• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of Ship Motions Based on the HOBEM Acceleration Potential Method

    2019-12-10 01:05:58LIZhifuRENHuilongSHIYuyun
    船舶力學 2019年9期

    LI Zhi-fu , REN Hui-long , SHI Yu-yun

    (1. School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003,China; 2. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China)

    Abstract: A 3D time domain method based on acceleration potential and higher-order description of ship hull has been developed to predict wave induced ship motions and loads. Both the velocity potential and acceleration potential are solved by boundary integral equations, with the transient free surface Green function as integral kernel. The eight nodes higher-order panels are used to discrete the integral equations, and the corresponding shape functions are applied to compute the spatial partial derivatives of the velocity potentials. Good agreement with the published experimental measurements demonstrates that the present method is reliable in a number of applications.

    Key words: ship motion; acceleration potential; higher-order panel; Green function

    0 Introduction

    Accurate prediction of ship motions and wave loads is important for ship design and operation. Extreme loads can cause the structure failure, while large motions can influence the comfort and limit the operability. It is known that the strip theory was developed earlier and has been modified for the prediction of ship hydrodynamics[1]. However, to take into the 3D effects,which is important for the prediction of local pressures, the development of advanced 3D methods is expected by both engineers and scholars. Compared with the frequency domain analysis,the time domain method is more preferable for its ability in the nonlinear analysis.

    So far, the 3D time domain methods developed for seakeeping analyses can be categorized into two major groups: the Rankine source panel method and the free surface Green function panel method.

    The merit of the Rankine panel method is its flexibility in the treatment of the complicated free-surface conditions. However, for the Rankine panel method, the free surface surrounding the body has to be discrete, which will increase the unknowns and also introduces the numerical dispersion, dissipation, and instability[2]. Nowadays, some computer codes based on this theory have been developed for the seakeeping problems. The code called ship wave analysis (SWAN) has been developed for the linear and nonlinear seakeeping problems by the efforts of Nakos[3], Kring[4]and Huang[5]. Recently, Kim[6]develop a similar computer codes,named wave-induced loads and ship motion (WISH) and extended it to the spring and whipping problem analysis[7].

    The time domain free surface Green function itself satisfies the radiation condition, linearized free surface condition and the bottom boundary condition. Therefore, only the wetted body surface needs to be integrated if this Green function is adopted as the integral kernel.Lin and Yue[8]applied this Green function successfully to the linear and nonlinear 3D forward speed ship motion simulations. Singh[9]did the comparison studies of the linear and nonlinear solutions systematically, using the B-spline description of the ship hull. Recently, Datta[10]applied this method to the motion simulation of the fish vessels, and to avoid the divergence problems, the panels adjacent to the free surface have been modified. One of the disadvantages of this method is that for the body-nonlinear analysis, the scheme is time-consuming in longterm simulations due to the time convolution integral nature. Therefore, the higher-order descriptions of the ship hull are preferred to accelerate the geometry convergence speed, e.g. the work of Chuang[11].

    In the body nonlinear analysis, the finite difference scheme is usually adopted to compute the Euler time derivatives of the velocity potentials. In order to reach the desired accuracy, the small time intervals are usually required. Besides, the finite difference scheme can not give a reasonable result for the condition that the number of panels changes between time steps. To overcome these difficulties, the acceleration potential is introduced to compute the Euler derivatives directly from the boundary integral equation[12].

    The aim of this paper is to develop a robust numerical tool for the motion and wave load simulations of 3D surface piercing bodies. The disturbed velocity potentials are solved by the mixed source boundary integral equation (BIE) with the transient free surface Green function as the integral kernel. The eight nodes higher-order panels are used to discrete the BIE, and the corresponding shape functions are applied to compute the spatial partial derivatives of the velocity potentials. Besides, the acceleration potential is introduced and the related boundary conditions are derived, and then solved by the same BIE as that of the velocity potential.

