For both molecules, such a conformational transition is irreversible.The main difference in the most stable conformation for both molecules originates from the steric hindrance of the BTBT group.The conformational change can be employed as the working principle to achieve molecular switches based on these molecules.

    Fig.7 Models and STM simulation images of B4P with three 6-oxoverdazyl ring conformation.(a) Model and simulation image of first conformation in which the dihedral angle of 6-oxoverdazyl radical and BTBT is about 0°.(b) Model and simulation image of second conformation in which the dihedral angle of 6-oxoverdazyl radical and BTBT is about 50°.(c) Model and simulation image of third conformation in which the dihedral angle of 6-oxoverdazyl radical and BTBT is about -50°.

    亚洲成人一二三区av| 性高湖久久久久久久久免费观看| 亚洲av免费高清在线观看| 一本久久精品| av女优亚洲男人天堂| 久久99热6这里只有精品| 国产精品蜜桃在线观看| 国产精品久久久久久精品古装| 下体分泌物呈黄色| 老司机影院成人| 久久午夜福利片| 18禁在线无遮挡免费观看视频| 久久久久久久精品精品| 色视频在线一区二区三区| 精品一区在线观看国产| 夫妻午夜视频| 精品久久国产蜜桃| 黑人高潮一二区| 人人妻人人澡人人看| 寂寞人妻少妇视频99o| 国产一区二区三区综合在线观看 | 色视频在线一区二区三区| 精品久久久久久久久av| 久久久久久伊人网av| 国产一区二区在线观看av| 少妇人妻久久综合中文| 久久精品久久久久久噜噜老黄| 黄片无遮挡物在线观看| 精品酒店卫生间| 丁香六月天网| 99久国产av精品国产电影| 我要看黄色一级片免费的| 久久韩国三级中文字幕| 狂野欧美激情性xxxx在线观看| 狂野欧美激情性xxxx在线观看| 少妇丰满av| 欧美bdsm另类| 成人国产麻豆网| 一本色道久久久久久精品综合| 国产亚洲欧美精品永久| 久久午夜综合久久蜜桃| 岛国毛片在线播放| 精品人妻一区二区三区麻豆| 免费黄频网站在线观看国产| 极品少妇高潮喷水抽搐| 亚洲精品456在线播放app| 亚洲人与动物交配视频| av国产精品久久久久影院| 多毛熟女@视频| 中国三级夫妇交换| 高清黄色对白视频在线免费看| 成人亚洲精品一区在线观看| 黑丝袜美女国产一区| 国产精品人妻久久久久久| 国产在线视频一区二区| 女人久久www免费人成看片| 你懂的网址亚洲精品在线观看| 国产精品国产三级专区第一集| 免费观看a级毛片全部| av有码第一页| 赤兔流量卡办理| 成年女人在线观看亚洲视频| 在线观看一区二区三区激情| 日本欧美视频一区| 欧美一级a爱片免费观看看| 少妇精品久久久久久久| 日日摸夜夜添夜夜添av毛片| 国产成人精品一,二区| 99热这里只有精品一区| 亚洲成人一二三区av| 热99国产精品久久久久久7| 