• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Phase Modification Methodology in Modelling Deterministic Freak Wave Train

    2019-12-10 01:06:16GAONingboZHANGHongYANGJianminTIANXinliangLIXin
    船舶力學(xué) 2019年9期

    GAO Ning-bo, ZHANG Hong , YANG Jian-min, TIAN Xin-liang , LI Xin

    (1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200030, China;2. Postdoctoral Research Center, CCCC Second Harbor Engineering Co., Ltd., Wuhan 430040, China;3. CCCC Highway Bridges National Engineering Research Center Co., Ltd., Beijing 100088, China)

    Abstract: Freak waves, which are heated and debated in oceanic community, can pose serious damages to ships and offshore structures. Accurate simulation of the deterministic freak wave trains will be a basis for understanding wave-structure interactions. In this study, a numerical wave tank (NWT)is developed based on commercial computational fluid dynamics (CFD) software package-FLUENT.A freak wave train is given through linear superposition method. Fourier series expansion is applied to determine the amplitude and the initial phase of each wave frequency component. A phase modification methodology (PMM), by modifying the initial phases, is used to improve the numerical simulation quality. This method was validated against an elaborated experiment. It proves that the PMM can significantly improve the numerical results, which might show a new perspective in the wavestructure interaction problems.

    Key words: Navier-Stokes equations; freak wave; phase modification

    0 Introduction

    Freak waves, also called rogue waves, have been reported frequently as human activities moving towards deep sea. Owing to the unpredictability and extremity, the freak waves may induce vital harms to ships and offshore structures. One of the most famous field records about freak waves is called ‘New Year Wave’ that occurred in North Sea in 1995[1]. Several assumptions have been proposed in the last decades to understand the evolution of freak waves, such as linear dispersive superposition, wave-current interaction, atmospheric forcing, topographic effects, nonlinear self-focusing of wave energy, etc[2-3].

    Baldock et al[4]applied dispersive focusing of wave components to produce a highly nonlinear wave group in a wave tank, and found that the nonlinearity increases with the wave amplitude and reduces with increasing bandwidth. Johannessen and Swan[5]generated a large multi-direction transient wave group, and investigated the influences of spreading on large events. Wu and Yao[6]experimentally investigated the influences of current on the formation of freak waves, and found that the strong opposing current can induce partial wave blocking which significantly elevates the limiting steepness and asymmetry of freak waves. Ning et al[7]conducted numerical and experimental study on the free-surface propagation and wave kinematics for nonlinear unidirectional focused wave groups, and reported that the fully nonlinear wavewave interactions produce a much steeper wave envelope in which the central wave crest is higher and narrower, while the adjacent wave troughs are broader and less deep. Zhao et al[8]numerically simulated extreme wave groups based on VOF technique, and analyzed the nonlinearity effects on focused waves. Li et al[9]developed a numerical model based on high-order spectral (HOS) method to simulate focused waves and investigated the effects of the wave parameters on the surface elevations, the shift of the focusing points, the maximum crests and frequency spectrum.

    The majority of the current studies focused on modelling extreme focused wave groups.It is not consistent with the real sea state, since it is almost static before and after the focused event. Not sufficient work is available on deterministic freak waves due to the nonlinear wavewave interaction and wave breaking. Do et al[10]used an iterative approach for Gaussian wave packet. Schmittner et al[11]proposed a phase-amplitude iteration scheme to optimize simulation of deterministic wave sequences. Buldakov[12]employed a phase-amplitude iteration scheme for tsunami wave simulation in a small wave flume. Fernández et al[13]developed a self-correcting method (SCM) to optimize the control signal of wave-maker to simulate predefined focused wave groups in a potential NWT. They validated the SCM in a large wave flume. Since the real freak wave is mostly embedded in random wave background, it will be of great significance to simulate deterministic freak wave sequences, rather than only extreme focused wave groups.

    In this work, a target freak wave sequence is defined based on linear dispersive superposition theory. It serves as the input wave train to get the initial wave-maker control signals during the numerical simulation. A phase modification methodology is introduced to improve the numerical results. Then the phase modification results are validated against an elaborated experiment. The paper is arranged as follows. In Chap.1, the freak wave is defined based on linear dispersive superposition theory. The phase modificaion methodology is then presented in Chap.2.In Chap.3, the mathematic model is described which includes governing equations and numerical wave tank model, followed by numerical results and some discussions in Chap.4. Finally some conclusions are drawn in Chap.5.

