• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and Tunable Luminescence of Eu Doped KNN Ceramics

    2020-03-08 14:04:56WANGMengHuiSHENHuiTIANTianXIANQinXUJiaYueJINMinJIARunPing
    無機(jī)材料學(xué)報(bào) 2020年2期
    關(guān)鍵詞:上海

    WANG Meng-Hui, SHEN Hui,2, TIAN Tian, XIAN Qin, XU Jia-Yue, JIN Min, JIA Run-Ping

    Preparation and Tunable Luminescence of Eu Doped KNN Ceramics

    WANG Meng-Hui1, SHEN Hui1,2, TIAN Tian1, XIAN Qin1, XU Jia-Yue1, JIN Min3, JIA Run-Ping1

    (1. School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; 2. State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; 3. School of Materials Science and Engineering, Shanghai Dianji University, Shanghai 201306, China)

    Rare-earth doped inorganic ferroelectrics are considered as novel photochromic materials, with potential applications for optical switch and information storage (K0.5Na0.5)1–xEuNbO3(KNN:Eu) ceramics were prepared by high temperature calcination, with precursor powder obtained by hydrothermal method. Strong red emission at 615 nm was observed which corresponds to the5D0→7F2transition of Eu3+under excitation of 465 nm. Under UV light irradiation for 3 min, the color of the ceramics turned from milky white to dark gray. The colored samples returned to the original color when heated at 200 ℃ for 10 min, showing strong photochromic behavior. Meanwhile, the luminescence intensity of Eu3+can be tuned without obvious degradation by alternating UV light and heat stimulus. Upon UV light irradiation, large luminescence modulation ratio (Δt) up to 83.9% was achieved for KNN:0.06Eu, indicating good luminescence switching behavior. A possible mechanism for non-radiative energy transfer from the luminescent center to the color center was proposed according to their luminescent behavior.

    K0.5Na0.5NbO3(KNN); luminescence; photochromism

    Photochromic (PC) materials, changing color between the coloring state and bleaching state upon light irradiation, have aroused increasing attention with great potential applications in photo-switching and related optoelectronic devices[1-4].Compared with traditional organic PC system, inorganic materials exhibit better thermal stability, higher chemical and fatigue resistance[5-7]. Some inorganic materials have been reported for their PC behaviors, such as WO3, TiO2, and V2O5[7-9]. However, the luminescence modulations of these materials are extremely poor, which limit their potential application for optical data storage. Recently, rare-earth element doped ferroelectric ceramics, including K0.5Na0.5NbO3(KNN), Na0.5Bi2.5Nb2O9(NBN) and Na0.5Bi4.5Ti4O15(NBT), have been reported to show good luminescence switching behaviors[10-11]. Rare earth doped ferroelectrics are capable of combining ferroelectric energy storage and optical memories, which make them fascinating candidates as high density information storage media[12].

    K0.5Na0.5NbO3(KNN) lead-free piezoelectric ceramics have been considered as the substitute for lead zirconate titanate (PZT) due to the large piezoelectric coeffiecient (33) and high Curie temperature (C)[13-14]. Now, KNN:Er3+and KNN:Er3+/Yb3+display the upconversion luminescence modulation performance[15-17]. With visible light irradiation, the luminescent switching contrast (Δt) up to about 60% is observed in KNN:Sm3+ceramics[18]. Eu3+doped inorganic materials have also been proved to possess excellent photochromic behavior under UV irradiation, like Sr2SnO4:Eu3+, BaMgSiO4:Eu3+, Sr3SnMO7: Eu3+[19-21]. The underlying mechanism may be various from the valence state transition of Eu3+to volatilization- induced photochromism[19]. Upon to now, photoluminescence and ferroelectric property of KNN:Eu3+have been studied, while its luminescence based on PC reactions has not been reported[22-23].

    In this study, Eu3+doped K0.5Na0.5NbO3(KNN:Eu) powder with uniform morphology was fabricated by the hydrothermal method. KNN:Eu ceramics were obtained by calcining the precursor powder at high temperature. Hydrothermal method displays many merits in regulating the grains size, distribution and lower preparation temperature. Upon UV light irradiation and thermal stimulus, KNN:Eu ceramics display both photochromic reaction and tunable luminescence behavior with excellent reversibility. High value of Δt(up to 83.9%) is achieved for KNN:0.06Eu.Possible luminescence switching mechanism was also proposed, regarding the energy transfer between luminescence center and color center.

    1 Experimental

    The Eu3+doped K0.5Na0.5NbO3(KNN:Eu) (=0,0.02,0.04,0.06,0.08, 0.10) precursor powder was prepared by the hydrothermalmethod. Sodium hydroxide (NaOH), potassium hydroxide (KOH), niobium pentoxide (Nb2O5) and europia (III) oxide (Eu2O3)served as raw materials. First, KOH and NaOH were weighed according to K+/Na+ratio of 3:1. They dissolved in distilled water to form a solution in which the concentration of OH-changed from 10 mol/L to 12 mol/L.Thereafter, Nb2O5was added to the above solution and stirred for 30 min. The obtained suspension was placed in a 100-mL reaction kettle up to 70% of the total volume. Then the reaction kettle was sealed in a stainless-steel tank and heated at 200 ℃ for 12 h. The resulting products were obtained by centrifugation, washing and drying. The synthesized powders weregranulated with 6wt% polyvinyl alcohol (PVA) binder, and then pressed into 12mm disk-shaped pellets. KNN:Eu ceramics were prepared by calcination at 1140 ℃ for 4 h.

    The crystal structure was characterized by powder X-ray diffraction (D/max-2400, Rigaku, Japan) using a Cu Kα radiation. The microstructures of the ceramics were analyzed by scanning electron microscopy (S-4800, Hitachi, Japan). The UV-VIS-NIR spectrophotometer (Cary 5000, Agilent) were used to test the diffuse reflectance spectra. The coloration of the ceramics was carried out under the UV-light (<400 nm) output of a 300 W Xe lamp (PLS-SXE300, Beijing Zhongjiaojinyuan Tech-nology Co. Ltd). The luminescence spectra and luminescence quenching behavior (at 300, 350, 390, 407 and 450 nm) were characterized by a fluorescence spectrophotometer (F-7000, Hitachi, Japan).

