• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      一個(gè)關(guān)于Fibonacci多項(xiàng)式及Fibonacci數(shù)的數(shù)列的注記

      2019-12-26 07:24:50李小雪陳國(guó)慧
      關(guān)鍵詞:恒等式正整數(shù)整數(shù)

      李小雪,陳國(guó)慧

      (1.西安航空學(xué)院 理學(xué)院,西安 710077;2.海南師范大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,海口 571158)

      0 引言

      對(duì)任意正整數(shù)n≥0,著名的Fibonacci多項(xiàng)式Fn(x)由F0(x)=1,F(xiàn)1(x)=x及二階線(xiàn)性遞推式

      Fn+1(x)=xFn(x)+Fn-1(x),n≥2

      定義。

      如果令x=1,那么Fn(1)=Fn+1是Fibonacci數(shù),它的初值為F0=0,F(xiàn)1=1,且Fn+1=Fn+Fn-1,n≥1。

      由于Fibonacci多項(xiàng)式Fn(x)及Fibonacci數(shù)Fn在數(shù)學(xué)的理論及應(yīng)用方面都具有重要作用,因此,很多專(zhuān)家學(xué)者對(duì)它們的性質(zhì)進(jìn)行了研究,并得到了一系列重要結(jié)果[1-9]。

      2018年,馬元魁和張文鵬[10]研究了卷積和

      的計(jì)算問(wèn)題,這里的求和是對(duì)滿(mǎn)足a1+a2+…+ah+1=n的h+1維非負(fù)整數(shù)數(shù)組(a1,a2,…,ah+1)求和。他們利用初等及組合的方法給出了關(guān)于Fn(x)的一個(gè)有意義的恒等式,即下面的結(jié)論:

      設(shè)h是一個(gè)正整數(shù),那么對(duì)任意整數(shù)n≥0,有恒等式

      這里S(h,j)是由S(h,0)=0,S(h,h)=1 和S(h+1,i+1)=2·(2h-1-i)·S(h,i+1) +S(h,i)定義的二階非線(xiàn)性遞推序列,1≤i≤h-1是正整數(shù)。

      本文作為文獻(xiàn)[10]的一個(gè)注記,將對(duì)該文獻(xiàn)中的結(jié)論進(jìn)一步改進(jìn)和完善。

      1 主要結(jié)果

      為了進(jìn)一步理解S(h,i)的性質(zhì),本文列出了S(h,i)的一些值,如表1所示。

      表1 S(h,i)的值

      對(duì)于(2)式的應(yīng)用,馬元魁和張文鵬[10]證明了對(duì)任意素?cái)?shù)p和滿(mǎn)足0≤i≤p-1的整數(shù)i,有同余式

      S(p,i)≡0 modp(p-1)。

      經(jīng)過(guò)大量的數(shù)據(jù)計(jì)算,可以發(fā)現(xiàn)序列S(h,i)具有簡(jiǎn)潔的精確表達(dá)式,也就是有下面的結(jié)論:

      定理設(shè)h是一個(gè)正整數(shù),對(duì)任意滿(mǎn)足0≤i≤h的整數(shù)i,有恒等式

      那么對(duì)h=k+1,當(dāng)i=k時(shí),由S(h,i)的定義,有S(k+1,k+1)=1,因此定理正確。如果0≤i≤k-1,那么由遞推式

      S(h+1,i+1)=2·(2k-1-i)·S(k,i+1)+S(k,i)

      及推斷假設(shè)(4)式,有

      S(h+1,i+1)=2·(2h-1-i)·S(h,i+1)+S(h,i)

      這意味著對(duì)h=k+1,定理成立。這就完成了定理的證明。

      結(jié)合(3)式及文獻(xiàn)[10]中的定理1,可推出下列結(jié)論:

      推論1 設(shè)h是一個(gè)正整數(shù),對(duì)滿(mǎn)足0≤i≤h-1的任意整數(shù)i,有同余式

      S(h,i)≡0 modh(h-1)。

      推論2 對(duì)任意正整數(shù)h≥1,有恒等式

      推論3 對(duì)任意正整數(shù)h≥1 ,有恒等式

      2 結(jié)論

      作為文獻(xiàn)[10]的注記,本文研究了序列S(h,i)的性質(zhì),并得到了關(guān)于該序列的一個(gè)簡(jiǎn)潔精確的表達(dá)式。該結(jié)果不僅將S(h,i)復(fù)雜的遞推式表達(dá)成簡(jiǎn)單的組合數(shù)從而便于計(jì)算,而且揭示了Fibonacci多項(xiàng)式和Fibonacci數(shù)的結(jié)構(gòu)性質(zhì)。也就是說(shuō),(2)式的卷積是由Fi(x)和一類(lèi)組合數(shù)構(gòu)成。此外,推論1進(jìn)一步改進(jìn)并推廣了文獻(xiàn)[10]的定理2,這意味著對(duì)于任意的正整數(shù)h,同余式成立且不受素?cái)?shù)p的限制。

      顯然,本文結(jié)果可以進(jìn)一步簡(jiǎn)化文獻(xiàn)[10]的結(jié)論,文中的推論2和推論3就是對(duì)該文獻(xiàn)相關(guān)結(jié)果的簡(jiǎn)化。

      猜你喜歡
      恒等式正整數(shù)整數(shù)
      活躍在高考中的一個(gè)恒等式
      民族文匯(2022年23期)2022-06-10 00:52:23
      被k(2≤k≤16)整除的正整數(shù)的特征
      一類(lèi)新的m重Rogers-Ramanujan恒等式及應(yīng)用
      Weideman公式的證明
      周期數(shù)列中的常見(jiàn)結(jié)論及應(yīng)用*
      方程xy=yx+1的全部正整數(shù)解
      一類(lèi)整數(shù)遞推數(shù)列的周期性
      聚焦不等式(組)的“整數(shù)解”
      一類(lèi)一次不定方程的正整數(shù)解的新解法
      答案
      尉氏县| 沾化县| 依安县| 山西省| 华池县| 潢川县| 五原县| 大兴区| 安塞县| 简阳市| 威信县| 永和县| 临安市| 高青县| 英超| 西峡县| 江达县| 内乡县| 裕民县| 台南市| 广饶县| 淳安县| 兴化市| 富阳市| 中超| 乌兰浩特市| 沛县| 斗六市| 宁强县| 靖边县| 清苑县| 方城县| 高要市| 页游| 青冈县| 连江县| 奉贤区| 新源县| 沈阳市| 新建县| 遵义市|