    1 Deterministic freak wave model

    There have been a few different definitions on freak waves in the last decades. The most acceptable one was proposed by Klinting and Sand[14], which defines three parameters: (1) α=Hj/Hs≥2.0; (2) β1=Hj/Hj-1≥2, β2=Hj/Hj+1≥2; (3) μ=ηj/Hj≥0.65 (Hsis the significant wave height, Hj-1, Hj, Hj+1are the three successive waves, respectively). In this study, we adopt this definition.

    In general, a real sea state is regarded as a random statistic process. In this study, JONSWAP spectrum is applied to represent a random sea, which can be given by

    where α=0.062 4/ [0.23+0.033 6γ-0.185 (1.9+γ)-1], H1/3and TPare the significant wave height and spectral peak period, respectively. γ refers to the peakness parameter (the average value of γ is 3.3) and σ is the shape parameter having the values σ=0.07 if f ≤fpand σ=0.09 if f >fp; and ω=2π f.

    Kriebel[15]proposed an efficient way to model freak waves by embedding an extreme wave group into a random wave circumstance, which has been widely applied in experimental and numerical studies[16-17]. It is achieved by separating the wave energy into two parts with one part going into transient wave and the other going into the underlying random background. The wave surface elevation is given by:

    In this study, the significant wave height is 0.10 m, and the peak period is 2.31 s. The wave frequency bandwidth ranges are from 1 rad/s to 10 rad/s. For keeping the statistics property of the wave train, only a small part of the total energy is used to generate transient wave,which P1=0.95 and P2=0.05. The freak wave train is shown in Fig.1. The maximum wave height is 0.237 m, and it can be seen that it satisfies the definition of freak wave (see Tab.1).This defined freak wave is regarded as the target wave in the following sections. Since the nonlinearity can not be neglected in wave propagation, this wave train can not occur in the real sea state. It only serves as the input wave sequence for the numerical and experimental simulations.

    Fig.1 Deterministic freak wave sequence

    Tab.1 Characteristic parameters of the target freak wave

    2 Phase modification methodology

    Fernández et al[13]proposed a self-correcting method (SCM) to optimize the control signals of the wave-maker in a potential NWT. It has been proved that the SCM is feasible for the simulation of focused wave packages, but not for freak waves. The phase shift should be judged to be negative or positive when calculating the new control signal of the wave-maker. In order to simplify the process to calculate the new control signal of the wave-maker, we only modify the initial phases, regardless of the phase shift is negative or positive. The detailed information is given as follows.

    In general, any time series of wave sequences η(t )can be represented in frequency domain by its complex Fourier transform F(ω )which is given in Eq.(3). Applying the inverse Fourier transformation, we obtain the Eq.(4)

    where t is the time, and ω=2π f represents the angular frequency. In practice, it is necessary to adopt a discrete and finite form of the Fourier transform pair which is given as

    where the values η (kΔ t )represent the available data points of the discrete finite wave record, Δt denotes the sampling rate and Δω=2π/ (NΔt )refers to the frequency resolution. In polar notation, the complex Fourier transform can be expressed by its amplitude and phase spectrum:

    Once we get the value of F(ω )by fast Fourier transform, the associated amplitude aiand phase εican be easily calculated in Eq.(7). The wave series propagates upstream to the location of wave-maker based on linear wave theory. Then the wave-maker control signals can be given as:

    where u0(t )is the velocity of the wave-maker; Tiis the transfer function associated with the ith component wave, which can be calculated as:

    During wave propagation, nonlinearity such as wave-wave interaction (including sum and difference interactions) is difficult to predict. Meanwhile, wave breaking occurs for large wave steepness. It is a challenge task to model deterministic wave trains. The phase modification methodology ignores the nonlinearity effects and treats the wave propagation from wave-maker to the target position as a black box. Only the phase angles are modified. The phase modification process is presented in Fig.2 which can be divided into three steps as follows.

    (1) The target wave sequence is generated at the predefined location by means of linear wave theory as Eq.(8). Thus the first recorded wave is got.

    (2) The recorded wave is decomposed into number of component waves with different phase angles εrecordedthrough Fourier transformation. The phase shift between the target wave and the recorded wave is calculated as

    where εsis the phase shift between εtarget, the phase angles for the target wave at the focal point,and εrecorded, the phase angles for the recorded wave at the focal point.

    (3) Applying the phase shift to modify the previous wave-maker control signals

    where εnewis the phase angles for the new wave-maker control signal which will be used in Eq.(8) for the next simulation, and εoldis the phase angles for the previous wave-maker control signals.

