• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transient Pipe Tension Influence on Dynamic Positioning Control During S-Lay Installation

    2019-12-10 01:06:16AIShangmaoLIUDepengLIPengMAGang
    船舶力學(xué) 2019年9期

    AI Shang-mao , LIU De-peng , LI Peng,2, MA Gang

    (1. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China; 2. CNOOC CENER Tech Company Oil Production and Service Branch, Tianjin 300457, China)

    Abstract: Traditionally, dynamic positioning (DP) capability and tensioner capability of a laying vessel are calculated by static tension while the dynamic effects are either ignored or taken into account by empirical load amplification factors. A coupled dynamic model of normal S-lay was developed to simulate the closed-loop automatic control process integrating with DP controller. The model sufficiently takes account of the pipeline-rollers contact and the coupling between the pipeline and the controlled surface vessel. By conducting dynamic simulation in time domain and comparing the results achieved, significant coupled dynamic behaviours of applied DP thrust forces are observed, which offers very intuitive evidences of the transient tension effects concerning DP capacity assessment. And tensioner capacity based static results of the tension force would be overestimated.

    Key words: S-lay; coupled analysis; transient tension; dynamic positioning

    0 Introduction

    S-type pipelay operations in deepwater are much more complicated than those in shallow water, and put greater demands on the laying equipment. Normal pipelay starts after completion of the start-up operation when the start-up head touches down on the seabed. Deepwater installation vessels typically require a dynamic positioning (DP) system due to its good performance and the simplified operation procedures for the station-keeping.

    The governed parameters for an S-lay configuration include the pipe material properties,tension at the pipelay vessel, stinger shape (curvature radius and roller positions), departure angle and water depth[1]. Among these parameters, tension at the vessel is the only parameter that can be manipulated during the installation by adjusting the vessel position or the holding force of tensioners. The free spanning part from the touchdown point to the stinger gets longer when the water gets deeper. This will make the free spanning pipeline heavier. In order to maintain the sagbend configuration, a large tension force has to be applied to the pipe in order to secure a safe bending radius. Also, when the stinger guides the pipe as it bends from horizontal to the inclination, a more curved stinger is required to guarantee that the pipe does not reach the end of the stinger for the steepest expected departure angle[2].

    To avoid losing the pipeline, the applied tension of the pipeline must be less than the workable tension limitation of tensioners. Additionally, the thrusters of a dynamic positioning (DP)system must have the capability to compensate for the external tension forces of pipe acting on the vessel. Traditionally, DP capability and tensioner capability of a laying vessel are calculated by static tension while the dynamic effects are either ignored or taken into account by empirical load amplification factors. This representation lacks the detailed understanding of dynamic interactions between the pipe and the DP station-keeping. A dynamic simulation in timedomain coupled with DP controller is significant to identify limiting environmental operation conditions and to analyze any risk associated with thruster saturation or thruster failures[3].

    Some researchers have already emphasized the dynamic effect of the vessel motion on the spanning pipeline, such as Clauss et al (1992)[4]and Gong et al (2014)[5]. However, it is worth mentioning that the dynamic effective tension is still relative to the DP thrust force, because the DP system must compensate for the horizontal drag force of the pipeline. The purpose of this study is to analyze the transient tension effect when integrating S-lay operations with DP demand, since deepwater S-lay operations are a closed-loop automatic control process.

    1 Numerical model of the pipeline

    Fig.1 Lumped-mass discretization model of the S-lay simulation

    A variety of techniques and methods have been developed for decades to analyse the response of marine pipelay system in a dynamic sea environment. the state-to-art computation programs coupled by increasing computer capacity have provided sufficient accuracy of prediction and simulation in spite of existence of uncertainties due to pipe-soil interaction. Herein, the code orcaflex is chosen to implement S-lay analysis because of its friendly interface with Matlab environment, which allows us to use a limited range of OrcaFlex’s facilities for adding the dynamic positioning (DP) tasks.

    In the global coordinate system (XYZ), the ending point P0of the pipeline anchors on the flat seabed, while the point PNcontacts with the tensioner at the other end as shown in Fig.1.The axial stiffness of the line is modeled by simple spring elements between nodes, and bending is modeled by rotational springs. The pipeline is discretized into N elements (Ek, k=1…N)by N+1 lumped-mass nodes (Pi, i=0…N).