    2 Results and discussion

    Fig. 1(a) shows the XRD patterns of the KNN precursor powder synthesized at 200℃for 12h (K+/Na+=3 : 1) with [OH–] concentration from 10 mol/L to 12 mol/L. When [OH–] was 10 mol/L, small amount of NaNbO3was observed in the sample, except for the main perovskite phase of KNN (PDF #77-0038). With the increase of [OH-] from 11 mol/L to 12 mol/L,the NaNbO3phase gradually disappeared. This result indicates that slight increase of [OH-] concentration can speed up the reaction process and facilitate the formation of pure KNN phase. Fig. 1(b) shows XRD patterns of the KNN:Eu (=0.02, 0.04, 0.06, 0.08, 0.10)powders obtained by the hydrothermal method. Pure KNN phase has been obtained with [OH–] of 11 mol/L, indicating that Eu3+is helpful for the formation of pure KNN phase. In Fig. 1(c), with increasing Eu3+concentration, (110) diffraction peak moves slightly to a higher angle, suggesting that Eu3+has partly replaced K+and Na+of the KNN matrix. The ion radius of Eu3+(0.112 nm) is smaller than those of Na+(0.139 nm) and K+(0.164 nm), resulting in the shrink of the crystal lattice[22].

    Fig. 1 XRD patterns of the precursor powders synthesized at 200℃ for 12h (K+/Na+=3:1)with different [OH-] concentrations (a), XRD patterns of KNN:xEu (x=0.02, 0.04, 0.06, 0.08, 0.10) powderssynthesized at 200℃ for 12h (K+/Na+=3:1, [OH-]=11 mol/L) (b) and zoomed XRD patterns from (b) within 30°–33° (c)

    Fig. 2 displays the surface morphology of the KNN:0.06Eu ceramics calcined at 1140 ℃.Regular grains withcubic shape are well crystallized, withaverage size of about 0.3 μm. This grain size is very similar to those of hot-press sintered KNN ceramics and solid- state sintered KNN:Er ceramics[15, 24]. Rare earth (like Er3+and Eu3+) may inhibit the grain growth of KNN ceramics[15]. According to the EDS analysis, the molar ratio of K+and Na+of the ceramics is almost 0.78, which is different from the initial composition. The radius of K+(0.164 nm) is much bigger than that of Na+(0.139 nm), so it is much more difficult for K+to diffuse into the crystal lattice[25].

    Fig. 2 SEM image of KNN:0.06Eu ceramics synthesized at 1140℃ for 4h

    Fig. 3(a) shows the photoluminescence excitation (PLE) spectra of the KNN:0.06 ceramic and photoluminescence (PL) spectra of KNN:Eu ceramics. The PLE spectrum monitored at 618 nm reveals three characteristic absorption peaks, wherein the band at 395 nm corresponding to the7F0→5L6transition, the 465 nm band corresponding to the7F0→5D2and the 526 nm band corresponding to the7F0→5D1. The emission spectra excited at 465 nm of KNN:Eu ceramics consists of a group of intense and sharp characteristic lines ranging within 570–750nm, which mainly result from the characteristic f-f transition from the excited states5D0to the ground state7FJ(J=0–4) of Eu3+ions[23]. The strongest red emission at 615 nm comes from the5D0→7F2of Eu3+. The positions of emission peak and line shape of the emission spectra maintain the same, but the emission intensity of Eu3+is afunction of its dopingconcentration. With the increase of Eu3+concentration, the red emission intensity gradually increased and reached maximum when=0.08. The intensity decreases gradually beyond this critical concentration.

    Fig. 3 Excitaion (λem=618 nm) spectra of the KNN:0.06Eu ceramics and emission (λex=465 nm) spectra of KNN:xEu ceramics at room temperature (a) and the dynamic decay curves on Eu3+ concentrations for KNN:Eu samples under 465 excitation (b)

    The dynamic decay curves on Eu3+concentrations for KNN:Eu ceramics under 465 nm excitation are shown in Fig. 3(b). The lifetimes are well fitted by using second-order exponential as follows:

    ()=0+A1exp(–/1)+2exp(–/2) (1)

    Where0is the emission intensity at0,1and2are constant,1and2are the lifetimes of the exponential component.

    =(112+222)/(11+22) (2)

    With Eu3+concentration increasing, the average lifetime gradually increases and reaches maximum when=0.08, which is mainly related to the radiative energy transfer between Eu3+neighbor ions. With Eu3+concentration further increasing, the ion distance between Eu3+-Eu3+becomes shorter, possibly resulting in the decrease of average lifetime[26-27].

    Fig. 4 shows the reflectance spectra and photochromic reaction of KNN:Eu ceramics under UV irradiation and thermal stimulus. Fig. 4(a) gives the reflection spectra of KNN:0.06Eu ceramic irradiated under UV light for different time (0 s to 3 min). The reflection intensity decreases significantly in the region 400–750 nm with increasing irradiation time, indicating that the irradiated sample absorbs part of the visible light. The absorption ratio can be evaluated by comparing the difference of the reflective intensity before (RE1)and after (RE2)irradiation using the formula:Δabs = RE1–RE2(%)[28]. Fig. 4(b) shows that KNN:0.06Eu has a broad absorption from 400 nm to 750 nm, with the absorption maximum at about 566 nm. In the inset of Fig. 4(b), upon UV light irradiation for 3 min, the color of the sample turns from milky white to gray as a colored sample. The colored sample recovered its initial stage when heated at 200 ℃ for 10 min (marked as Δ). In Fig. 4(c), KNN:0.06Eu ceramic shows the best photochromic behavior, which is indicated by the change of Δabs (at 566 nm) with Eu3+concentration. KNN:0.06Eu ceramic is treated repeatedly with UV light irradiation (3 min) and thermal stimulus (200 ℃ for 10 min). As seen in Fig. 4(d), the reflectance intensity at 566 nm shows no obvious degradation for 10 cycles, showing good fatigue resistance of the color switching.