    Fig.2 The diagram of phase modification

    3 Mathematical model

    3.1 Governing equations

    In this study, we consider a laminar flow field with a free surface. The numerical simulation is carried out on a 2-D NWT. The governing equations include the continuity and Navier-Stokes equations:

    The volume of fraction (VOF) method[18], is applied to capture the free surface which has been implanted in FLUENT. This method adds another governing equation of fluid fraction αq(x, y,t )given by:

    where αq=0: the cell is empty (of the qthfluid); αq=1: the cell is full (of the qthfluid); 0<αq<1:the cell contains the interface. Here αq=0.5 is regarded as the free surface and its vertical coordinate which is given as surface elevation time history is extracted at the position of the wave gauges for each time step.

    3.2 Numerical wave tank model

    In this study, a flap wave-maker is applied and the center of rotation is hinged at the bottom. The detailed sketch of the geometric model is presented in Fig.3. Coordinate origin O locates at the left side of the wave tank bottom. The wave tank is 15 m length, with a 4 m wave absorbing zone. The water depth d is 0.9 m with 0.3 m height above the initial free surface. At x=7 m, a wave gauge is set up to obtain the time series of the wave elevation.

    Fig.3 Sketch of the numerical wave tank

    A wall boundary condition is set at the wave-maker and the tank bottom. At the top of the tank, a pressure boundary condition consistent with atmospheric pressure is used allowing fluid flow through the boundary. At the end of the tank, an absorbing damping zone is implemented to reduce wave reflection. In the wave absorbing zone, an attenuation coefficient c(x )is introduced to increase the flow viscosity gradually to absorb the wave reflection.

    where xLand xRare the starting and the end coordinate of the damping zone, respectively.

    To generate the flap wave-maker motion, dynamic layering approach is introduced. A user-defined function (UDF) written in C language is employed to control the wave-maker moving with specified velocity.

    Structured grids are used to get smooth free surface. To save calculation resources as well as to improve calculation accuracy, meshes adjacent to the free surface are refined, together with coarse mesh is used in the wave absorbing zone. The mesh of the computational domain is shown in Fig.4, where the total number of the element is 78 710. The mesh model has been validated in the previous study[19].

    In this simulation, we selected the pressure-based, unsteady solver and the laminar physical model in the FLUENT program. The geo-reconstruct method was applied to reconstruct the free surface. A second-order upwind discretization was chosen for better accuracy and the Pressure-Implicit with Splitting of Operators (PISO) algorithm with a neighbor correction was enabled.

    Fig.4 Schematic drawing of the numerical wave tank

    4 Results and discussions

    The target freak wave train in Fig.1 is decomposed by fast Fourier transform. The associated wave amplitudes and phase angles are presented in Figs.5-6. It can be seen that the wave amplitude at frequency larger than 10 rad/s is negligible, which is consistent with the wave spectrum frequency bandwidth. Fig.7 shows the comparison of target freak wave and FFT decomposition result. The FFT decomposition result agrees perfectly well with the target wave.

    Here, the pre-defined target wave is only regarded as the input wave series to get the initial wave-maker control signal as shown in Eq.(8). Since the wave-maker control signal is calculated based on linear wave theory during wave propagating from the focal position to the wave-maker, the numerical results must be different with the target wave considering nonlinear effects, such as wave-wave interactions and wave breaking. Then, the phase modification methodology described in Chap.3 is applied to optimize the initial phases in order to get the new wave-maker control signal.

    Fig.5 Wave amplitude associated with each wave component

    Fig.6 Initial phase associated with each wave component

    Fig.7 Comparison of target wave and FFT decomposition wave train

    The numerical results will be validated with experimental data. The associated experiment was conducted in a physical wave flume in State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University. The dimension of the wave flume is 20 m×1 m×1.2 m, with a 4 m length passive wave absorbing beach at the end. The wave-maker is flap board hinged at the bottom, just as the numerical geometrical model. The flap wave-maker can move with specified velocity. The illustration is shown in Fig.8. In order to compare the numerical results and experimental data, the wave elevations at the position of 7 m away from the wave board are extracted. The initial wave-maker control signals for both numerical model and wave flume are identical, which is calcualted as Eq.(8).

    In Fig.9, we can see that even though the wave-maker control signals for both numerical model and wave flume are the same, the initial numerical results show an obvious difference compared with experimental data. This difference is mainly due to the fact that the numerical model discretes the continuous flow to grid elements, which is incongruent with the property of the continuous flow. Morever, during the numerical simulation, the higher frequency components of the freak wave train will dissipate much faster than those of wave flume experiment[20].