    The lumped-mass of each element is concentrated on the nodes while the tension and the bending are modelled by extensional and rotational springs. The nonlinear stress-strain relationship of the pipeline is characterized by a load-dependent path of moment-curvature. In the Orcaflex, the Ramberg-Osgood formula is used, which has the following expression

    The effective tension at the mid-point of line segment can be calculated as

    where Twis the function relating axial strain to wall tension, Piand P0are the internal and external pressure respectively; Aiand A0are the internal and external cross-section areas of the stress annulus respectively; and ν is Poisson’s ratio. The upward contact forces between pipe and seafloor are included in the model while friction effects are neglected.

    In practical situations, some of the rollers may miss the pipe contact, resulting in more concentrated forces acting on a fewer number of rollers. If astern/ahead loading acts on the vessel, the rollers can be simplified to a rigid line. Thus the stinger contact search becomes pointwise and depends on the minimum distance d shown in Fig.1.

    2 Controlled motion equation of pipelay vessel

    2.1 Motion equations in time domain

    The exciting force FVon the right hand side including the environmental load, propulsion forces in DP system and the pipeline reaction force acting on the vessel is written as

    The standard procedure for performing pipelay dynamic analysis consists of two stages. A static analysis is first applied with only the static components of the environmental loadings.The initial equilibrium positions of the vessel are defined as the static positions of the ends of pipelines. The governing motion equations of the pipeline are highly non-linear, and should be solved iteratively using an incremental correction approach.

    The dynamic solution of Eq.(3) may contain spurious high frequency response, a feature inherent in the finite element method. The generalized-α integration scheme has controllable numerical damping which is desirable since it removes this spurious, non-physical high frequency response. This numerical damping also leads to much more stable convergence and hence allows for longer time steps and much faster simulations.

    2.2 PID controller and thrust allocation

    The thrust forces confine a vessel to pinpoint in a certain permitted range. The Proportion-Integration-Differentiation (PID) controller is herein adapted to control the pipelay vessel motions. The total thrust forces FDPin the PID controller consist of three components: surge, sway and yaw forces, formulated as

    where ε=η-ηrefis the vessel position error, KP, KIand KDrepresent proportional gain coefficient, integral gain coefficient and differential gain coefficient. The function of the PID controller takes instant position η as input, and outputs the magnitude of thrust force. An effective way for filtering the oscillatory components of motion is Kalman-Filter[6].

    After the thrust system receives the commanded force signal, thrusters produce proper forces and moment to compensate for the environmental loads. Considering a marine vessel equipped with m azimuth thrusters, the generalized force vector is given by

    The vector u contains the magnitude of the force produced by each individual thruster, αiis the azimuth of the iththruster, and the ithcolumn of the matrix is given by

    where (lxi, lyi)is the location of the iththruster. The quadratic programming (QP) method is used for the optimal thrust allocation algorithm.

    2.3 Coupled solution with transient tension

    The pipelay model comprises three distinct components: the vessel, the pipeline and a set of connecting contact springs. In this numerical simulation, all forces are not assumed to be feedforward terms but transient forces coupled with the PID controller. The vertical component of pipe reaction force acting on the vessel is passively compensated by the pipelay vessel restoring forces; the horizontal tension of the spanning pipeline is left to active control by the vessel motion control system.

    The S-lay simulation is developed from integrating a marine systems simulator (MSS),which contains guidance, navigation, and control blocks for real-time simulation by using Matlab libraries[7]. Based on the framework of MSS, the pipeline, vessel and DP system are integrated into a closed loop. And the flowchart of the simulation code for pipelay vessel motion controlled by DP system is summarized in Fig.2.

    Fig.2 Flowchart of MSS code for vessel motion controlled by DP system

    3 Cases studies

    3.1 Parameters and conditions

    Major particulars of the DP pipelay vessel are summarized in Fig.3 and Tab.1 (obtained from Yuan et al[8]and Sun et al[9]). There are seven azimuth thrusters in the pipelay vessel,thrusters #1 and #2 are main thrusters with downgraded maximum thrust 734 kN in the aft of the vessel. Five retractable thrusters are optimized for bollard pull, and the maximum thrust of each retractable thruster is 530 kN. Assuming the vessel is fully actuated, the available control input is the vessel thruster data limited to surge, sway and yaw.