    The photoluminescence spectra of KNN:0.06Eu ceramics before and after UV irradiation for 3 min are shown in Fig. 5(a). Upon UV light irradiation, the luminescence intensity decreases significantly, showing strong luminescence quenching effect. The quenching behavior may be explained by the parameter Δt(luminescence modulation ratio) using the equation: Δt= (0–t)/0×100 (%), where0andtare the luminescence intensity before and after light irradiation,respectively[10,15]. Fig. 5(b) shows the change of Δtat 615 nm as a function of Eu concentration. Upon UV light irradiation for 3 min, the emission intensities of all samples decreased significantly. The calculated Δtvalues of the KNN:Eusamples are 34.2% (=0.02), 47.6% (=0.04), 83.9% (=0.06), 46.4% (=0.08) and 48.3% (=0.10),respectively. The maximum Δtvalue (83.9%) is achieved for KNN:0.06Eu3+, which is comparably high among rare earth doped KNN ferroelectrics.

    Fig. 4 Reflectance spectra for the KNN:0.06Eu by UV light irradiation (0 s, 30 s, 60 s, 2 and 3 min) (a), difference absorption (Δabs) spectra for the KNN:0.06Eu by UV irradiation 3 min with inset showing photographs of color changes of ceramic before and after UV irradiation (b), the Δabs vs Eu concentration (c) and reflectance intensity changes (d) of KNN:0.06Eu by alternating UV irradiation and heat treatment

    Furthermore, KNN:0.06Eu ceramic was subjected to alternating UV light irradiation (3 min) and the thermal stimulus (200 ℃ for 10 min) for 7 cycles. For each cycle, the PL spectra were recorded immediately after UV light irradiation and the thermal stimulus. Accordingly, Δtat 615 nm was calculated and the result was shown in Fig. 5(c). The decreased emission intensity after UV irradiation is able to almost recover its initial state upon heating treatment. Δthas no obvious degradation for at least 7 cycles, illustrating good reversibility of the luminescence switching.

    In order to further investigate the effect of irradiation wavelength on the tunability of luminescence, the emission spectra of KNN:0.06Eu ceramic (ex=465 nm) under different wavelength irradiation (300, 350, 390, 407 and 450 nm) were measured, as shown in Fig. 6(a). For this experiment, a xenon lamp equipped with an F-7000 spectrometer acted as the irradiation light source. In Fig. 6(a), with irradiation time (20 s, 40 s, 1 min, 2 min, 3 min and 4 min) increasing, Δtof the KNN:0.06Eu gradually increases. Δtdecreases dramatically with increasing irradiation wavelength, and the largest Δtis obtained with irradiation wavelength of 300 nm. This result verifies that the luminescence of KNN:0.06Eu can be effectively tuned by UV light irradiation. There are some reports of Eu based photochromic materials which is also effectively excited by UV light, like Sr2SnO4:Eu3+, BaMgSiO4:Eu3+, Sr3SnMO7:Eu3+, although theorigins of PC processes may be varied[19-21].

    Fig. 5 Changes of emission spectra (λex=465 nm) of KNN:0.06 Eu ceramics before and after UV irradiation for 3 min (a), luminescence switching ratio (ΔRt) at 615 nm as a function of Eu concentration (b) and ΔRt of KNN:0.06Eu ceramics by alternating UV light irradiation and thermal stimulus for 7 cycles (c)

    Fig. 6 Luminescence modulation ratio (ΔRt) as a function of irradiation time under different irradiation wavelengths (a) and schematic diagram of luminescence modulation upon photochromic reactions for KNN:xEu ceramics (VO is oxygen vacancy, and VA is K and Na vacancy) (b)

    Fig. 6(b) illustrates the possible mechanism of luminescence switching based on PC reactions. It may be explained by the free or trapped charge carrier and resonance energy transfer (RET) mechanism, which bases on the overlap of the emission band of Eu3+ions and the absorption bands of photochromic KNN ceramics[29-30]. Due to many vacancy-related defects in KNN host, additional defect energy levels form within the forbidden gap of KNN. Upon UV light illumination, the electrons from the valence band (Ev) are excited to higher energy level (defect level), and are trapped by the oxygen vacancies (Vo)[10,15]. The excited holes are also trapped by the K and Na vacancies (VA). Both of these defects are color centers which have a broad absorption band in the range from 400 to 700 nm (Fig. 4). The emission positions of Eu3+overlaps with the absorption band range of these color centers (Fig. 3, 4 and 5). When Eu3+is excited, the emission can be effectively absorbed by the color centers through the resonance energy transfer, resulting in the significant decrease of the Eu3+luminescence intensity[19]. When the ceramic is heated to 200 ℃ for 10 min, the colored sample fade back into their original color state. Meanwhile, electrons can be released from the traps and the color centers disappears. Corre-spondingly, the emission intensities of Eu3+are also re-covered.

    The luminescence mechanism of KNN:Eu is similar with that of Sr3SnMO7:Eu which is also irradiated by UV (254 nm) light[19]. Other KNN based ceramics, like KNN:Er, KNN:Er/Yb,KNN:Ho/Yband KNN:Sm, have been reported to show photochromic and luminescence switching behavior by visible light (407 nm) illumina-tion[16-18]. Furthermore, the emission intensity reached maximum for KNN:0.08Eu, while the largest lumines-cence switching ratio is achieved for KNN:0.06Eu. The luminescence switching ratio mainly relates to the energy transfer between luminescence centers and color centers. And the color centers relates to the traps or defects within the host lattice. The unique feature of KNN:Eu is possibly caused by the varied trap depths or distributions of defects within this system, which will be systematically studied in the future.

    3 Conclusions

    Eu doped K0.5Na0.5NbO3(KNN:Eu) precursor powders were hydrothermally synthesized at 200℃for 12 h (K+/Na+=3:1, [OH–] =11 mol/L).The phase-pure perovskite KNN:Eu ceramics exhibit homogeneous morphology when calcined at 1140 ℃ for 4 h. KNN:Eu ceramics show remarkable photochromicand luminescence switching behavior. Upon UV light irradiation, the sample colors change from the initial milky white to dark gray. By alternating UV irradiation and thermal stimulus, the luminescence modulation ratio (Δt) of KNN:0.06Eu reach high values of 83.9%. These results indicate that KNN:Eu system is a potential candidate for novel photo-electronic device.