    Fig.8 Schematic illustration of the wave tank (a) the 3D preview; (b) the experimental setup

    Fig.9 Comparison of numerical results and experimental data

    Then the initial recorded wave elevation at the target position is decomposed through fast Fourier transformation, and the phase shift can be calculated as in Eq.(10). The phase shift is applied to modify the previous wave-maker control signal as in Eq.(11). At last, the new wavemaker control signal is obtained. It can be seen from Fig.9 that the phase modification results agree quite well with the experimental data, exspecially at the maximum wave crest. The comparison of initial phases and the modified phases is presented in Fig.10. For lower frequency components (ω<8 rad/s), the initial phases and the modified phases show no obvious changes,while the modifed phases are different from the initial phases that are almost constant for higher frequency components (ω<8 rad/s). It means that higher frequency components have a significant effect on freak wave generation. Anyway, the phase modification methodology can be used to improve the numerical results, which serves as a basis for the wave-structure interaction study.

    Fig.10 Comparison of initial phases and modified phases

    5 Conclusions

    In this study, a freak wave train which satisfies the freak wave definition is numerically simulated and compared with experimental data. In this study, we overcome the challenge induced by the nonlinearity effects during wave propagating from the target position to the wave-maker, which has not been done in previous studies. Moreover, the wave-maker transfer function is based on linear wave theory. This leads to the differences at the focusing location.In order to improve the simulation quality, a phase modification methodology is introduced to modify the phase angles during the numerical simulations. The good agreement between the numerical results and the experimental data confirms the realibility of the phase modification methodology developed in this study. This lays a foundation for the following research about wave-structure interactions, such as wave slamming and run-up.

    Acknowledgement

    This work is supported by the National Nature Science Foundation of China (Grant No.51239007) and China Postdoctoral Science Foundation (Grant No. 2017M612543). The sources of support are appreciated. The authors would also like to appreciate the comments from Dr.Zhao Wenhua at University of Western Australia.