    Tab.1 Major particulars of ‘HYSY 201’

    All studied cases are performed on a pipelay operation in 1 500 m water depth. The properties and input parameters of the laying pipeline are listed in Tab.2, and environmental conditions are shown in Tab.3. An idealized fixed stinger is connected to the stern for launching the pipe into the water at a suitable curvature. The pipeline is laid from 6.2 m below the main deck level at the stern of the barge for the radius of 110 m. There are 20 rollers mounted on the stinger section as shown in Fig.4, in which the rollers are numbered from up to down. It should be pointed out that the aim of performing such cases is to investigate the coupling or transient effect on operation simulation integrating DP demand; the capability of HYSY201 is not our focus, since the realistic parameters of the stinger structure and rollers position equipped on the HYSY201 are very different from the present model.

    Tab.2 Pipe properties and parameters in studied cases

    Tab.3 Environmental conditions in studied cases

    Fig.4 Arrangement position of the rollers in the pipelay simulation

    3.2 Transient results and discussions

    Firstly two transient coupled simulations are implemented by using the different PID coefficients. Fig.5 shows the contact results between rollers and pipeline in the case with high PID coefficients, indicating that Rollers 17 and 20 are not in contact with the pipe. The time-history results of vessel surge motion and the top tension shown in Fig.6 demonstrate that different PID coefficients lead to different vessel motion, and the DP controller is efficient to keep the vessel around the target position. Few varieties of the statistical tension are observed from both cases with low PID coefficients and high PID coefficients. The reason is that both of the vessel motions are still very small compared to the water depth.

    Fig.5 Statistic value of contact spring forces acting on 20 rollers of stinger

    Fig.6 Comparison of time history results between low PID and high PID case

    Fig.7 Time history statistics results of pipe bending stress along arc length

    In the following, the dynamic contribution is discussed based on the results with low PID coefficients. Here a ratio defined by (Max-Mean)/Mean is used to investigate the dynamic contribution for bending stress and tension force of the pipeline.

    The maximum bending stress in the overbend and the sagbend sections is shown in Fig.7.The maximum bending stress in the overbend section predicted from the coupled analysis differs from mean value by the ratio of 1%~2%. It can be concluded that the coupled dynamic approach has little dynamic effect on the stress safety assessment of pipes compared to the static state approach, since the overbend stress is much larger than the other part. The large variations of bending stress are observed in the lift-off point zone (about 200%) and touchdown zone(9.28%).

    Fig.8 Time history statistics results of effective tension along arc length

    Fig.9 Time histories of transient tension force (T0) at the bottom end of the pipeline with low PID coefficient

    Fig.8 demonstrates the pipe effective tension and dynamic contribution along the whole arc length. Large variations of the dynamic tension are observed, the ratio at most positions exceeds 37%. At the touchdown zone the ratio rises to 60.4%. Thus the dynamic contribution is significant for the effective tension.

    Lastly it is necessary to investigate the transient tensions of two pipe-ends, since the two tensions are directly related to the tensioners and DP system. According to statistics value of the tension at the top end of the pipe (Point PNin Fig.1), the dynamic maximum tension of the high PID case is 44.3% higher than the mean value (shown in Fig.6a). It is noted that this transient tension force TNexceeds nominal allowance tension capacity 4 000 kN of the blocked tensioners. On the other hand, the dynamic effect of the tension force T0(shown in Fig.9) is also remarkable, with 66.5% larger than the mean value.

    4 Conclusions

    Simultaneous prediction of the transient tensions on the structural, motion response and DP force provides useful insights into S-lay operations in this study. The numerical model integrates the major aspects related to normal deepwater S-lay operation including the structural behaviour of the pipe, a roller-pipeline interaction, the DP forces via a PID controller and Kalman filter, and the loose coupling between the pipe structural response and the vessel motion response. The major contributions of this study are summarized as follow:

    (1) A PID controller and Kalman Filter are integrated into the pipelaying motion equations in time domain. This coupling approach can be used to effectively predict the pipeline transient tension, surface vessel motion and required thrust force of the controller simultaneously to ensure operation safety.

    (2) Numerical simulation results showed that the dynamic contributions are more significant for the tension force at the top of the pipeline than for the stress and strain of the pipeline structure. Tensioner capacity based static results of the tension force would be overestimated.