美女xxoo啪啪120秒动态图| 高清av免费在线| 大码成人一级视频| 久久久欧美国产精品| 日韩欧美一区视频在线观看| av专区在线播放| av女优亚洲男人天堂| 国产一区二区在线观看日韩| 最新的欧美精品一区二区| 国产成人精品无人区| 欧美激情 高清一区二区三区| 精品人妻在线不人妻| 亚洲欧美色中文字幕在线| 亚洲精品第二区| 亚洲欧美清纯卡通| 男女边吃奶边做爰视频| 少妇丰满av| 国产欧美亚洲国产| 久久精品久久精品一区二区三区| 蜜桃久久精品国产亚洲av| 一区二区av电影网| 观看美女的网站| 国产av精品麻豆| 麻豆成人av视频| 熟女人妻精品中文字幕| 亚洲精品色激情综合| av专区在线播放| 丰满乱子伦码专区| 久久人妻熟女aⅴ| 亚洲av在线观看美女高潮| 亚洲国产精品成人久久小说| 看非洲黑人一级黄片| 飞空精品影院首页| 丰满乱子伦码专区| 日韩欧美一区视频在线观看| 91精品伊人久久大香线蕉| 精品久久久久久电影网| 亚洲欧美一区二区三区黑人 | 男女无遮挡免费网站观看| 欧美精品亚洲一区二区| 国产一区二区在线观看日韩| 精品国产露脸久久av麻豆| 国产在线免费精品| 男人添女人高潮全过程视频| 亚洲美女搞黄在线观看| 日韩强制内射视频| 国产国语露脸激情在线看| 又大又黄又爽视频免费| 欧美最新免费一区二区三区| 国产 精品1| 亚洲激情五月婷婷啪啪| 国产精品人妻久久久久久| 另类精品久久| 在线观看免费日韩欧美大片 | 久久国产精品大桥未久av| 亚洲,欧美,日韩| 国产精品蜜桃在线观看| 亚洲天堂av无毛| 成人午夜精彩视频在线观看| 一区二区三区免费毛片| 久久这里有精品视频免费| 水蜜桃什么品种好| 亚洲伊人久久精品综合| 日韩精品免费视频一区二区三区 | 午夜免费观看性视频| 91成人精品电影| 欧美精品亚洲一区二区| 这个男人来自地球电影免费观看 | 18禁在线无遮挡免费观看视频| 亚洲欧美一区二区三区黑人 | 国产视频内射| 久久ye,这里只有精品| www.色视频.com| 国产精品偷伦视频观看了| 国产av码专区亚洲av| 一级黄片播放器| 69精品国产乱码久久久| 亚洲av在线观看美女高潮| 啦啦啦视频在线资源免费观看| 欧美日韩综合久久久久久| 一级毛片aaaaaa免费看小| 欧美成人精品欧美一级黄| 五月天丁香电影| 国产日韩一区二区三区精品不卡 | 免费av不卡在线播放| 麻豆成人av视频| 日韩视频在线欧美| 免费看av在线观看网站| 黑人猛操日本美女一级片| 成人黄色视频免费在线看| 在线天堂最新版资源| 国产成人av激情在线播放 | freevideosex欧美| 日本爱情动作片www.在线观看| 久久久久久久久大av| 成人免费观看视频高清| 久久久a久久爽久久v久久| 丝袜在线中文字幕| 国产欧美日韩一区二区三区在线 | 精品一区二区免费观看| 国产 精品1| 久久精品国产自在天天线| 国产av一区二区精品久久| 99久久人妻综合| 99久久综合免费| 国产精品无大码| 精品久久久噜噜| 亚洲国产欧美日韩在线播放| 嘟嘟电影网在线观看| 中文字幕av电影在线播放| 亚洲国产精品一区二区三区在线| a级毛片黄视频| 日韩强制内射视频| 亚洲国产av影院在线观看| 亚洲精品久久久久久婷婷小说| 久久久国产精品麻豆| 国产乱人偷精品视频| av国产精品久久久久影院| 久久97久久精品| 免费不卡的大黄色大毛片视频在线观看| 亚洲伊人久久精品综合| 亚洲欧美一区二区三区黑人 | 亚洲精品久久成人aⅴ小说 | 国产精品久久久久成人av| 简卡轻食公司| 亚洲欧美清纯卡通| 2021少妇久久久久久久久久久| 欧美日韩成人在线一区二区| 永久免费av网站大全| 国产免费福利视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 满18在线观看网站| 26uuu在线亚洲综合色| 欧美激情极品国产一区二区三区 | 人人妻人人澡人人看| 一级,二级,三级黄色视频| 蜜桃在线观看..