    1 Mathematical formulation

    1.1 Initial boundary value problem

    To describe the fluid flows and body motions, two right-handed Cartesian coordinate systems are defined. One is the space-fixed coordinate system Oxyz, whose (x, y) plane coincides with the mean free surface and z-axis positive upwards. The other is the body-fixed coordinate system Obxbybzbwith its origin placed at the center of the mass of the body. At initial time,these two sets of coordinate systems are parallel to each other. The mean forward speed U of the ship is assumed to be along the positive x direction.

    The fluid is assumed to be incompressible and inviscid, and the flow to be irrotational. As a result,the fluid flow can be described in terms of the velocity potential. To be convenient, the total velocity potential φTis decomposed into the known incident wave velocity potential φIand an unknown disturbed velocity potential φ as follows:

    Fig.1 Definition of the coordinate system

    In the fluid domain, the Laplace equation should be satisfied

    On the free surface, the linearized kinematic and dynamic boundary conditions can be combined as

    On the body surface, the non-penetration condition gives

    The disturbed velocity potential should tend to be zero at infinity. This can be achieved if we let

    For the time domain problems, the following initial conditions should also be satisfied

    1.2 Boundary integral equation

    Using the transient free surface Green function as the integral kernel and applying the Green’s second theorem, the disturbed velocity potential can be expressed in an integral form as follows:

    where G0=1/rpq-q/rpq′is the instant part of the transient free surface Green function, p is the field point, q is the source point, q′ is the mirror of the source point q with respect to the mean free surface,

    1.3 Hydrodynamic force

    According to the Bernoulli’s equations, the total pressure in the fluid can be computed by the following equation,

    The force exerted on the body can be obtained by directly integrating the pressure over the submerged hull surface,

    1.4 Acceleration potential

    In the Bernoulli equation, the term φtis still not directly known from the potential at this particular instant. Here we adopt the method in Kukkanen[13], the difference is that the accel eration potential is solved directly from the mixed source BIE and solved by the bi-quadratic higher-order panels. The boundary conditions for the acceleration potential are derived as follows:

    The normal velocity of a point defined on the body surface is given as

    The absolute time derivative in the earth-fixed coordinate frame from both sides of the body boundary condition gives

    The left hand side of the above equation can be further written as

    Following the vector multiplication rules, the above equation can be finally simplified as

    Here, φ=dφ/dt is called the acceleration potential.

    The first term of the right hand of Eq.(14) can be expressed as

    Similarly, the second term of the right hand of Eq.(14) can be written as

    Finally, Eqs.(17)-(19) give the body surface condition of the acceleration potentials as follows

    Besides, substitution of the definition of the acceleration potential into the Laplace equation and free surface condition gives the conclusion that the acceleration potential satisfies the same field equation and free surface conditions as the velocity potentials. This means that acceleration potentials can be calculated by the same boundary integral equations as the potential itself. After the computation of the acceleration potential, the pressures can be obtained directly by

    2 Numerical discretization

    In this numerical method, the wetted body surface is discretized by the eight nodes biquadratic higher-order panels. Therefore, the position coordinate, the velocity potential and its partial derivatives within an element in terms of nodal values can be written in the following forms:

    where Nj(ξ,η )are the shape functions, given as

    By substituting these representations into Eq.(7) and letting the field point be the nodal points, then a linear equations for the disturbed velocity potentials can be obtained, which will be solved by the LU decomposition scheme[14]. From the solutions of the corresponding boundary conditions, the potential and its normal derivative on the boundaries of body surface are well known. Then based on the higher-order boundary element method, the particle velocities can be determined by the following formula,

    which will be used in the Bernoulli equation Eq.(9).

    3 Numerical results

    The above-described numerical method is verified through a comparison with the published experiment measurements, i.e. the Wigley RT hull and Wigley I hull.

    3.1 Wigley RT hull

    We first consider the wave-making resistance problem of the Wigley RT hull, and the obtained numerical results are compared with the experimental results[15]. The Wigley Resistance hull (Wigley RT) is defined as follows

    Fig.2 Typical mesh on the Wigley RT hull

    where the ship length is L=7.5 m, beam is B=0.75 m and draught is T=0.47 m, -L/2<x<L/2 and -T≤z≤0. Lin and Yue[8]confirmed that the decaying period of the resistance curves takes a time of T0=8πU/g. In order to describe the ship generated waves, five nodes in one wave length λ=2πU2/g should be ensured.