    [1] WU N M, WONG H L, YAM V W. Photochromic benzo phosphole oxide with excellent thermal irreversibility and fatigue resistance in the thin film solid statedirect attachment of dithienyl units to the weakly aromatic heterocycle., 2017, 8: 1309-1315.

    [2] WANG R G, LU X L, HAO L F,. Enhanced and tunable photochromism of MoO3–butylamine organic–inorganic hybrid composites., 2017, 5: 427-433.

    [3] HADJOUDIS E, MAVRIDIS I M. Photochromism and thermochromism of schiff bases in the solid state: structural aspects., 2004, 33: 579-588.

    [4] PANG S C, HYUN H, LEE S,Photoswitchable fluorescent diarylethene in a turn-on mode for live cell imaging., 2012, 48: 3745-3747.

    [5] ZHANG Y Y, LUO L H, LI K X,. Reversible up-conversion luminescence modulation based on UV-Vis light-controlled photochromism in Er3+doped Sr2SnO4., 2018, 6: 13148-13156.

    [6] RUSSO M, RIGBY S E J, CASERI W,Pronounced photochromism of titanium oxide hydrates (hydrous TiO2)., 2010, 20: 1348-1356.

    [7] NISHIO S, KAKIHANA M. Evidence for visible light photochromism of V2O5.,2002, 14: 3730-3733.

    [8] BLACKMAN C S, PARKINARKIN I P. Atmospheric pressure chemical vapor deposition of crystalline monoclinic WO3and WO3-xthin films from reaction of WCl6with O-containing solvents and their photochromic and electrochromic properties.,2005, 17: 1583-1590.

    [9] HOSONO E, FUJIHARA S, KAKIUCH K,Growth of submicrometer-scale rectangular parallelepiped rutile TiO2films in aqueous TiCl3solutions under hydrothermal conditions.,2004, 126: 7790-7791.

    [10] ZHANG Q W, YUE S S, SUN H Q,Nondestructive up-conversionreadout in Er/Yb co-doped Na0.5Bi2.5Nb2O9-based optical storage materials for optical data storage device applications., 2017, 5: 3838-3847.

    [11] ZHANG Q W, ZHANG Y Y, SUN H Q,Tunable luminescence contrast of Na0.5Bi4.5Ti4O15:Re (Re=Sm, Pr, Er) photochromics by controlling the excitation energy of luminescent centers.,2016, 8: 34581-34589.

    [12] LI K X, LUO L H, ZHANG Y Y,Tunable luminescence contrast in photochromic ceramics (1–)Na0.5Bi0.5TiO3–Na0.5K0.5NbO3: 0.002Er by an electric field poling., 2018, 48: 41525-41534.

    [13] ZHEN Y, LI J F. Normal sintering of (K, Na)NbO3-based ceramics: influence of sintering temperature on densification, microstructure, and electrical properties., 2006, 89: 3669-3675.

    [14] SU L K, ZHU K J, BAI L, QIU J H,Effects of Sb-doping on the formation of (K, Na)(Nb, Sb)O3solid solution under hydrothermal conditions., 2010, 493: 186-191.

    [15] ZHANG Y Y, LUO L H, LI K X,Up-conversion luminescence switching of (K0.5Na0.5)0.995Er0.005NbO3ferroelectric ceramic based on photochromic reaction,2018, 44: 1086-1090.

    [16] LIU J, ZHANG Y, SUN H Q,Reversible up-conversion emission and photo-switching properties in Er doped (K,Na)NbO3ferroelectrics., 2019, 207: 85-92.

    [17] ZHANG Y Y, LUO L H, LI K X,Large and reversibleup-conversion photoluminescence modulation based on photochromismelectric-field and thermal stimulus in ferroelectrics., 2018, 38: 3154-3161.

    [18] SUN H Q, LIU J, WANG X H,(K, Na)NbO3ferroelectrics: a new class of solid-state photochromic materials with reversible luminescence switching behavior., 2017, 5: 9080-9087.

    [19] WANG C L, JIN Y H, LV Y,Reversible luminescence switching and non-destructive optical readout behaviors of Sr3SnMO7:Eu3+(M?=?Sn, Si, Ge, Ti, Zr, and Hf) driven by photochromism and tuned by partial cation substitution., 2018, 262: 289-297.

    [20] KAMIMURA S, YAMADA H, XU C N. Purple photochromism in Sr2SnO4:Eu3+with layered perovskite-related structure., 2013, 102: 031110.

    [21] AKIYAMA M. Blue-green light photochromism in europium doped BaMgSiO4., 2010, 97: 181905.

    [22] WANG J, LUO L H. Probing the diffusion behavior of polymorphic phase transition in K0.5Na0.5NbO3ferroelectric ceramics by Eu3+photoluminescence., 2018, 123: 144102.

    [23] SUN H Q, ZHANG Q W, WANG X S,New red-emitting material K0.5Na0.5NbO3: Eu3+for white LEDs., 2015, 64: 134–138.

    [24] GENG Z M, LI K, LI X,Fabrication and photoluminescence of Eu-doped KNN based transparent ceramics., 2017, 52: 2285-2295.

    [25] ZHOU Y, GUO M, ZHANG C,Hydrothermal synthesis and piezoelectric property of Ta-doping K0.5Na0.5NbO3lead-free piezoelectric ceramic., 2009, 35: 3253–3258.

    [26] ZHANG Y, XU J Y, YANG B B,Luminescence properties and energy migration mechanism of Eu3+activated Bi4Si3O12as a potential phosphor for white LEDs., 2018, 5: 026202.

    [27] WU X, CHUNG T H, KWOK K W. Enhanced visible and mid-IR emissions in Er/Yb-cooped K0.5Na0.5NbO3ferroelectric ceramics., 2015, 41: 14041-14048.

    [28] SUN H Q, ZHANG Y, LIU JIAN,Reversible upconversion switching for Ho/Yb codoped (K,Na)NbO3ceramics with excellent luminescence readout capability., 2018, 101: 5659-5674.

    [29] NIKL M. Wide band gap scintillation materials: progress in the technology and material understanding.,2000, 178: 595-620.

    [30] ZHANG Q W, ZHANG Y, SUN H Q,Photoluminescence, photochromism, and reversible luminescence modulation behavior of Sm-doped Na0.5Bi2.5Nb2O9ferroelectrics., 2017, 37: 955–966.