    色吧在线观看| 免费观看的影片在线观看| 日韩精品中文字幕看吧| 精品乱码久久久久久99久播| 久久久久性生活片| 身体一侧抽搐| 女的被弄到高潮叫床怎么办| 精品久久国产蜜桃| 日韩一本色道免费dvd| 国内久久婷婷六月综合欲色啪| 99精品在免费线老司机午夜| 校园春色视频在线观看| 亚洲精品色激情综合| 全区人妻精品视频| 波多野结衣巨乳人妻| 日本黄色片子视频| 毛片一级片免费看久久久久| 欧美日韩在线观看h| 午夜久久久久精精品| 久久天躁狠狠躁夜夜2o2o| av免费在线看不卡| 人妻夜夜爽99麻豆av| 国产色婷婷99| 久久精品国产亚洲av天美| 亚洲aⅴ乱码一区二区在线播放| 日韩中字成人| 精品熟女少妇av免费看| 日韩国内少妇激情av| 亚洲欧美成人精品一区二区| 精品一区二区三区视频在线| 久久久久久国产a免费观看| eeuss影院久久| 国产午夜福利久久久久久| 欧美+日韩+精品| 一本精品99久久精品77| 最近2019中文字幕mv第一页| 一级毛片电影观看 | av福利片在线观看| 国产色爽女视频免费观看| 久久久久久大精品| 国产熟女欧美一区二区| 最近2019中文字幕mv第一页| 少妇裸体淫交视频免费看高清| www.色视频.com| 欧美日韩一区二区视频在线观看视频在线 | 国产成人福利小说| 久久久午夜欧美精品| 国产高清视频在线播放一区| 精品不卡国产一区二区三区| 99热这里只有是精品在线观看| 卡戴珊不雅视频在线播放| 我要搜黄色片| 亚洲av成人av| 久久久成人免费电影| 欧美一区二区精品小视频在线| 欧美3d第一页| 在线观看美女被高潮喷水网站| 亚洲成人精品中文字幕电影| 国产熟女欧美一区二区| 亚洲中文日韩欧美视频| 欧洲精品卡2卡3卡4卡5卡区| 日韩 亚洲 欧美在线| 国产精品爽爽va在线观看网站| avwww免费| 亚洲成人精品中文字幕电影| 国产高清激情床上av| 亚洲精品一区av在线观看| 变态另类成人亚洲欧美熟女| 国产av麻豆久久久久久久| 日韩大尺度精品在线看网址| 欧美丝袜亚洲另类| 国产精品精品国产色婷婷| 中国国产av一级| 国产国拍精品亚洲av在线观看| 国产精品无大码| 22中文网久久字幕| 日本黄色视频三级网站网址| 日日摸夜夜添夜夜添av毛片| 免费看av在线观看网站| 国产亚洲91精品色在线| 欧美又色又爽又黄视频| 色5月婷婷丁香| 国产在线精品亚洲第一网站| 一级av片app| 精品一区二区三区视频在线| 亚洲欧美日韩卡通动漫| 亚洲熟妇熟女久久| 人人妻,人人澡人人爽秒播| 国产极品精品免费视频能看的| 国产毛片a区久久久久| 日韩,欧美,国产一区二区三区 | 国产高清不卡午夜福利| 精品国内亚洲2022精品成人| 日本三级黄在线观看| 99久国产av精品国产电影| 97在线视频观看| 国产精品无大码| 天天躁夜夜躁狠狠久久av| 在线天堂最新版资源| 亚洲欧美成人精品一区二区| 十八禁国产超污无遮挡网站| 人妻丰满熟妇av一区二区三区| 中出人妻视频一区二区| 国产精品久久久久久久久免| 午夜激情福利司机影院| 日韩 亚洲 欧美在线| av女优亚洲男人天堂| 乱人视频在线观看| 我的女老师完整版在线观看| 国产高清激情床上av| 美女免费视频网站| 久久人人精品亚洲av| 国产精品综合久久久久久久免费| 精品一区二区三区视频在线观看免费| 日韩,欧美,国产一区二区三区 | 午夜影院日韩av| 熟女电影av网| 日韩在线高清观看一区二区三区| 女人被狂操c到高潮| 国产私拍福利视频在线观看| 免费在线观看影片大全网站| 亚洲精华国产精华液的使用体验 | 老司机影院成人| 亚洲欧美日韩卡通动漫| 变态另类丝袜制服| 国产精品一区二区三区四区久久| 一进一出抽搐gif免费好疼| 日产精品乱码卡一卡2卡三| 色在线成人网| 色在线成人网| 国产av在哪里看| 不卡视频在线观看欧美| 欧美人与善性xxx| 国产成人一区二区在线| 国产精品一区二区三区四区免费观看 | 99在线视频只有这里精品首页| 九色成人免费人妻av| 丰满人妻一区二区三区视频av| 久久精品夜夜夜夜夜久久蜜豆| 免费av毛片视频| 少妇的逼好多水| 中国国产av一级| 亚洲七黄色美女视频| 午夜福利在线观看吧| 久久国内精品自在自线图片| 国产精品一二三区在线看| 成人午夜高清在线视频| 搡老妇女老女人老熟妇| 校园人妻丝袜中文字幕| 一本久久中文字幕| 99在线视频只有这里精品首页| 国产黄色视频一区二区在线观看 | 欧美日本视频| 欧美日韩国产亚洲二区| 少妇高潮的动态图| 久久久久国产精品人妻aⅴ院| 人妻制服诱惑在线中文字幕| 中文资源天堂在线| 欧美日韩综合久久久久久| 伊人久久精品亚洲午夜| 少妇高潮的动态图| 波野结衣二区三区在线| 悠悠久久av| 日本与韩国留学比较| 成年女人看的毛片在线观看| 国产精品综合久久久久久久免费| 亚洲精品一区av在线观看| 91av网一区二区| 色在线成人网| 国产爱豆传媒在线观看| 亚洲国产高清在线一区二区三| 三级男女做爰猛烈吃奶摸视频| 18+在线观看网站| 中文资源天堂在线| 国产成人一区二区在线| 观看免费一级毛片| 亚洲久久久久久中文字幕| 色av中文字幕| 国产精品伦人一区二区| 97超级碰碰碰精品色视频在线观看| 麻豆乱淫一区二区| 性欧美人与动物交配| 久久精品国产亚洲网站| 国产真实乱freesex| 男人的好看免费观看在线视频| 插阴视频在线观看视频| 18禁裸乳无遮挡免费网站照片| videossex国产| 日本一二三区视频观看| 狂野欧美白嫩少妇大欣赏| 久久精品国产亚洲网站| 桃色一区二区三区在线观看| 午夜精品国产一区二区电影 | 欧美中文日本在线观看视频| 免费看日本二区| 亚洲国产精品国产精品| 欧美一级a爱片免费观看看| 欧美潮喷喷水| 十八禁国产超污无遮挡网站| 欧美成人免费av一区二区三区| 极品教师在线视频| 国产91av在线免费观看| 尤物成人国产欧美一区二区三区| 中文在线观看免费www的网站| 级片在线观看| 97超碰精品成人国产| a级一级毛片免费在线观看| 色5月婷婷丁香| 婷婷精品国产亚洲av| 日韩一本色道免费dvd| 国产精品av视频在线免费观看| 久久精品人妻少妇| 欧美又色又爽又黄视频| 在线播放国产精品三级| 亚洲国产色片| 久久久国产成人免费| 99热这里只有是精品在线观看| 女人被狂操c到高潮| 九九爱精品视频在线观看| 人妻久久中文字幕网| 少妇的逼水好多| 亚洲欧美成人精品一区二区| 女同久久另类99精品国产91| 欧美又色又爽又黄视频| 97超视频在线观看视频| 亚洲av第一区精品v没综合| 狂野欧美白嫩少妇大欣赏| 国产成人aa在线观看| 欧美中文日本在线观看视频| 真实男女啪啪啪动态图| 亚洲最大成人中文| 2021天堂中文幕一二区在线观| 丰满的人妻完整版| 日本爱情动作片www.在线观看 | 波多野结衣巨乳人妻| 伦理电影大哥的女人| 国产熟女欧美一区二区| 精品人妻视频免费看| 国产精品,欧美在线| 少妇裸体淫交视频免费看高清| 日本一二三区视频观看| 久久韩国三级中文字幕| 久久人人爽人人片av| 国产av麻豆久久久久久久| 久久精品91蜜桃| 五月伊人婷婷丁香| 亚洲内射少妇av| 18禁在线无遮挡免费观看视频 | 亚洲成人久久爱视频| 精品午夜福利视频在线观看一区| 欧美日本视频| 搡老妇女老女人老熟妇| 日本黄色片子视频| 国产成人一区二区在线| 精品人妻偷拍中文字幕| 中国国产av一级| 99热这里只有是精品在线观看| 人人妻人人看人人澡| 22中文网久久字幕| 91久久精品国产一区二区三区| 国产日本99.免费观看| 97超碰精品成人国产| 99久久九九国产精品国产免费| 国产亚洲精品久久久久久毛片| 国产精品久久久久久亚洲av鲁大| 精品国产三级普通话版| 天堂动漫精品| 国产精品精品国产色婷婷| 久久天躁狠狠躁夜夜2o2o| 亚洲av不卡在线观看| 精品久久久久久久久久免费视频| 国产精品国产高清国产av| 自拍偷自拍亚洲精品老妇| 色综合站精品国产| 18禁裸乳无遮挡免费网站照片| 中文字幕免费在线视频6| 搡老熟女国产l中国老女人| 亚洲中文字幕日韩| 久久久久久九九精品二区国产| 久久国产乱子免费精品| 国产亚洲91精品色在线| 欧美成人一区二区免费高清观看| 一级av片app| 精品少妇黑人巨大在线播放 | 露出奶头的视频| 国内揄拍国产精品人妻在线| 久久精品久久久久久噜噜老黄 | 一个人观看的视频www高清免费观看| 99九九线精品视频在线观看视频| 综合色丁香网| 校园人妻丝袜中文字幕| 桃色一区二区三区在线观看| 真实男女啪啪啪动态图| 老熟妇乱子伦视频在线观看| 欧美又色又爽又黄视频| 九色成人免费人妻av| 久久久久九九精品影院| 国产av一区在线观看免费| 欧美日本视频| 国产一级毛片七仙女欲春2| 久久精品夜夜夜夜夜久久蜜豆| 一级毛片久久久久久久久女| 国产精品嫩草影院av在线观看| 欧美另类亚洲清纯唯美| 