    A convergence study is carried out for both the time intervals and panel sizes. Δt=T0/40 and 578 nodes on the hull (as shown in Fig.2) are found to be convergent.Fig.3 presents the time histories of wave-making resistance computed by the proposed numerical scheme and the experimental results. The wave-making resistance coefficient is defined as Cw=F1/ (0.5ρU2S ),with F1as the hydrodynamic force in the x direction, ρ as the density of the water and S as the wetted body surface area. It can be seen from this figure that after the transient phase,slowly decaying oscillation can be noticed.

    Besides, the wave-making resistance coefficients with different Froude numbers are computed and shown in Fig.4. These numerical simulated values are compared with the experimental measurements,and good agreement is obtained.

    Fig.3 Time history of resistance coefficient

    Fig.4 Resistance coefficients with different forward speed

    3.2 Wigley I hull

    Then the Wigley I hull is chosen as the benchmark to verify the ability of the proposed method on predicting ship motions. The experiments measurements of this hull is given by Journee[16]. The Wigley I hull is defined as

    where X= (2x/L)2, Z= (z/ T)2, L=3.0 m, B=0.3 m and T=0.187 5 m.

    Fig.5 Time history of heave motion response

    Fig.6 Time history of pitch motion response

    Fig.7 Heave motion RAOs with Fn=0.2

    Time histories of the heave and pitch motions computed by the current method are shown in Figs.5-6. In these figures, the half hull is discretized by 578 nodes. The wave length is λ/L=1.25, the wave amplitude is ζ/L=0.01 and the forward speed is Fn=0.2. In these calculations the time step interval is set as Δt=Te/30, where Teis the encounter wave period.

    Fig.8 Pitch motion RAOs with Fn=0.2

    Besides, the heave and pitch motion RAOs at forward speed Fn=0.2 in head waves are shown in Figs.7-8. The computational results give a good agreement with the model test results in general, which demonstrates the accuracy of the current scheme properly.

    4 Conclusions

    In this paper, a time domain 3D numerical tool for the motion and wave load simulations of 3D surface piercing bodies is newly developed, and verified through a comprehensive comparison with the published experimental measurements. The excellent level of agreement is due to several important features of the method.

    First of all, the boundary integral equation is established in the earth-fixed coordinate system, so the influence of the steady velocity potential on the unsteady velocity potential can be considered automatically, which is important for the moderate and high speeds problems.Secondly, to obtain the Euler time partial derivative of the velocity potential directly, the accelerate potential is introduced which is defined as the material derivative of the velocity potential, and then solved by the same BIE as that of velocity potential. Thirdly, the higher-order description of ship hull geometry by bi-quadratic patches and continuous representation of the velocity lead to the solution of very good precision and the reduction of computing time. Finally, most of the previous studies, the indirect method corresponding to the source formulation is surprisingly used only. The present study makes use of the direct method corresponding to the potential formulation which is directly derived from the Green’s identity.

    The present numerical method taking advantage of above-mentioned properties can be considered to be sound and robust as it is able to be further extended to the body-nonlinear problems.

    Acknowledgement

    The work is funded by the National Natural Science Foundation of China (Grant No.51709131).