    Eu摻雜KNN陶瓷的制備及可調(diào)性發(fā)光研究

    王夢慧1, 申慧1,2, 田甜1, 鮮琴1, 徐家躍1, 金敏3, 賈潤萍1

    (1. 上海應(yīng)用技術(shù)大學(xué) 材料科學(xué)與工程學(xué)院, 上海 201418; 2. 山東大學(xué) 晶體材料國家重點(diǎn)實(shí)驗(yàn)室, 濟(jì)南 250100; 3. 上海電機(jī)學(xué)院 材料科學(xué)與工程學(xué)院, 上海 201306)

    稀土離子摻雜鐵電陶瓷是一類新型光致變色材料, 在光開關(guān)、光信息存儲等領(lǐng)域具有潛在應(yīng)用價(jià)值。本研究采用水熱法制備了(K0.5Na0.5)1–xEuNbO3(KNN:Eu)前驅(qū)體粉體, 隨后利用高溫?zé)Y(jié)得到對應(yīng)陶瓷樣品。在465 nm激發(fā)下, 觀察到615 nm處有強(qiáng)的紅色發(fā)光, 對應(yīng)于Eu3+的5D0→7F2躍遷。通過紫外光照射, KNN:Eu陶瓷從乳白色變?yōu)樯罨疑?。隨后經(jīng)過200 ℃加熱10 min, 著色陶瓷又變回到初始顏色, 顯示出良好的光致變色行為。紫外照射和反復(fù)加熱循環(huán)可以有效調(diào)控該陶瓷的發(fā)光強(qiáng)度。且經(jīng)過多次循環(huán)之后, 發(fā)光強(qiáng)度沒有明顯衰減。在紫外光照射下, KNN:0.06Eu陶瓷發(fā)光強(qiáng)度的可調(diào)比(Δt)高達(dá)83.9%, 說明發(fā)光具有良好的可調(diào)性。進(jìn)而結(jié)合發(fā)光中心和色心之間的能量轉(zhuǎn)移, 對KNN:Eu陶瓷的光致變色和發(fā)光機(jī)理進(jìn)行了解釋。

    K0.5Na0.5NbO3(KNN); 發(fā)光; 光致變色

    TQ174

    A

    2019-03-12;

    2019-04-29

    National Natural Science Foundation of China (61605116, 51972213); Science and Technology Commission of Shanghai Municipality (15ZR1440600, 15520503400)

    WANG Meng-Hui (1993–), Master candidate. E-mail: WMH_FZS@163.com

    王夢慧, (1993–), 碩士研究生. E-mail: WMH_FZS@163.com

    SHEN Hui, associate professor. E-mail: hshen@sit.edu.cn; XU Jia-Yue, professor. E-mail: xujiayue@sit.edu.cn