色5月婷婷丁香| 精品人妻偷拍中文字幕| АⅤ资源中文在线天堂| 午夜免费激情av| 色av中文字幕| 看免费成人av毛片| 老熟妇仑乱视频hdxx| 色综合亚洲欧美另类图片| 狂野欧美激情性xxxx在线观看| 好男人在线观看高清免费视频| 国产视频内射| 麻豆一二三区av精品| 91久久精品电影网| 久久久久久久久大av| 久久久久久大精品| 欧美一区二区亚洲| 激情 狠狠 欧美| 日本一二三区视频观看| 欧美另类亚洲清纯唯美| 小蜜桃在线观看免费完整版高清| 国产一级毛片七仙女欲春2| 日韩欧美精品v在线| 长腿黑丝高跟| 精品久久久久久久末码| 亚洲久久久久久中文字幕| a级一级毛片免费在线观看| 麻豆久久精品国产亚洲av| 国产亚洲91精品色在线| 日韩欧美精品免费久久| 级片在线观看| 亚洲中文字幕日韩| 亚洲av美国av| 日本欧美国产在线视频| 欧洲精品卡2卡3卡4卡5卡区| 97超碰精品成人国产| 天天躁夜夜躁狠狠久久av| 亚洲自偷自拍三级| 熟女人妻精品中文字幕| 级片在线观看| 国产精品亚洲一级av第二区| 久久中文看片网| 久久韩国三级中文字幕| 国产大屁股一区二区在线视频| 小说图片视频综合网站| 午夜影院日韩av| 成年女人永久免费观看视频| 在线免费十八禁| 亚洲精华国产精华液的使用体验 | 日本在线视频免费播放| 在线播放无遮挡| 国产乱人视频| 少妇的逼好多水| 久久久久国内视频| 内地一区二区视频在线| 特级一级黄色大片| 日本五十路高清| 日韩强制内射视频| 国产精品,欧美在线| av卡一久久| 亚洲国产精品国产精品| 永久网站在线| 国产国拍精品亚洲av在线观看| 男人的好看免费观看在线视频| 国内久久婷婷六月综合欲色啪| 99久久九九国产精品国产免费| 日本 av在线| 69av精品久久久久久| 中出人妻视频一区二区| 成人亚洲欧美一区二区av| 欧美日韩精品成人综合77777| 国产一区二区激情短视频| 久久精品夜色国产| 免费一级毛片在线播放高清视频| 国产精品福利在线免费观看| 两个人视频免费观看高清| 日本在线视频免费播放| 亚洲中文字幕日韩| 亚洲精品粉嫩美女一区| 在线观看午夜福利视频| 直男gayav资源| 国语自产精品视频在线第100页| 亚洲欧美日韩无卡精品| 观看美女的网站| 在线看三级毛片| 国产成人一区二区在线| av天堂在线播放| or卡值多少钱| 麻豆精品久久久久久蜜桃| 亚洲成av人片在线播放无| 国产精品av视频在线免费观看| 一级毛片电影观看 | 床上黄色一级片| 免费看日本二区| 免费无遮挡裸体视频| 91麻豆精品激情在线观看国产| 插阴视频在线观看视频| 老师上课跳d突然被开到最大视频| 亚洲中文字幕一区二区三区有码在线看| 99热只有精品国产| 国产成人aa在线观看| 尾随美女入室| 亚洲精品成人久久久久久| 亚洲精品影视一区二区三区av| 级片在线观看| 天天躁夜夜躁狠狠久久av| 亚洲av第一区精品v没综合| 亚洲美女搞黄在线观看 | 99久久无色码亚洲精品果冻| 精品人妻一区二区三区麻豆 | 国产男人的电影天堂91| 在线看三级毛片| 国内精品一区二区在线观看| 午夜a级毛片| 国产成人a∨麻豆精品| 级片在线观看| 精品一区二区三区视频在线观看免费| 色哟哟·www| 女的被弄到高潮叫床怎么办| 成年女人看的毛片在线观看| 亚洲七黄色美女视频| 国产色婷婷99| 精品人妻视频免费看| 麻豆国产av国片精品| 日本熟妇午夜| 亚洲自偷自拍三级| 免费在线观看成人毛片| 变态另类成人亚洲欧美熟女| 九九热线精品视视频播放| 国产在视频线在精品| 欧美+亚洲+日韩+国产| 亚洲av熟女| 亚洲成av人片在线播放无| 日日撸夜夜添| 欧美xxxx性猛交bbbb| 国产高清不卡午夜福利| 男女下面进入的视频免费午夜| 在线免费十八禁| 国产精品亚洲一级av第二区| 乱人视频在线观看| av黄色大香蕉| 99国产极品粉嫩在线观看| 男插女下体视频免费在线播放| 久久久欧美国产精品| 色综合亚洲欧美另类图片| 一级黄片播放器| 欧美激情久久久久久爽电影| 哪里可以看免费的av片| 99热这里只有精品一区| 欧美一区二区精品小视频在线| 热99re8久久精品国产| 国产蜜桃级精品一区二区三区| 一本一本综合久久| 国产伦精品一区二区三区四那| 男女啪啪激烈高潮av片| 国产精品女同一区二区软件| 国产91av在线免费观看| 中文亚洲av片在线观看爽| 日韩中字成人| 久久中文看片网| 