    日本与韩国留学比较| 久久欧美精品欧美久久欧美| 亚洲欧美精品专区久久| 国产国拍精品亚洲av在线观看| 久久久精品欧美日韩精品| 国产精华一区二区三区| 亚洲国产精品久久男人天堂| 看片在线看免费视频| 久久鲁丝午夜福利片| 久久久久久九九精品二区国产| 久久精品夜夜夜夜夜久久蜜豆| 亚洲熟妇中文字幕五十中出| 国产在视频线精品| 老司机福利观看| 欧美变态另类bdsm刘玥| 欧美精品一区二区大全| 亚洲自偷自拍三级| 一本久久精品| 高清在线视频一区二区三区 | 亚洲精品亚洲一区二区| 一边亲一边摸免费视频| 国产精品嫩草影院av在线观看| 国产91av在线免费观看| 亚洲国产精品合色在线| 黄片无遮挡物在线观看| 久久久精品欧美日韩精品| 久久久色成人| 亚洲人成网站高清观看| 亚洲国产高清在线一区二区三| 亚洲乱码一区二区免费版| 精品久久久久久久久av| 熟女人妻精品中文字幕| 秋霞伦理黄片| 男的添女的下面高潮视频| 色吧在线观看| 亚洲最大成人手机在线| 亚洲在线自拍视频| 精品一区二区三区人妻视频| 久久精品影院6| 一本久久精品| 久久久精品大字幕| 日本黄大片高清| av免费在线看不卡| 亚洲最大成人手机在线| 啦啦啦韩国在线观看视频| 精品熟女少妇av免费看| 亚洲国产精品专区欧美| 一区二区三区乱码不卡18| 亚洲久久久久久中文字幕| 国产成人freesex在线| 只有这里有精品99| 我要搜黄色片| 女的被弄到高潮叫床怎么办| 色综合色国产| 久久这里只有精品中国| 一边摸一边抽搐一进一小说| 国产高清三级在线| 寂寞人妻少妇视频99o| 七月丁香在线播放| 1024手机看黄色片| 成人午夜精彩视频在线观看| 久久久午夜欧美精品| 国国产精品蜜臀av免费| 三级国产精品片| 国产午夜精品一二区理论片| ponron亚洲| 亚洲熟妇中文字幕五十中出| 亚洲人与动物交配视频| 日韩成人伦理影院| 人妻系列 视频| 国产激情偷乱视频一区二区| 汤姆久久久久久久影院中文字幕 | 一个人免费在线观看电影| 三级毛片av免费| av专区在线播放| 国产免费一级a男人的天堂| 色吧在线观看| 性插视频无遮挡在线免费观看| 一级av片app| 伦精品一区二区三区| 国产极品天堂在线| 日本爱情动作片www.在线观看| 啦啦啦啦在线视频资源| 99久久九九国产精品国产免费| 亚洲成人中文字幕在线播放| 天天躁日日操中文字幕| 久久久a久久爽久久v久久| 国产av码专区亚洲av| 91av网一区二区| 少妇裸体淫交视频免费看高清| 久久人人爽人人片av| 国产亚洲精品av在线| 男女啪啪激烈高潮av片| 免费看美女性在线毛片视频| 99热这里只有精品一区| 亚洲中文字幕日韩| 成年女人永久免费观看视频| 啦啦啦啦在线视频资源| 亚洲成色77777| 草草在线视频免费看| 丝袜美腿在线中文| 老女人水多毛片| 精品国产露脸久久av麻豆 | 久久久精品94久久精品| 成人鲁丝片一二三区免费| 91狼人影院| 亚洲精品,欧美精品| 狂野欧美激情性xxxx在线观看| 在线免费观看不下载黄p国产| 少妇的逼水好多| 亚洲精品自拍成人| 99国产精品一区二区蜜桃av| 老师上课跳d突然被开到最大视频| 亚洲成人av在线免费| 亚洲av男天堂| 午夜爱爱视频在线播放| 久久精品国产亚洲av涩爱| 亚洲欧美日韩无卡精品| 好男人视频免费观看在线| 国产精品永久免费网站| 午夜福利网站1000一区二区三区| 深爱激情五月婷婷| 国产久久久一区二区三区| 色网站视频免费| 