    申慧, 副教授. E-mail: hshen@sit.edu.cn; 徐家躍, 教授. E-mail: xujiayue@sit.edu.cn

    1000-324X(2020)02-0236-07

    10.15541/jim20190106

    猜你喜歡
    上海
    上海電力大學(xué)
    我去上海參加“四大”啦
    上海,及上海以南
    散文詩(2021年24期)2021-12-05 09:11:54
    上海城投
    上海之巔
    上海城投
    上海城投
    上海諦霖鄒杰 Hi-Fi是“慢熱”的生意,但會越來越好
    上海的新使命
    上?!斑M(jìn)博”開創(chuàng)未來
    亚洲精品一卡2卡三卡4卡5卡| 亚洲avbb在线观看| 超碰av人人做人人爽久久 | 免费电影在线观看免费观看| 欧美乱色亚洲激情| 首页视频小说图片口味搜索| 久久久精品欧美日韩精品| 大型黄色视频在线免费观看| 亚洲人成网站在线播放欧美日韩| 两性午夜刺激爽爽歪歪视频在线观看| 成年人黄色毛片网站| 天堂动漫精品| 91字幕亚洲| 国产探花极品一区二区| 成人精品一区二区免费| 中文字幕久久专区| 1024手机看黄色片| 网址你懂的国产日韩在线| 日韩欧美精品免费久久 | 搡女人真爽免费视频火全软件 | 日日干狠狠操夜夜爽| 午夜影院日韩av| 午夜福利在线观看免费完整高清在 | 国产色爽女视频免费观看| 欧美午夜高清在线| 亚洲精品一卡2卡三卡4卡5卡| 国产精品 欧美亚洲| 嫁个100分男人电影在线观看| 少妇的逼好多水| 神马国产精品三级电影在线观看| 特级一级黄色大片| 亚洲av电影不卡..在线观看| 久久性视频一级片| 国产一区二区三区在线臀色熟女| 国产真实伦视频高清在线观看 | 最近视频中文字幕2019在线8| 3wmmmm亚洲av在线观看| 女同久久另类99精品国产91| 男女那种视频在线观看| 中文字幕精品亚洲无线码一区| 一夜夜www| 一二三四社区在线视频社区8| 久久久精品大字幕| 在线免费观看不下载黄p国产 | 婷婷丁香在线五月| 亚洲美女视频黄频| 国产乱人视频| 国产一区二区三区视频了| 免费一级毛片在线播放高清视频| 国产单亲对白刺激| 一级黄片播放器| 老司机午夜十八禁免费视频| 国内毛片毛片毛片毛片毛片| 国产精品乱码一区二三区的特点| 亚洲人与动物交配视频| 欧美成狂野欧美在线观看| 日韩成人在线观看一区二区三区| 国产免费男女视频| 99热这里只有是精品50| 人妻久久中文字幕网| x7x7x7水蜜桃| 黄片大片在线免费观看| 99精品欧美一区二区三区四区| 黄色日韩在线| 国产精品亚洲美女久久久| 高清在线国产一区| 最近在线观看免费完整版| 91在线精品国自产拍蜜月 | 99在线视频只有这里精品首页| av视频在线观看入口| 一个人观看的视频www高清免费观看| 久久香蕉国产精品| 一个人看的www免费观看视频| www.熟女人妻精品国产| 成人性生交大片免费视频hd| 一进一出抽搐动态| 首页视频小说图片口味搜索| 国产成人影院久久av| 一进一出抽搐gif免费好疼| av黄色大香蕉| svipshipincom国产片| xxxwww97欧美| 国产亚洲精品久久久com| 免费观看人在逋| 亚洲美女视频黄频| 国内揄拍国产精品人妻在线| 色噜噜av男人的天堂激情| 日本与韩国留学比较| 国内精品一区二区在线观看| www.熟女人妻精品国产| 国产真实乱freesex| 免费人成视频x8x8入口观看| 国产一区二区三区在线臀色熟女| 国产伦精品一区二区三区视频9 | 久久久成人免费电影| 亚洲精品在线观看二区| 亚洲中文字幕一区二区三区有码在线看| 免费看光身美女| 色综合婷婷激情| 国产色婷婷99| www.熟女人妻精品国产| 性欧美人与动物交配| 国产亚洲精品久久久com| 免费人成视频x8x8入口观看| av在线天堂中文字幕| 床上黄色一级片| 99在线人妻在线中文字幕| 亚洲 欧美 日韩 在线 免费| 日韩欧美在线乱码| 在线播放无遮挡| 在线免费观看不下载黄p国产 | 久久草成人影院| 欧美中文日本在线观看视频| 欧美色视频一区免费| 久久精品影院6| 女生性感内裤真人,穿戴方法视频| 亚洲精品国产精品久久久不卡| 美女大奶头视频| 可以在线观看毛片的网站| 亚洲久久久久久中文字幕| 欧美3d第一页| 一卡2卡三卡四卡精品乱码亚洲| 母亲3免费完整高清在线观看| 琪琪午夜伦伦电影理论片6080| 国产国拍精品亚洲av在线观看 | 国产黄色小视频在线观看| 婷婷六月久久综合丁香| 日韩人妻高清精品专区| 久久人人精品亚洲av| 在线观看一区二区三区| 91字幕亚洲| 精品一区二区三区视频在线观看免费| 国产乱人伦免费视频| 国产综合懂色| 两个人看的免费小视频| 午夜视频国产福利| 日本熟妇午夜| 国产探花在线观看一区二区| 精品一区二区三区视频在线 | 色综合欧美亚洲国产小说| 老司机午夜福利在线观看视频| 天堂影院成人在线观看| 日韩大尺度精品在线看网址| 老司机午夜福利在线观看视频| 91麻豆av在线| 亚洲成a人片在线一区二区| 免费观看的影片在线观看| 日韩亚洲欧美综合| 久久久精品欧美日韩精品| 国产av不卡久久| 深夜精品福利| 日韩 欧美 亚洲 中文字幕| 亚洲中文字幕一区二区三区有码在线看| 成人高潮视频无遮挡免费网站| 好看av亚洲va欧美ⅴa在| 欧美最黄视频在线播放免费| 中文字幕人妻熟人妻熟丝袜美 | 国产三级在线视频| 国产成人系列免费观看| 黄色成人免费大全| 亚洲最大成人中文| 精品不卡国产一区二区三区| 91久久精品电影网| 网址你懂的国产日韩在线| 欧美日本视频| 老司机福利观看| 亚洲人成伊人成综合网2020| 99在线视频只有这里精品首页| e午夜精品久久久久久久| 色尼玛亚洲综合影院| 午夜视频国产福利| 中文字幕高清在线视频| 尤物成人国产欧美一区二区三区| 亚洲在线观看片| 欧美精品啪啪一区二区三区| 香蕉久久夜色| 亚洲在线自拍视频| 中文在线观看免费www的网站| 色尼玛亚洲综合影院| 亚洲av中文字字幕乱码综合| 波多野结衣巨乳人妻| 精品一区二区三区av网在线观看| 国产在视频线在精品| 国产色爽女视频免费观看| 免费在线观看日本一区| 99久久99久久久精品蜜桃| 久久精品亚洲精品国产色婷小说| 欧美激情久久久久久爽电影| 