亚洲精品456在线播放app| 国产老妇女一区| 日韩欧美免费精品| 男女那种视频在线观看| 最好的美女福利视频网| 亚洲欧美中文字幕日韩二区| 大香蕉久久网| 97在线视频观看| 亚洲久久久久久中文字幕| 国产三级中文精品| 99riav亚洲国产免费| 成人永久免费在线观看视频| 国产精品一及| 美女xxoo啪啪120秒动态图| 国产在视频线在精品| 神马国产精品三级电影在线观看| 国产精品久久视频播放| 国产精品人妻久久久久久| 一进一出好大好爽视频| 美女 人体艺术 gogo| 欧美最新免费一区二区三区| a级毛片a级免费在线| 亚洲美女搞黄在线观看 | 国产精品日韩av在线免费观看| 色av中文字幕| 亚洲精品亚洲一区二区| 六月丁香七月| 欧美日本视频| 免费电影在线观看免费观看| 国产亚洲欧美98| 寂寞人妻少妇视频99o| 91在线精品国自产拍蜜月| 国产精品一区二区免费欧美| 国产蜜桃级精品一区二区三区| 日本黄色片子视频| 精品一区二区三区人妻视频| 18禁裸乳无遮挡免费网站照片| 成人高潮视频无遮挡免费网站| 嫩草影院精品99| 大又大粗又爽又黄少妇毛片口| 男女下面进入的视频免费午夜| 干丝袜人妻中文字幕| 大型黄色视频在线免费观看| 亚洲四区av| 日本成人三级电影网站| 性插视频无遮挡在线免费观看| 国产探花极品一区二区| 国产精品爽爽va在线观看网站| 国产精品一区二区免费欧美| 在线观看一区二区三区| 老司机午夜福利在线观看视频| 最好的美女福利视频网| 日韩 亚洲 欧美在线| 欧美日韩一区二区视频在线观看视频在线 | 亚洲国产欧洲综合997久久,| 内地一区二区视频在线| 国产真实伦视频高清在线观看| 日韩 亚洲 欧美在线| 精品一区二区三区视频在线观看免费| 欧美zozozo另类| 免费观看精品视频网站| 免费电影在线观看免费观看| 欧洲精品卡2卡3卡4卡5卡区| 村上凉子中文字幕在线| 最近2019中文字幕mv第一页| 国产成人精品久久久久久| 六月丁香七月| 一个人看的www免费观看视频| 99国产精品一区二区蜜桃av| 日韩欧美在线乱码| 亚洲精品国产成人久久av| 日本-黄色视频高清免费观看| 日本a在线网址| 色5月婷婷丁香| 丰满乱子伦码专区| a级一级毛片免费在线观看| 黑人高潮一二区| 99热这里只有是精品50| 久久精品国产清高在天天线| 在线播放国产精品三级| 久久精品久久久久久噜噜老黄 | 我的女老师完整版在线观看| 精品99又大又爽又粗少妇毛片| 久久精品国产自在天天线| 老司机福利观看| av国产免费在线观看| 免费看av在线观看网站| 国产真实伦视频高清在线观看| a级毛色黄片| 国产精品久久久久久亚洲av鲁大| 国产人妻一区二区三区在| av.在线天堂| 最后的刺客免费高清国语| 看十八女毛片水多多多| 午夜老司机福利剧场| 国产精品亚洲美女久久久| 国产精品女同一区二区软件| 免费看光身美女| 亚洲欧美日韩卡通动漫| 日本熟妇午夜| 亚洲欧美日韩卡通动漫| 久久精品国产亚洲av涩爱 | 国产精品一区二区三区四区久久| 精品久久久久久成人av| 久久婷婷人人爽人人干人人爱| 日本三级黄在线观看| 少妇被粗大猛烈的视频| 中出人妻视频一区二区| 国产精品无大码| 亚洲欧美精品综合久久99| 成人三级黄色视频| 久久久国产成人精品二区| 神马国产精品三级电影在线观看| 久99久视频精品免费| 日韩人妻高清精品专区| 久久精品夜色国产| 国产三级在线视频| 一级黄片播放器| 日产精品乱码卡一卡2卡三| 韩国av在线不卡| 97碰自拍视频| 国产日本99.免费观看| 村上凉子中文字幕在线| 欧美中文日本在线观看视频| 国产一区二区三区av在线 | 99久国产av精品国产电影| 国产亚洲精品久久久久久毛片| 97热精品久久久久久| 成人特级黄色片久久久久久久| 99riav亚洲国产免费| 在线天堂最新版资源| 国产淫片久久久久久久久| 日韩精品青青久久久久久| 中出人妻视频一区二区| 精品一区二区免费观看| 一本精品99久久精品77| 免费av毛片视频| 级片在线观看| 国产高清视频在线观看网站| 国产伦精品一区二区三区四那| 久久久久久大精品| 一个人看视频在线观看www免费| 日韩av在线大香蕉| 成人永久免费在线观看视频| 日日干狠狠操夜夜爽| 黄色日韩在线| 最近在线观看免费完整版| 在线观看av片永久免费下载| 桃色一区二区三区在线观看| 国产三级在线视频| 欧美高清性xxxxhd video| 亚洲自偷自拍三级|