国产一区亚洲一区在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲无线观看免费| 精品久久久久久电影网 | 日韩精品青青久久久久久| 最近视频中文字幕2019在线8| 国产乱来视频区| 麻豆成人av视频| 深夜a级毛片| 岛国在线免费视频观看| 国产色爽女视频免费观看| 国内精品美女久久久久久| 麻豆国产97在线/欧美| 少妇人妻精品综合一区二区| 久久鲁丝午夜福利片| 国产伦精品一区二区三区视频9| 亚洲国产最新在线播放| 国产在线男女| 久久久久精品久久久久真实原创| 好男人在线观看高清免费视频| 久久这里有精品视频免费| 久久欧美精品欧美久久欧美| 精品久久久久久久末码| 成人一区二区视频在线观看| 免费观看a级毛片全部| 色播亚洲综合网| 尤物成人国产欧美一区二区三区| 亚洲激情五月婷婷啪啪| 18禁在线无遮挡免费观看视频| 国产精品麻豆人妻色哟哟久久 | 日本猛色少妇xxxxx猛交久久| 午夜激情欧美在线| 国产白丝娇喘喷水9色精品| 99久久中文字幕三级久久日本| 国产真实乱freesex| 久久亚洲国产成人精品v| eeuss影院久久| 国模一区二区三区四区视频| 日韩在线高清观看一区二区三区| 日韩制服骚丝袜av| 非洲黑人性xxxx精品又粗又长| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品,欧美在线| 水蜜桃什么品种好| h日本视频在线播放| 久久久久久久久久黄片| 男人狂女人下面高潮的视频| 国产成人精品久久久久久| 九九热线精品视视频播放| 久久久国产成人精品二区| 人人妻人人澡人人爽人人夜夜 | 中文字幕熟女人妻在线| 久久精品国产鲁丝片午夜精品| 三级国产精品欧美在线观看| av在线播放精品| 乱码一卡2卡4卡精品| 成人毛片60女人毛片免费| 亚洲最大成人av| 亚洲国产成人一精品久久久| 男的添女的下面高潮视频| 一个人免费在线观看电影| 尤物成人国产欧美一区二区三区| 2021天堂中文幕一二区在线观| 99国产精品一区二区蜜桃av| 欧美变态另类bdsm刘玥| 久久久久久久久大av| 久99久视频精品免费| 国产免费男女视频| 国产亚洲91精品色在线| 亚洲av不卡在线观看| 在线天堂最新版资源| 成人特级av手机在线观看| 晚上一个人看的免费电影| 熟女电影av网| 91在线精品国自产拍蜜月| 丝袜喷水一区| 3wmmmm亚洲av在线观看| 水蜜桃什么品种好| 最近中文字幕2019免费版| 精品午夜福利在线看| 麻豆av噜噜一区二区三区| 欧美人与善性xxx| 欧美bdsm另类| 久99久视频精品免费| 天天一区二区日本电影三级| 身体一侧抽搐| 日本免费a在线| 一卡2卡三卡四卡精品乱码亚洲| 久久精品91蜜桃| 我要看日韩黄色一级片| 国产 一区 欧美 日韩| 亚洲av不卡在线观看| 我的老师免费观看完整版| 成人漫画全彩无遮挡| 日韩欧美国产在线观看| 97人妻精品一区二区三区麻豆| 春色校园在线视频观看| 免费av观看视频| 久久久久精品久久久久真实原创| 日韩一区二区三区影片| 熟女电影av网| 日日摸夜夜添夜夜爱| 亚洲在线观看片| 亚洲欧美精品专区久久| av女优亚洲男人天堂| 伊人久久精品亚洲午夜| 久久久精品94久久精品| 一级爰片在线观看| 亚洲欧洲国产日韩| 国产亚洲一区二区精品| 国产免费一级a男人的天堂| 日日干狠狠操夜夜爽| 青春草视频在线免费观看| 亚洲精品成人久久久久久| 亚洲欧美日韩高清专用| 亚洲成色77777| 亚洲精品国产成人久久av| 久久精品国产亚洲av天美| 亚洲激情五月婷婷啪啪| 国产精品熟女久久久久浪| 