天堂av国产一区二区熟女人妻| a级一级毛片免费在线观看| www日本在线高清视频| 在线观看免费视频日本深夜| 亚洲人成网站高清观看| 国产成人欧美在线观看| 97超级碰碰碰精品色视频在线观看| 18禁裸乳无遮挡免费网站照片| 麻豆国产97在线/欧美| 极品教师在线免费播放| 久久久久久久午夜电影| 白带黄色成豆腐渣| 国内精品久久久久久久电影| 国产欧美日韩一区二区精品| 非洲黑人性xxxx精品又粗又长| 精品午夜福利视频在线观看一区| 国产亚洲欧美98| 成年女人毛片免费观看观看9| 特大巨黑吊av在线直播| 操出白浆在线播放| 欧美色视频一区免费| 日韩欧美免费精品| 国产黄色小视频在线观看| 女人十人毛片免费观看3o分钟| 亚洲国产精品成人综合色| 制服丝袜大香蕉在线| 国产高清视频在线观看网站| 亚洲av免费在线观看| 色综合亚洲欧美另类图片| 丁香欧美五月| 91av网一区二区| 村上凉子中文字幕在线| 日本五十路高清| 神马国产精品三级电影在线观看| 一区二区三区高清视频在线| 不卡一级毛片| 人妻夜夜爽99麻豆av| 国产精品国产高清国产av| 国产探花极品一区二区| 一本综合久久免费| netflix在线观看网站| 日韩欧美在线乱码| 校园春色视频在线观看| 欧美另类亚洲清纯唯美| 高清在线国产一区| 欧美高清成人免费视频www| 99久久成人亚洲精品观看| 精品日产1卡2卡| 午夜精品久久久久久毛片777| 国产69精品久久久久777片| 欧美国产日韩亚洲一区| netflix在线观看网站| 高潮久久久久久久久久久不卡| 国产成人av激情在线播放| 国产精品亚洲美女久久久| 久久国产精品影院| 欧美最新免费一区二区三区 | 国产三级中文精品| 国产亚洲精品久久久com| 国产精品美女特级片免费视频播放器| 亚洲aⅴ乱码一区二区在线播放| а√天堂www在线а√下载| 一夜夜www| 亚洲精品久久国产高清桃花| 国产亚洲精品久久久com| 99精品久久久久人妻精品| 51国产日韩欧美| 51国产日韩欧美| 午夜老司机福利剧场| 午夜精品在线福利| 婷婷丁香在线五月| 亚洲精品乱码久久久v下载方式 | 91九色精品人成在线观看| 国产激情偷乱视频一区二区| 桃色一区二区三区在线观看| 高清在线国产一区| 久久精品国产99精品国产亚洲性色| 午夜老司机福利剧场| 天美传媒精品一区二区| 性色avwww在线观看| 美女 人体艺术 gogo| 亚洲欧美日韩高清专用| 久久午夜亚洲精品久久| 精品免费久久久久久久清纯| 美女cb高潮喷水在线观看| 午夜激情福利司机影院| 亚洲成a人片在线一区二区| 成年免费大片在线观看| 非洲黑人性xxxx精品又粗又长| 国内精品久久久久久久电影| 成年免费大片在线观看| 怎么达到女性高潮| 成人亚洲精品av一区二区| 亚洲欧美精品综合久久99| 啦啦啦韩国在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 三级男女做爰猛烈吃奶摸视频| 精品福利观看| 成人高潮视频无遮挡免费网站| 波野结衣二区三区在线 | 欧美日韩瑟瑟在线播放| 亚洲av五月六月丁香网| 小说图片视频综合网站| 白带黄色成豆腐渣| 看片在线看免费视频| 久久久久免费精品人妻一区二区| 伊人久久精品亚洲午夜| 成人亚洲精品av一区二区| av片东京热男人的天堂| 亚洲天堂国产精品一区在线| 小蜜桃在线观看免费完整版高清| 伊人久久精品亚洲午夜| 日韩欧美在线乱码| 久久精品国产亚洲av涩爱 | 一个人看的www免费观看视频| 看片在线看免费视频| 女同久久另类99精品国产91| 亚洲国产精品999在线| 有码 亚洲区| a级毛片a级免费在线| 精华霜和精华液先用哪个| 一进一出好大好爽视频| 国产一区二区亚洲精品在线观看| 免费电影在线观看免费观看| 无遮挡黄片免费观看| 最好的美女福利视频网| 色综合亚洲欧美另类图片| 久久精品国产自在天天线| 美女高潮喷水抽搐中文字幕| 听说在线观看完整版免费高清| 别揉我奶头~嗯~啊~动态视频| 非洲黑人性xxxx精品又粗又长| 男女之事视频高清在线观看| 久久性视频一级片| 午夜福利成人在线免费观看| 又黄又爽又免费观看的视频| 欧美日韩精品网址| 婷婷亚洲欧美| 三级男女做爰猛烈吃奶摸视频| 在线天堂最新版资源| 精品一区二区三区视频在线观看免费| 3wmmmm亚洲av在线观看| 成人特级av手机在线观看| 亚洲精品影视一区二区三区av| 狠狠狠狠99中文字幕| 欧美性感艳星| 美女cb高潮喷水在线观看| 热99re8久久精品国产| 亚洲国产中文字幕在线视频| 成人精品一区二区免费| 欧美日韩综合久久久久久 | 国产伦精品一区二区三区四那| 国产又黄又爽又无遮挡在线| 在线十欧美十亚洲十日本专区| 成年女人看的毛片在线观看| 亚洲中文字幕一区二区三区有码在线看| 啦啦啦免费观看视频1| 成年女人永久免费观看视频| 成人午夜高清在线视频| 亚洲五月天丁香| 三级毛片av免费| 蜜桃久久精品国产亚洲av| 一区二区三区国产精品乱码| 手机成人av网站| 久久久久亚洲av毛片大全| 久久精品国产亚洲av香蕉五月| 亚洲av成人av| 日韩av在线大香蕉| 美女 人体艺术 gogo| 黄色丝袜av网址大全| 少妇的逼水好多| 熟女电影av网| 91麻豆精品激情在线观看国产| 美女黄网站色视频| 国产精品香港三级国产av潘金莲| 岛国视频午夜一区免费看| 一个人免费在线观看电影| 观看美女的网站| 日韩有码中文字幕| 日韩大尺度精品在线看网址| 国产欧美日韩精品一区二区| 一个人看的www免费观看视频| 亚洲专区中文字幕在线| 久久久久久久久久黄片| av在线天堂中文字幕| 久久性视频一级片| 女人被狂操c到高潮| 国产v大片淫在线免费观看| 看免费av毛片| 精品人妻偷拍中文字幕| 天堂动漫精品| 久久久色成人| 欧美一级毛片孕妇| 国产激情欧美一区二区| 人妻夜夜爽99麻豆av| 国产精品一及| 在线观看日韩欧美| 国产成人a区在线观看| 看片在线看免费视频| 99久久九九国产精品国产免费| 一进一出抽搐gif免费好疼| 在线免费观看的www视频| 日本一二三区视频观看| 精品一区二区三区视频在线 | 精品无人区乱码1区二区| 久久国产精品人妻蜜桃| 日韩精品中文字幕看吧| 男人舔奶头视频| 色综合站精品国产| 在线观看免费午夜福利视频| 久久草成人影院| 国产午夜精品论理片| 日本五十路高清| 亚洲无线在线观看| 成人性生交大片免费视频hd| 国内久久婷婷六月综合欲色啪| 欧美乱色亚洲激情| 亚洲自拍偷在线| 久久精品综合一区二区三区| a级毛片a级免费在线| 欧美日韩一级在线毛片| 日本一本二区三区精品| 国产极品精品免费视频能看的| 久久精品国产自在天天线| 天堂√8在线中文| 俄罗斯特黄特色一大片| 操出白浆在线播放| 国产综合懂色| 成人av一区二区三区在线看| www.