    (3) Numerical simulation results offer very intuitive evidence of transient pipe tension effects on deepwater S-lay DP thrust. A coupled analysis approach in deep water is therefore recommended for the prediction of DP thrust forces to compensate the horizontal pipe tension.

    一a级毛片在线观看| 蜜臀久久99精品久久宅男| www.色视频.com| 亚洲性夜色夜夜综合| 春色校园在线视频观看| 极品教师在线视频| 精品久久久久久久人妻蜜臀av| 国产老妇女一区| 国产 一区精品| 91久久精品国产一区二区三区| 久久九九热精品免费| 欧美国产日韩亚洲一区| 日韩成人伦理影院| 天天躁夜夜躁狠狠久久av| av免费在线看不卡| 丝袜美腿在线中文| 国产单亲对白刺激| av在线亚洲专区| 欧美+亚洲+日韩+国产| 国产高清视频在线观看网站| 99在线视频只有这里精品首页| 老师上课跳d突然被开到最大视频| 国产精品国产高清国产av| 深夜a级毛片| av在线天堂中文字幕| 午夜激情欧美在线| 国产精品野战在线观看| 精品一区二区三区人妻视频| 国产精品,欧美在线| 日韩av在线大香蕉| 特大巨黑吊av在线直播| 国产精品99久久久久久久久| 村上凉子中文字幕在线| 亚洲性夜色夜夜综合| 久久人人爽人人片av| 午夜视频国产福利| 日韩一本色道免费dvd| 九色成人免费人妻av| 在现免费观看毛片| 欧美一级a爱片免费观看看| 亚洲国产高清在线一区二区三| 一进一出好大好爽视频| 欧美成人一区二区免费高清观看| 国产色爽女视频免费观看| 99视频精品全部免费 在线| 久久精品国产亚洲av香蕉五月| 久久6这里有精品| 亚洲精品456在线播放app| 成人永久免费在线观看视频| 亚洲精品日韩av片在线观看| 国产黄色小视频在线观看| 女人被狂操c到高潮| 亚洲性久久影院| av中文乱码字幕在线| 国产一区二区三区在线臀色熟女| 国产真实乱freesex| 精品国内亚洲2022精品成人| 久久欧美精品欧美久久欧美| 午夜亚洲福利在线播放| 欧美成人免费av一区二区三区| 一个人看视频在线观看www免费| 自拍偷自拍亚洲精品老妇| or卡值多少钱| 成人二区视频| 天天一区二区日本电影三级| 日韩欧美一区二区三区在线观看| 国内精品宾馆在线| 国产综合懂色| 内射极品少妇av片p| 国内精品宾馆在线| 久久久久国内视频| 99久国产av精品国产电影| 久久精品国产亚洲av涩爱 | 十八禁网站免费在线| 波多野结衣高清作品| 成人漫画全彩无遮挡| 亚洲国产精品成人综合色| 99久久精品国产国产毛片| 日本黄色片子视频| 久久人妻av系列| 国产亚洲精品综合一区在线观看| 内射极品少妇av片p| 一区二区三区高清视频在线| 亚洲精品一区av在线观看| 国产精品久久久久久精品电影| 日韩av在线大香蕉| 亚洲精品456在线播放app| 日本一本二区三区精品| av.在线天堂| 国产高清视频在线观看网站| 国产日本99.