不卡视频在线观看欧美| 综合色av麻豆| 精品国内亚洲2022精品成人| 久久久久久久久大av| a级毛色黄片| 中文亚洲av片在线观看爽| 99九九线精品视频在线观看视频| 亚洲三级黄色毛片| 在线观看av片永久免费下载| 深爱激情五月婷婷| 精品久久久噜噜| 欧美又色又爽又黄视频| 日本av手机在线免费观看| 国产 一区 欧美 日韩| 亚洲欧美日韩无卡精品| 少妇熟女欧美另类| 我的老师免费观看完整版| 免费搜索国产男女视频| 特级一级黄色大片| 国国产精品蜜臀av免费| 夜夜爽夜夜爽视频| 国产成人91sexporn| 99热这里只有是精品在线观看| 精品熟女少妇av免费看| 97热精品久久久久久| 亚洲,欧美,日韩| 亚洲18禁久久av| 99热这里只有是精品在线观看| 亚洲欧美精品自产自拍| 一本久久精品| 最近中文字幕2019免费版| av在线天堂中文字幕| 99热精品在线国产| 亚洲精品色激情综合| 亚洲久久久久久中文字幕| 亚洲精品,欧美精品| 国产人妻一区二区三区在| 黄色日韩在线| 久久综合国产亚洲精品| 久久这里有精品视频免费| 亚洲av男天堂| 精品人妻一区二区三区麻豆| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲一区二区精品| 久久热精品热| 久99久视频精品免费| 你懂的网址亚洲精品在线观看 | 国产成人精品久久久久久| 性插视频无遮挡在线免费观看| 欧美激情国产日韩精品一区| 一级毛片久久久久久久久女| 99久久精品一区二区三区| 亚洲综合色惰| 别揉我奶头 嗯啊视频| 精品人妻视频免费看| 乱系列少妇在线播放| 成人亚洲欧美一区二区av| av在线播放精品| 日日摸夜夜添夜夜添av毛片| or卡值多少钱| 欧美变态另类bdsm刘玥| 欧美性猛交黑人性爽| 国产成人a区在线观看| 精品一区二区免费观看| 欧美3d第一页| 亚洲精品自拍成人| 中文字幕精品亚洲无线码一区| 午夜福利在线观看免费完整高清在| 免费搜索国产男女视频| 亚洲色图av天堂| 国产黄片视频在线免费观看| 精品少妇黑人巨大在线播放 | 三级经典国产精品| 卡戴珊不雅视频在线播放| 不卡视频在线观看欧美| 最近中文字幕高清免费大全6| 国产亚洲精品av在线| 久久久久久国产a免费观看| 亚洲在线自拍视频| 亚洲18禁久久av| 乱码一卡2卡4卡精品| 国产精品av视频在线免费观看| 免费看av在线观看网站| 美女大奶头视频| 啦啦啦啦在线视频资源| 精品人妻视频免费看| a级毛色黄片| 日韩av在线免费看完整版不卡| 国产精品熟女久久久久浪| 中文亚洲av片在线观看爽| 亚洲五月天丁香| 久久久久国产网址| 国产免费视频播放在线视频 | 男女下面进入的视频免费午夜| 成人鲁丝片一二三区免费| 国产极品天堂在线| 麻豆av噜噜一区二区三区| 午夜福利在线在线| 日本黄色片子视频| 美女大奶头视频| 成人鲁丝片一二三区免费| 亚洲av中文av极速乱| 毛片一级片免费看久久久久| 国产精品电影一区二区三区| 中文精品一卡2卡3卡4更新| 欧美丝袜亚洲另类| 夜夜看夜夜爽夜夜摸| videossex国产| .