色视频.com| 黄片大片在线免费观看| 亚洲国产中文字幕在线视频| 亚洲av一区综合| 久久人人精品亚洲av| 久久久精品欧美日韩精品| 一个人免费在线观看电影| 欧美一级毛片孕妇| 亚洲av中文字字幕乱码综合| av天堂中文字幕网| 成人三级黄色视频| 女生性感内裤真人,穿戴方法视频| 久久久久九九精品影院| 在线播放国产精品三级| 国产精品久久久久久久电影 | 女生性感内裤真人,穿戴方法视频| 免费看美女性在线毛片视频| 美女 人体艺术 gogo| 麻豆一二三区av精品| 婷婷精品国产亚洲av在线| 噜噜噜噜噜久久久久久91| 一个人免费在线观看电影| 一夜夜www| 99热6这里只有精品| 天堂网av新在线| 在线a可以看的网站| 听说在线观看完整版免费高清| 亚洲第一欧美日韩一区二区三区| 亚洲一区二区三区不卡视频| 亚洲自拍偷在线| 久久精品综合一区二区三区| 欧美色视频一区免费| 亚洲av中文字字幕乱码综合| av天堂在线播放| 欧美性猛交╳xxx乱大交人| 精品一区二区三区视频在线 | 国产精品亚洲美女久久久| 在线观看av片永久免费下载| 国产一区二区在线av高清观看| av女优亚洲男人天堂| 国产色婷婷99| 亚洲电影在线观看av| 国产伦精品一区二区三区视频9 | 免费观看人在逋| 少妇人妻精品综合一区二区 | 亚洲人与动物交配视频| 99久久99久久久精品蜜桃| 午夜影院日韩av| 国产精品日韩av在线免费观看| 18美女黄网站色大片免费观看| 欧美极品一区二区三区四区| 国产黄片美女视频| 宅男免费午夜| 成人av在线播放网站| 国产成人a区在线观看| www日本在线高清视频| 亚洲美女黄片视频| 亚洲精品国产精品久久久不卡| 成人无遮挡网站| 日韩欧美在线二视频| 波野结衣二区三区在线 | 麻豆久久精品国产亚洲av| 午夜福利欧美成人| 一个人免费在线观看的高清视频| 午夜精品在线福利| 尤物成人国产欧美一区二区三区| 久久香蕉精品热| 露出奶头的视频| 蜜桃久久精品国产亚洲av| 亚洲成人免费电影在线观看| 国产精品99久久99久久久不卡| 久久人人精品亚洲av| а√天堂www在线а√下载| 很黄的视频免费| 国产在线精品亚洲第一网站| 亚洲国产精品合色在线| 国产真人三级小视频在线观看| 18禁在线播放成人免费| 色视频www国产| 亚洲av五月六月丁香网| 天堂动漫精品| 夜夜爽天天搞| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品一卡2卡三卡4卡5卡| 久久久成人免费电影| 国产精品久久视频播放| 国产成人a区在线观看| 国产极品精品免费视频能看的| 麻豆国产97在线/欧美| 亚洲人成伊人成综合网2020| 国产成+人综合+亚洲专区| 欧美bdsm另类| 桃红色精品国产亚洲av| 欧美极品一区二区三区四区| 黄色日韩在线| 19禁男女啪啪无遮挡网站| 精品无人区乱码1区二区| 国产毛片a区久久久久| 美女高潮喷水抽搐中文字幕| 欧美一级毛片孕妇| 在线观看66精品国产| 九色成人免费人妻av| 欧美色欧美亚洲另类二区| 99久久九九国产精品国产免费| 国产精品一及| 给我免费播放毛片高清在线观看| 日本三级黄在线观看| 熟女电影av网| 琪琪午夜伦伦电影理论片6080| 美女高潮的动态| 国产精品久久久久久久电影 | 午夜福利视频1000在线观看| 日韩欧美国产在线观看| 又黄又爽又免费观看的视频| 亚洲美女视频黄频| 一级作爱视频免费观看| 搡老熟女国产l中国老女人| 精品乱码久久久久久99久播| 一进一出抽搐动态| 特级一级黄色大片| 搡女人真爽免费视频火全软件 | 一本一本综合久久| 看免费av毛片| 亚洲 国产 在线| 丝袜美腿在线中文| 窝窝影院91人妻| 午夜福利欧美成人| 亚洲成人久久爱视频| 九色国产91popny在线| 久久久久亚洲av毛片大全| 一个人免费在线观看的高清视频| 一卡2卡三卡四卡精品乱码亚洲| 午夜两性在线视频| 最近视频中文字幕2019在线8| 国产精品永久免费网站| 好男人电影高清在线观看| 亚洲aⅴ乱码一区二区在线播放| 可以在线观看毛片的网站| 91av网一区二区| 18禁裸乳无遮挡免费网站照片| av专区在线播放| 丁香欧美五月| 免费观看的影片在线观看| 国产精品一区二区免费欧美| 亚洲成人久久爱视频| 尤物成人国产欧美一区二区三区| 久久久久久人人人人人| 99国产精品一区二区蜜桃av| 国内精品久久久久精免费| 99精品欧美一区二区三区四区| 又爽又黄无遮挡网站| 免费在线观看影片大全网站| 搡老妇女老女人老熟妇| 一级毛片女人18水好多| 午夜福利欧美成人| 成熟少妇高潮喷水视频| 精品人妻1区二区| 亚洲五月婷婷丁香| 两性午夜刺激爽爽歪歪视频在线观看| 中文字幕人妻丝袜一区二区| 麻豆国产av国片精品| 老司机深夜福利视频在线观看| 中文字幕熟女人妻在线| 久久久久久久亚洲中文字幕 | 亚洲国产欧美网| 美女高潮喷水抽搐中文字幕| 国产在线精品亚洲第一网站| 3wmmmm亚洲av在线观看| 亚洲人成电影免费在线| 手机成人av网站| 一个人免费在线观看的高清视频| 午夜精品一区二区三区免费看| 97超视频在线观看视频| 国产v大片淫在线免费观看| 中文字幕av成人在线电影| 男人的好看免费观看在线视频| 99国产精品一区二区三区| 九九热线精品视视频播放| 亚洲av成人精品一区久久| 久久这里只有精品中国| 国产97色在线日韩免费| 国内少妇人妻偷人精品xxx网站| 99riav亚洲国产免费| 91九色精品人成在线观看| 岛国视频午夜一区免费看| 美女高潮的动态| 欧美一区二区精品小视频在线| 在线观看午夜福利视频| 伊人久久精品亚洲午夜| 国产精品爽爽va在线观看网站| xxx96com| 亚洲美女视频黄频| 亚洲国产色片| 亚洲国产高清在线一区二区三| 久久精品影院6| 尤物成人国产欧美一区二区三区| 热99在线观看视频| 又爽又黄无遮挡网站|