| 亚洲av成人精品一区久久| 久久精品国产鲁丝片午夜精品| 国产精品久久久久久精品电影小说| 美女cb高潮喷水在线观看| 国精品久久久久久国模美| 日韩一本色道免费dvd| 黑丝袜美女国产一区| 国产精品久久久久久av不卡| 高清在线视频一区二区三区| 国产一区二区在线观看av| 黄色配什么色好看| 久久精品国产a三级三级三级| 欧美日韩av久久| 亚洲国产精品成人久久小说| 国产精品欧美亚洲77777| 成人漫画全彩无遮挡| 日韩中字成人| 欧美激情国产日韩精品一区| 狂野欧美激情性bbbbbb| 免费久久久久久久精品成人欧美视频 | 欧美日韩亚洲高清精品| 亚洲精品乱久久久久久| 久久免费观看电影| 黑人欧美特级aaaaaa片| 91久久精品电影网| 久热这里只有精品99| 男女国产视频网站| 日韩精品免费视频一区二区三区 | 免费看av在线观看网站| 国产精品久久久久久av不卡| 亚州av有码| 久久av网站| 久久韩国三级中文字幕| 免费高清在线观看视频在线观看| 乱人伦中国视频| 久久久久网色| 男的添女的下面高潮视频| 九色亚洲精品在线播放| 亚洲精品av麻豆狂野| 国产精品国产三级专区第一集| 中文天堂在线官网| 免费黄频网站在线观看国产| 欧美xxxx性猛交bbbb| 黑人欧美特级aaaaaa片| 十八禁网站网址无遮挡| 欧美 亚洲 国产 日韩一| 一本—道久久a久久精品蜜桃钙片| 天天躁夜夜躁狠狠久久av| 在线观看免费视频网站a站| 日韩免费高清中文字幕av| 18禁在线播放成人免费| 精品久久国产蜜桃| av免费观看日本| 人妻制服诱惑在线中文字幕| 免费少妇av软件| 人人妻人人澡人人看| 蜜桃国产av成人99| 免费大片18禁| 国产精品欧美亚洲77777| 美女国产视频在线观看| 欧美精品人与动牲交sv欧美| 精品一品国产午夜福利视频| 日本欧美视频一区| 久久精品国产鲁丝片午夜精品| 简卡轻食公司| 久久久精品区二区三区| 成人二区视频| 韩国av在线不卡| 成人国产麻豆网| 久久人妻熟女aⅴ| 22中文网久久字幕| 九草在线视频观看| 欧美3d第一页| 亚洲第一区二区三区不卡| 午夜福利,免费看| 王馨瑶露胸无遮挡在线观看| 纵有疾风起免费观看全集完整版| 亚洲少妇的诱惑av| 欧美3d第一页| 在线免费观看不下载黄p国产| 99九九在线精品视频| 欧美xxⅹ黑人| 黄色欧美视频在线观看| 国产精品嫩草影院av在线观看| 日本wwww免费看| 国产毛片在线视频| av播播在线观看一区| 中文字幕久久专区| 91精品国产九色| 夜夜骑夜夜射夜夜干| 能在线免费看毛片的网站| 亚洲欧美清纯卡通| 国产片内射在线| 久久久久精品久久久久真实原创| 国产精品一区二区在线观看99| 国国产精品蜜臀av免费| 狂野欧美激情性bbbbbb| 99久国产av精品国产电影| 久久久久久伊人网av| 国产在视频线精品| 国产精品熟女久久久久浪| 99热这里只有是精品在线观看| 简卡轻食公司| 国产 精品1| 99久久综合免费| 美女国产视频在线观看| 男的添女的下面高潮视频| 国产成人精品福利久久| 久久韩国三级中文字幕| 中文精品一卡2卡3卡4更新| 国产精品秋霞免费鲁丝片| 五月伊人婷婷丁香| 日本wwww免费看| 亚洲成色77777| 久久亚洲国产成人精品v| 成年av动漫网址| 青春草视频在线免费观看| 黄色欧美视频在线观看| 久久久精品免费免费高清| 久久av网站| 99国产综合亚洲精品| 精品酒店卫生间| 肉色欧美久久久久久久蜜桃| 久久鲁丝午夜福利片| 少妇高潮的动态图| 国产成人一区二区在线| 成人午夜精彩视频在线观看| 久久久欧美国产精品| 国产av精品麻豆| 欧美人与善性xxx| 国产精品国产av在线观看| 亚洲精品久久成人aⅴ小说 | 亚洲一级一片aⅴ在线观看| 啦啦啦视频在线资源免费观看| 