国产精品久久| 一个人观看的视频www高清免费观看| 少妇熟女aⅴ在线视频| 一夜夜www| 色5月婷婷丁香| 18禁在线播放成人免费| 亚洲,欧美,日韩| 免费观看人在逋| 人人妻人人看人人澡| 国国产精品蜜臀av免费| 国产亚洲精品av在线| 中国国产av一级| 麻豆一二三区av精品| 国产精品三级大全| 波多野结衣巨乳人妻| 一级毛片电影观看 | 97超视频在线观看视频| 99热这里只有是精品50| 亚洲内射少妇av| 久久精品熟女亚洲av麻豆精品 | 狠狠狠狠99中文字幕| 亚洲在久久综合| 欧美性猛交╳xxx乱大交人| 国产精品人妻久久久久久| 国产高清国产精品国产三级 | 国产精品久久视频播放| 最近中文字幕2019免费版| 一区二区三区乱码不卡18| 色播亚洲综合网| 成年版毛片免费区| 最后的刺客免费高清国语| 人体艺术视频欧美日本| 亚洲四区av| 插逼视频在线观看| 毛片女人毛片| 精品人妻偷拍中文字幕| 精品一区二区三区视频在线| 亚洲精品自拍成人| 又爽又黄无遮挡网站| 亚洲乱码一区二区免费版| 国产单亲对白刺激| 欧美日韩精品成人综合77777| 一卡2卡三卡四卡精品乱码亚洲| 成人国产麻豆网| 欧美成人午夜免费资源| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产最新在线播放| 99视频精品全部免费 在线| 欧美成人一区二区免费高清观看| 精品熟女少妇av免费看| 水蜜桃什么品种好| av播播在线观看一区| 嘟嘟电影网在线观看| 精品久久久久久久久亚洲| 欧美成人午夜免费资源| 黑人高潮一二区| 国产探花在线观看一区二区| 91久久精品国产一区二区三区| 在线播放无遮挡| 视频中文字幕在线观看| 亚洲av二区三区四区| 一区二区三区乱码不卡18| 午夜福利在线观看免费完整高清在| 国产淫片久久久久久久久| 欧美精品一区二区大全| 色视频www国产| 97人妻精品一区二区三区麻豆| 亚洲久久久久久中文字幕| 国产成人91sexporn| 亚洲人成网站高清观看| 久久久精品94久久精品| 不卡视频在线观看欧美| 国模一区二区三区四区视频| 1000部很黄的大片| 久久人人爽人人片av| 国产精品无大码| 午夜精品国产一区二区电影 | 插逼视频在线观看| 国产人妻一区二区三区在| 午夜福利在线在线| 午夜精品国产一区二区电影 | 熟女电影av网| 水蜜桃什么品种好| 国产 一区精品| 精品久久久久久成人av| 亚洲精品色激情综合| 免费一级毛片在线播放高清视频| 国产精品精品国产色婷婷| 亚洲欧美日韩东京热| 亚洲五月天丁香| 亚洲中文字幕一区二区三区有码在线看| 在线免费十八禁| 蜜臀久久99精品久久宅男| 久久草成人影院| 久久亚洲精品不卡| 午夜精品一区二区三区免费看| 九九热线精品视视频播放| 欧美激情国产日韩精品一区| videossex国产| av在线蜜桃| 热99re8久久精品国产| 久久99蜜桃精品久久| 99热这里只有精品一区| 亚洲国产欧美在线一区| 日韩在线高清观看一区二区三区| 色播亚洲综合网| 亚洲电影在线观看av| 国产精品一区二区性色av| 老司机影院成人| 亚洲精品亚洲一区二区| 久久久久久久国产电影| 亚州av有码| 赤兔流量卡办理| 天美传媒精品一区二区| 国产熟女欧美一区二区| 免费黄色在线免费观看| 欧美日韩精品成人综合77777| 日韩欧美国产在线观看| 亚洲欧洲日产国产| 成人高潮视频无遮挡免费网站| 欧美成人一区二区免费高清观看| 久久久久久九九精品二区国产| 成人鲁丝片一二三区免费| 久久99热这里只有精品18| 大又大粗又爽又黄少妇毛片口| 我要看日韩黄色一级片| 波野结衣二区三区在线| 在线免费十八禁| 国产午夜精品久久久久久一区二区三区| 久久久久久久国产电影| 又粗又硬又长又爽又黄的视频| 亚洲无线观看免费| 亚洲国产最新在线播放| 日韩精品青青久久久久久| 亚洲av电影不卡..