免费观看| 中文资源天堂在线| 美女免费视频网站| 91久久精品国产一区二区成人| 国产精品永久免费网站| 亚洲电影在线观看av| 亚洲一级一片aⅴ在线观看| 给我免费播放毛片高清在线观看| 午夜精品一区二区三区免费看| 麻豆久久精品国产亚洲av| 国产国拍精品亚洲av在线观看| 禁无遮挡网站| 在线免费观看不下载黄p国产| 国产在线男女| 91av网一区二区| 欧美在线一区亚洲| 久久久久久久久久久丰满| 小说图片视频综合网站| 五月玫瑰六月丁香| 亚洲欧美中文字幕日韩二区| 搡老熟女国产l中国老女人| 国产一级毛片七仙女欲春2| 久久精品国产清高在天天线| 一级毛片我不卡| 久久久精品大字幕| 国内精品美女久久久久久| 男女边吃奶边做爰视频| 桃色一区二区三区在线观看| 成人亚洲欧美一区二区av| 国产高清视频在线观看网站| 亚洲成a人片在线一区二区| 国产亚洲精品av在线| 夜夜看夜夜爽夜夜摸| 欧美bdsm另类| 一个人观看的视频www高清免费观看| 成人漫画全彩无遮挡| av女优亚洲男人天堂| 亚洲人成网站在线播| 成人精品一区二区免费| 国产精品国产高清国产av| 在线观看免费视频日本深夜| 亚洲真实伦在线观看| 香蕉av资源在线| 综合色av麻豆| 俺也久久电影网| 成年女人毛片免费观看观看9| 亚洲av成人精品一区久久| 免费av观看视频| 国产精品亚洲一级av第二区| 村上凉子中文字幕在线| 国产亚洲91精品色在线| 亚洲精品国产成人久久av| 国产亚洲精品久久久com| 精品久久久久久成人av| 日韩在线高清观看一区二区三区| 国产极品精品免费视频能看的| 一区福利在线观看| 中国国产av一级| 欧美成人精品欧美一级黄| av福利片在线观看| 天堂√8在线中文| 在线看三级毛片| 黄色一级大片看看| 精品午夜福利在线看| 午夜激情欧美在线| 欧美不卡视频在线免费观看| 亚洲精品粉嫩美女一区| 国产精品伦人一区二区| 熟女电影av网| 亚洲av第一区精品v没综合| 亚洲国产精品国产精品| 国产爱豆传媒在线观看| 91在线精品国自产拍蜜月| 日韩欧美国产在线观看| 22中文网久久字幕| 欧美性猛交╳xxx乱大交人| 久久久国产成人免费| 亚洲av电影不卡..在线观看| 日韩欧美在线乱码| 欧美一区二区精品小视频在线| 国产一区二区在线av高清观看| 成人漫画全彩无遮挡| 欧美色视频一区免费| 精品久久久久久久久久久久久| 不卡视频在线观看欧美| 婷婷精品国产亚洲av在线| 亚洲熟妇熟女久久| 男人的好看免费观看在线视频| 欧美3d第一页| 国产亚洲精品av在线| 中文资源天堂在线| 精品一区二区三区人妻视频| 波多野结衣高清无吗| 国产精品一及| 春色校园在线视频观看| 日本一本二区三区精品| 亚洲电影在线观看av| 中国国产av一级| 国产乱人偷精品视频| 成人毛片a级毛片在线播放| 欧美日韩乱码在线| 亚洲在线观看片| 国产精品无大码| 俺也久久电影网| 亚洲国产日韩欧美精品在线观看| 日韩三级伦理在线观看| 欧美3d第一页| 日本免费一区二区三区高清不卡| 一级毛片我不卡| 国产精品不卡视频一区二区| www.色视频.com| 少妇人妻精品综合一区二区 | 中国美白少妇内射xxxbb| 国产成人91sexporn| 精品无人区乱码1区二区| 波野结衣二区三区在线| 国产一区二区在线av高清观看| 成熟少妇高潮喷水视频| 在线观看av片永久免费下载| 国产成人影院久久av| 搡老熟女国产l中国老女人| 日日撸夜夜添| 91精品国产九色| 国产午夜福利久久久久久| 亚洲av一区综合| av在线老鸭窝| 国产一区二区在线观看日韩| 1024手机看黄色片| 国产毛片a区久久久久| 亚洲av成人av| 国产久久久一区二区三区| 大型黄色视频在线免费观看| 一本久久中文字幕| 不卡视频在线观看欧美| 久久人人爽人人爽人人片va| 欧美极品一区二区三区四区| 蜜臀久久99精品久久宅男| 午夜精品在线福利| 亚洲欧美日韩东京热| 国产一区亚洲一区在线观看| 久久草成人影院| 99久久久亚洲精品蜜臀av| av视频在线观看入口| 免费观看精品视频网站| 老熟妇乱子伦视频在线观看| 久久久久久久午夜电影| 