在现免费观看毛片| 丝袜喷水一区| 亚洲一级一片aⅴ在线观看| 18禁在线播放成人免费| 色婷婷av一区二区三区视频| 91久久精品电影网| 亚洲精品一二三| 日韩成人伦理影院| 另类亚洲欧美激情| 在线精品无人区一区二区三| 久久久久久人妻| 丝袜在线中文字幕| 高清视频免费观看一区二区| 欧美激情极品国产一区二区三区 | 精品久久久精品久久久| 国产精品欧美亚洲77777| 免费不卡的大黄色大毛片视频在线观看| 一边亲一边摸免费视频| 99久久综合免费| 国产综合精华液| 伦理电影免费视频| 精品一区在线观看国产| 国产免费视频播放在线视频| 亚洲综合精品二区| 国产免费一区二区三区四区乱码| 丰满迷人的少妇在线观看| 国产精品一区二区在线不卡| 最新中文字幕久久久久| 日韩不卡一区二区三区视频在线| 国产精品一国产av| 亚洲美女黄色视频免费看| 亚洲一级一片aⅴ在线观看| 人人澡人人妻人| 国语对白做爰xxxⅹ性视频网站| 亚洲av免费高清在线观看| 伦理电影免费视频| av在线播放精品| 国产黄片视频在线免费观看| 国产亚洲午夜精品一区二区久久| 国产精品人妻久久久影院| 国产成人一区二区在线| 精品一区二区三卡| 久久久久久久国产电影| 极品少妇高潮喷水抽搐| 成人午夜精彩视频在线观看| kizo精华| 人人妻人人澡人人爽人人夜夜| 嘟嘟电影网在线观看| 老女人水多毛片| 青春草视频在线免费观看| 80岁老熟妇乱子伦牲交| 国产亚洲av片在线观看秒播厂| 曰老女人黄片| 亚洲国产色片| 99九九在线精品视频| 亚洲精品色激情综合| 国产伦精品一区二区三区视频9| 亚洲性久久影院| 成人国产av品久久久| 一区二区av电影网| 亚洲av中文av极速乱| .国产精品久久| 久久鲁丝午夜福利片| 国产色婷婷99| 毛片一级片免费看久久久久| 一级,二级,三级黄色视频| 18在线观看网站| 大话2 男鬼变身卡| 在线看a的网站| 黑丝袜美女国产一区| 亚洲美女黄色视频免费看| 人人澡人人妻人| 一本一本综合久久| 熟妇人妻不卡中文字幕| 亚洲五月色婷婷综合| 亚洲精品国产av蜜桃| 久久精品久久久久久久性| 水蜜桃什么品种好| 纯流量卡能插随身wifi吗| 久久97久久精品| 爱豆传媒免费全集在线观看| a级毛片免费高清观看在线播放| 久久影院123| 青青草视频在线视频观看| 能在线免费看毛片的网站| 国产成人免费无遮挡视频| 五月天丁香电影| 亚洲不卡免费看| 尾随美女入室| av.在线天堂| 人妻制服诱惑在线中文字幕| 欧美+日韩+精品| 国产熟女欧美一区二区| 亚洲欧美日韩卡通动漫| 国国产精品蜜臀av免费| 91久久精品国产一区二区成人| 亚洲精品乱久久久久久| videos熟女内射| 最近2019中文字幕mv第一页| 女性被躁到高潮视频| 日韩中字成人| 久久久久精品久久久久真实原创| 伊人亚洲综合成人网| 国产免费又黄又爽又色| 香蕉精品网在线| 国产伦理片在线播放av一区| 母亲3免费完整高清在线观看 | 秋霞伦理黄片| 久久99热这里只频精品6学生| 一级片'在线观看视频| 人妻人人澡人人爽人人| 美女xxoo啪啪120秒动态图| 国产男女内射视频| 午夜福利视频精品| 在线亚洲精品国产二区图片欧美 | 午夜影院在线不卡| 亚洲成人av在线免费| 精品国产一区二区三区久久久樱花| 亚洲成色77777| 一级二级三级毛片免费看| 国产精品一区二区在线观看99| 91久久精品电影网| 啦啦啦在线观看免费高清www| 亚洲国产最新在线播放| 丰满迷人的少妇在线观看| 少妇的逼水好多| 国产黄色免费在线视频| √禁漫天堂资源中文www| 国产 精品1| videossex国产| 秋霞在线观看毛片| 久久毛片免费看一区二区三区| 午夜福利网站1000一区二区三区| 精品午夜福利在线看| 色婷婷久久久亚洲欧美| 丝袜喷水一区| 水蜜桃什么品种好| 熟妇人妻不卡中文字幕| 欧美日韩av久久| 纯流量卡能插随身wifi吗| 午夜老司机福利剧场| 日本爱情动作片www.