在线观看| 亚洲国产欧美在线一区| 高清视频免费观看一区二区 | 韩国av在线不卡| 国内少妇人妻偷人精品xxx网站| 日本黄色片子视频| 色综合亚洲欧美另类图片| 精品99又大又爽又粗少妇毛片| 日本色播在线视频| 国产大屁股一区二区在线视频| 色综合站精品国产| 亚洲色图av天堂| av女优亚洲男人天堂| 亚洲国产精品sss在线观看| 国产综合懂色| 国产精品爽爽va在线观看网站| 女人久久www免费人成看片 | 亚洲精品日韩av片在线观看| 又黄又爽又刺激的免费视频.| 最近视频中文字幕2019在线8| 人人妻人人澡人人爽人人夜夜 | 极品教师在线视频| 国产男人的电影天堂91| 国产伦一二天堂av在线观看| 最近手机中文字幕大全| 蜜臀久久99精品久久宅男| 国产精品永久免费网站| 男女国产视频网站| 国产精品一区二区在线观看99 | 91精品国产九色| 亚州av有码| 国产成人一区二区在线| 午夜福利视频1000在线观看| 2022亚洲国产成人精品| 国产在线一区二区三区精 | 欧美一级a爱片免费观看看| 青青草视频在线视频观看| 熟女电影av网| 麻豆av噜噜一区二区三区| av免费在线看不卡| 色5月婷婷丁香| 国产在视频线精品| 黄片无遮挡物在线观看| 亚洲人成网站高清观看| 午夜亚洲福利在线播放| av在线蜜桃| 欧美成人精品欧美一级黄| 国产欧美另类精品又又久久亚洲欧美| 亚洲,欧美,日韩| 毛片女人毛片| 哪个播放器可以免费观看大片| 亚洲在线观看片| 久久99热这里只频精品6学生 | 亚洲五月天丁香| 亚洲精品亚洲一区二区| 亚洲精品乱码久久久v下载方式| 色哟哟·www| 国产白丝娇喘喷水9色精品| 在线免费十八禁| 久久精品久久久久久噜噜老黄 | 成人午夜高清在线视频| 1000部很黄的大片| 99热这里只有精品一区| 丰满乱子伦码专区| 免费av不卡在线播放| 亚洲人与动物交配视频| 色综合亚洲欧美另类图片| 欧美日本视频| 午夜福利视频1000在线观看| 久久国产乱子免费精品| 啦啦啦韩国在线观看视频| 日韩av在线大香蕉| 亚洲精品亚洲一区二区| 亚洲天堂国产精品一区在线| 亚洲精品国产成人久久av| 亚洲成人av在线免费| 韩国高清视频一区二区三区| 丰满人妻一区二区三区视频av| 亚洲,欧美,日韩| 好男人在线观看高清免费视频| 美女大奶头视频| 欧美一级a爱片免费观看看| 亚洲欧美日韩卡通动漫| 国产精品一区www在线观看| 免费播放大片免费观看视频在线观看 | 身体一侧抽搐| 久久久久久久国产电影| 亚洲精品国产成人久久av| 插逼视频在线观看| 一级av片app| 国产黄a三级三级三级人| h日本视频在线播放| 99热全是精品| 国产欧美另类精品又又久久亚洲欧美| 特级一级黄色大片| 国产真实乱freesex| 日本wwww免费看| 国产精品人妻久久久久久| 男插女下体视频免费在线播放| 欧美又色又爽又黄视频| 男女那种视频在线观看| 欧美zozozo另类| 成年女人看的毛片在线观看| 晚上一个人看的免费电影| 欧美一区二区国产精品久久精品| 三级男女做爰猛烈吃奶摸视频| 国产视频内射| 国产高清视频在线观看网站| 国产精品.久久久| 99热全是精品| 五月玫瑰六月丁香| 亚洲色图av天堂| 久久99热6这里只有精品| 久久久久久久久久黄片| 国产精品国产高清国产av| 一级黄片播放器| 亚洲精品乱久久久久久| 少妇熟女aⅴ在线视频| 在线免费观看不下载黄p国产| 亚州av有码| 黄色配什么色好看| 99热全是精品| 国产成人精品婷婷| 免费av不卡在线播放| 婷婷色av中文字幕| 国产一区二区亚洲精品在线观看| 美女脱内裤让男人舔精品视频| 欧美成人精品欧美一级黄| 淫秽高清视频在线观看|