国产精品永久免费网站| 亚洲精品在线观看二区| 午夜亚洲福利在线播放| 97超级碰碰碰精品色视频在线观看| 国产亚洲精品综合一区在线观看| 亚洲精品亚洲一区二区| 久久久久久久午夜电影| 免费在线观看成人毛片| 久久久欧美国产精品| 国内少妇人妻偷人精品xxx网站| 欧美一区二区国产精品久久精品| 美女 人体艺术 gogo| 亚洲无线观看免费| 日本色播在线视频| 亚洲aⅴ乱码一区二区在线播放| 高清毛片免费看| 全区人妻精品视频| 国产精品人妻久久久影院| 在线免费十八禁| 午夜免费男女啪啪视频观看 | 最新在线观看一区二区三区| 国产高清视频在线播放一区| 亚洲精品国产av成人精品 | 欧美xxxx黑人xx丫x性爽| 97超碰精品成人国产| 国产精品国产三级国产av玫瑰| 一级av片app| 91久久精品电影网| 成人无遮挡网站| 欧美人与善性xxx| 十八禁网站免费在线| 欧洲精品卡2卡3卡4卡5卡区| av国产免费在线观看| 亚洲人与动物交配视频| 成年女人看的毛片在线观看| 国产成人a∨麻豆精品| av在线亚洲专区| 亚洲内射少妇av| 天堂影院成人在线观看| 亚洲精品成人久久久久久| 国产麻豆成人av免费视频| 精品不卡国产一区二区三区| 亚洲精品影视一区二区三区av| 久久久久久久久久成人| 欧美性猛交黑人性爽| 老女人水多毛片| 3wmmmm亚洲av在线观看| 久久人人爽人人片av| 三级国产精品欧美在线观看| 久久久久九九精品影院| 看十八女毛片水多多多| 免费看美女性在线毛片视频| 久久亚洲国产成人精品v| 久久人人爽人人爽人人片va| 中文在线观看免费www的网站| www日本黄色视频网| 最近的中文字幕免费完整| 全区人妻精品视频| 亚洲五月天丁香| 伊人久久精品亚洲午夜| 欧美性猛交╳xxx乱大交人| 国产精品电影一区二区三区| 国产亚洲91精品色在线| 国产 一区 欧美 日韩| eeuss影院久久| 国产视频内射| 午夜福利在线在线| 久99久视频精品免费| 亚洲电影在线观看av| 国产精品久久久久久av不卡| 白带黄色成豆腐渣| 国产高清有码在线观看视频| 日韩国内少妇激情av| 亚洲无线在线观看| 国产欧美日韩精品一区二区| 天堂动漫精品| 国内精品久久久久精免费| 久久99热这里只有精品18| 99久国产av精品| 国产三级中文精品| 人妻少妇偷人精品九色| 1000部很黄的大片| 午夜福利视频1000在线观看| 国产高清不卡午夜福利| 欧美成人a在线观看| 特级一级黄色大片| 免费大片18禁| 欧美日韩国产亚洲二区| 噜噜噜噜噜久久久久久91| 国产成人a区在线观看| 99热网站在线观看| 日本在线视频免费播放| 亚洲欧美成人综合另类久久久 | 精品人妻熟女av久视频| 12—13女人毛片做爰片一| 午夜福利视频1000在线观看| 精品一区二区三区视频在线观看免费| 99久久精品国产国产毛片| 亚洲成人av在线免费| 99国产精品一区二区蜜桃av| 又黄又爽又免费观看的视频| 女人十人毛片免费观看3o分钟| 一个人看视频在线观看www免费| 欧美性猛交╳xxx乱大交人| 国产在线男女| 中文字幕熟女人妻在线| 亚洲中文日韩欧美视频| 日韩强制内射视频| 日韩在线高清观看一区二区三区| 成人漫画全彩无遮挡| 日韩欧美在线乱码| 嫩草影院精品99| 亚洲av中文字字幕乱码综合| 男女边吃奶边做爰视频| 亚洲av中文字字幕乱码综合| 91久久精品国产一区二区三区| 国产精品野战在线观看| 欧美一区二区国产精品久久精品| 18+在线观看网站| 国国产精品蜜臀av免费| 精品久久久久久久人妻蜜臀av| 少妇的逼好多水| 亚洲在线观看片| 国产一区亚洲一区在线观看| 99热精品在线国产| 国产一区二区激情短视频| 