在线观看| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品久久久com| 国产欧美日韩一区二区三区在线 | 成人毛片60女人毛片免费| 在线亚洲精品国产二区图片欧美 | 国产 精品1| 人妻人人澡人人爽人人| 亚洲不卡免费看| 欧美精品人与动牲交sv欧美| 又粗又硬又长又爽又黄的视频| 免费看av在线观看网站| 看免费成人av毛片| 18禁裸乳无遮挡动漫免费视频| 久久99热这里只频精品6学生| 亚洲综合精品二区| av视频免费观看在线观看| 亚洲国产精品一区二区三区在线| 免费人妻精品一区二区三区视频| 一级片'在线观看视频| 亚洲精品av麻豆狂野| 如何舔出高潮| 精品国产一区二区三区久久久樱花| 国产成人91sexporn| 韩国av在线不卡| 亚洲av二区三区四区| 十分钟在线观看高清视频www| 国产片特级美女逼逼视频| 女性生殖器流出的白浆| 一级二级三级毛片免费看| 高清毛片免费看| 亚洲国产精品999| 日韩中文字幕视频在线看片| 国产一级毛片在线| 久久99一区二区三区| 热re99久久国产66热| 成年女人在线观看亚洲视频| 久久精品国产自在天天线| 久久久久精品性色| 永久网站在线| 春色校园在线视频观看| 久久av网站| 久久久久久伊人网av| 欧美3d第一页| 九九在线视频观看精品| 久久ye,这里只有精品| 精品人妻一区二区三区麻豆| 日韩av在线免费看完整版不卡| 亚洲精品国产av成人精品| 大香蕉久久网| 99九九线精品视频在线观看视频| 国产日韩欧美在线精品| 国产国语露脸激情在线看| 久久精品夜色国产| 熟女电影av网| 日韩制服骚丝袜av| 蜜桃国产av成人99| 欧美日韩成人在线一区二区| 曰老女人黄片| 成年美女黄网站色视频大全免费 | 色94色欧美一区二区| 91精品国产九色| 午夜激情福利司机影院| 精品国产一区二区三区久久久樱花| 少妇高潮的动态图| av在线观看视频网站免费| av一本久久久久| 边亲边吃奶的免费视频| 看非洲黑人一级黄片| av卡一久久| 亚洲精品中文字幕在线视频| 日本黄色日本黄色录像| 视频中文字幕在线观看| 少妇 在线观看| 亚洲人成77777在线视频| 久久人妻熟女aⅴ| 精品国产一区二区久久| 国产精品熟女久久久久浪| 国产一区二区三区综合在线观看 | h视频一区二区三区| 精品一区二区免费观看| 三级国产精品片| 久久精品人人爽人人爽视色| 精品少妇久久久久久888优播| 亚洲人成网站在线观看播放| 久久人人爽人人爽人人片va| 久久久久久久国产电影| 成人手机av| 在现免费观看毛片| 国产免费福利视频在线观看| 好男人视频免费观看在线| 久久精品国产亚洲av涩爱| 制服人妻中文乱码| 亚洲第一av免费看| av免费在线看不卡| 熟妇人妻不卡中文字幕| 国产一区二区三区av在线| 少妇人妻精品综合一区二区| 满18在线观看网站| 天天影视国产精品| 最新中文字幕久久久久| 性色av一级| 日韩av不卡免费在线播放| 亚洲精品日本国产第一区| 肉色欧美久久久久久久蜜桃| 99久久综合免费| 日韩成人伦理影院| 欧美另类一区| 精品一区二区三卡| 成人国产av品久久久| 欧美另类一区| 精品一区二区三卡| 777米奇影视久久| 亚洲不卡免费看| 看非洲黑人一级黄片| 晚上一个人看的免费电影| 美女大奶头黄色视频| 国产片特级美女逼逼视频| 国产熟女欧美一区二区| 亚洲高清免费不卡视频| www.av在线官网国产| 国产av国产精品国产| 国产精品99久久久久久久久| 啦啦啦在线观看免费高清www| 涩涩av久久男人的天堂| 亚洲av.av天堂| 美女视频免费永久观看网站| 国产黄频视频在线观看| 亚洲精品成人av观看孕妇| 欧美日韩视频精品一区| 久久久久久久大尺度免费视频| av免费观看日本|