啦啦啦韩国在线观看视频| 久久人人爽人人爽人人片va| 看片在线看免费视频| 成年女人永久免费观看视频| 在线国产一区二区在线| 99九九线精品视频在线观看视频| 亚洲,欧美,日韩| 乱人视频在线观看| 成人永久免费在线观看视频| 一区二区三区四区激情视频 | 午夜a级毛片| 女人被狂操c到高潮| 少妇人妻一区二区三区视频| 99热这里只有是精品在线观看| 亚洲精品在线观看二区| 国产69精品久久久久777片| 午夜影院日韩av| 女人被狂操c到高潮| 亚洲欧美日韩无卡精品| 国产v大片淫在线免费观看| 97人妻精品一区二区三区麻豆| 久久精品国产99精品国产亚洲性色| 深夜a级毛片| 中出人妻视频一区二区| 成人国产麻豆网| 亚洲久久久久久中文字幕| 国产高清激情床上av| 久久精品国产鲁丝片午夜精品| 国产蜜桃级精品一区二区三区| 精品人妻一区二区三区麻豆 | 精品久久久久久成人av| 国产成人91sexporn| 国产aⅴ精品一区二区三区波| 99热只有精品国产| 免费观看精品视频网站| 亚洲精品国产成人久久av| 日韩在线高清观看一区二区三区| 嫩草影院新地址| 成人高潮视频无遮挡免费网站| 丝袜美腿在线中文| 在线观看免费视频日本深夜| 欧美色视频一区免费| 国产精品综合久久久久久久免费| 一级黄片播放器| 欧美日本亚洲视频在线播放| 欧美成人精品欧美一级黄| 久久精品久久久久久噜噜老黄 | 老司机午夜福利在线观看视频| eeuss影院久久| 九九爱精品视频在线观看| 日韩制服骚丝袜av| 神马国产精品三级电影在线观看| 99热全是精品| 日韩中字成人| 精品久久久久久久久久久久久| 美女黄网站色视频| 美女被艹到高潮喷水动态| 综合色av麻豆| 日韩,欧美,国产一区二区三区 | 我要搜黄色片| h日本视频在线播放| 18禁裸乳无遮挡免费网站照片| 免费观看在线日韩| 乱系列少妇在线播放| 久久久午夜欧美精品| 国产单亲对白刺激| 国产蜜桃级精品一区二区三区| 最近最新中文字幕大全电影3| 国产一区亚洲一区在线观看| 看黄色毛片网站| 亚洲av一区综合| 老熟妇乱子伦视频在线观看| 国产亚洲精品久久久com| 成人毛片a级毛片在线播放| 久久人人爽人人片av| 久久国产乱子免费精品| 中文字幕免费在线视频6| 久久亚洲精品不卡| 欧美一级a爱片免费观看看| 国产精品日韩av在线免费观看| 亚洲国产日韩欧美精品在线观看| 99国产精品一区二区蜜桃av| 欧美三级亚洲精品| 三级毛片av免费| 国产精品福利在线免费观看| 晚上一个人看的免费电影| www.色视频.com| 亚洲在线观看片| 亚洲国产欧美人成| 日日摸夜夜添夜夜添av毛片| 欧美高清成人免费视频www| eeuss影院久久| 欧美成人免费av一区二区三区| 黄片wwwwww| 极品教师在线视频| 国产精品国产三级国产av玫瑰| 99热这里只有是精品50| 亚洲精品国产成人久久av| 亚洲,欧美,日韩| 91久久精品国产一区二区成人| 99视频精品全部免费 在线| 成人性生交大片免费视频hd| 成人三级黄色视频| 精品人妻一区二区三区麻豆 | 久久久久性生活片| 一a级毛片在线观看| 久久久a久久爽久久v久久| 国产一区二区亚洲精品在线观看| 天天一区二区日本电影三级| 男插女下体视频免费在线播放| 中文字幕av成人在线电影| 亚洲精品456在线播放app| 国产成人91sexporn| 成人一区二区视频在线观看| 午夜亚洲福利在线播放| 在线天堂最新版资源| 国产麻豆成人av免费视频| 搡老岳熟女国产| 精品人妻一区二区三区麻豆 | 国产色爽女视频免费观看| 丰满乱子伦码专区| 久久久久国产网址| 天天躁日日操中文字幕| 99久久九九国产精品国产免费| 亚洲aⅴ乱码一区二区在线播放| 亚洲最大成人中文| 最近中文字幕高清免费大全6| 日韩成人伦理影院| 久久久精品欧美日韩精品| a级一级毛片免费在线观看| 久久久久久国产a免费观看| 99久久精品一区二区三区| 九色成人免费人妻av| 亚洲欧美日韩高清在线视频| 国产私拍福利视频在线观看| 别揉我奶头 嗯啊视频| 精品国产三级普通话版| 99久国产av精品| 91av网一区二区| 国产v大片淫在线免费观看| av国产免费在线观看| 99久国产av精品| 精品久久久久久久久亚洲| 91精品国产九色| 91av网一区二区| 99久国产av精品| 亚洲成人中文字幕在线播放| 如何舔出高潮| eeuss影院久久| 蜜桃久久精品国产亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 蜜桃亚洲精品一区二区三区| 国产精品福利在线免费观看| 国内久久婷婷六月综合欲色啪| 国产蜜桃级精品一区二区三区| 国产av一区在线观看免费| 久久人人爽人人爽人人片va| 免费看光身美女| 日日摸夜夜添夜夜爱| 日韩国内少妇激情av| 精品久久久久久久末码| 波多野结衣高清无吗| 国产精品永久免费网站| 综合色av麻豆| 国产高清不卡午夜福利| 麻豆乱淫一区二区| 精品一区二区免费观看| 成人精品一区二区免费| 国产精品久久视频播放| 午夜福利在线在线| 亚洲天堂国产精品一区在线| 18禁在线播放成人免费| 免费观看在线日韩| 国产精品伦人一区二区| 国产欧美日韩精品亚洲av| 少妇熟女aⅴ在线视频| 日韩亚洲欧美综合| eeuss影院久久| 亚洲丝袜综合中文字幕| 亚洲国产精品成人综合色| 午夜福利高清视频| 久久精品国产亚洲av天美| 欧美性猛交黑人性爽| av天堂中文字幕网| 日本撒尿小便嘘嘘汇集6| 高清日韩中文字幕在线| 国产伦一二天堂av在线观看| 久久午夜亚洲精品久久| eeuss影院久久| 成人欧美大片| 色播亚洲综合网| 男女啪啪激烈高潮av片| 尤物成人国产欧美一区二区三区| 俄罗斯特黄特色一大片| 国产极品精品免费视频能看的| 国产精品久久久久久久久免| 国产男人的电影天堂91| 黄色一级大片看看| 欧美xxxx性猛交bbbb| 婷婷六月久久综合丁香| 欧美日本视频| 禁无遮挡网站| 欧美日韩精品成人综合77777| 成人欧美大片| 久久午夜福利片| 99国产极品粉嫩在线观看| 国产综合懂色| 在线观看美女被高潮喷水网站| 亚洲第一区二区三区不卡| 如何舔出高潮| 国国产精品蜜臀av免费| 国产老妇女一区| 亚洲一区高清亚洲精品| 国产欧美日韩精品亚洲av| 欧美不卡视频在线免费观看| 午夜激情福利司机影院| 丰满人妻一区二区三区视频av| 欧美激情国产日韩精品一区| av女优亚洲男人天堂| 草草在线视频免费看| 久久亚洲国产成人精品v| 亚洲最大成人手机在线| 色噜噜av男人的天堂激情| 亚洲中文日韩欧美视频| 男人的好看免费观看在线视频| 美女免费视频网站| 真人做人爱边吃奶动态| 欧美成人一区二区免费高清观看| 国产午夜精品久久久久久一区二区三区 | 国产成人影院久久av| 亚洲成人精品中文字幕电影| 联通29元200g的流量卡| av卡一久久| 亚洲乱码一区二区免费版| 精品一区二区三区av网在线观看| 日韩av在线大香蕉| 午夜福利在线在线| 淫妇啪啪啪对白视频| 日韩av在线大香蕉| 日本五十路高清| 啦啦啦观看免费观看视频高清| 天天躁日日操中文字幕| 午夜福利18| 国产精品野战在线观看| 一本久久中文字幕| 国产一区二区在线观看日韩| 日韩欧美在线乱码| 国内精品宾馆在线| 亚洲美女视频黄频| 特级一级黄色大片| 国产精品美女特级片免费视频播放器| 亚洲av.av天堂| 日韩精品中文字幕看吧|