• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation of Flow-induced Noise of Two Circular Cylinders in Tandem and Side-by-side Arrangements Using a Viscous/ Acoustic Splitting Method

    2019-12-10 01:42:14DUBingxinZHANGWenpingMINGPingjian
    船舶力學(xué) 2019年9期

    DU Bing-xin, ZHANG Wen-ping, MING Ping-jian

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

    Abstract: A numerical study of the noise caused by flow passing around two circular cylinders with the viscous/acoustic splitting method is performed by using the general multi-physics solver, GTEA.The acoustic characteristics of cylinders in tandem and side-by-side arrangements with different cylinder spacing and different vortex shedding behaviors are investigated at Mach number (Ma) of 0.2 and Reynolds number (Re) of 200. The acoustic fields of two cylinders in tandem arrangement with different flow patterns are all similar to the superposition of two acoustic dipoles with the same uniform flow velocity for which the source intensity is proportional to the lift force coefficient of each cylinder. The flow noise of two side-by-side cylinders directly depends on the flow pattern, and three different acoustic field types are discovered. The directivity distributions of the sound pressure level for the far-field points retain these shapes: (a) A figure-of-eight with a small disturbance in the downstream side (single-body flow pattern); (b) Two unobvious lobes (flip-flopping flow pattern); or (c) A figure-of-eight with an added lobe on the upstream side (synchronized flow pattern).

    Key words: flow-induced noise; two circular cylinders; viscous/acoustic splitting method

    0 Introduction

    The problem of noise caused by flow passing around multiple bodies is important and common in computational aeroacoustics (CAA) and computational hydroacoustics (CHA). The flow noise generated by two circular cylinders is the typical noise of multi-body flow, and the aim of this paper is to explore the acoustic characteristics of two circular cylinders with different flow patterns using the viscous/acoustic splitting method.

    There are few studies of flow-induced noise caused by two circular cylinders and many researchers have investigated the flow noise associated with a single circular cylinder with a small Re to test the accuracy of the acoustic method. In 2002, Inoue at al[7]investigated the sound of a single circular cylinder at Ma=0.05~0.3 and Re=150 by directly solving the 2D compressible Navier-Stokes (N-S) equations. In 2005, Gloerfelt et al[8]studied the flow noise generated by a single circular cylinder at Ma=0.1 and Re=1.1×105with the surface integral of Curle’s formulation. In 2006, Seo et al[9]studied the noise caused by flow passing around a single circular cylinder at Re=150 with the linearized perturbed compressible equation (LPCE)method. In 2008, Cheong et al[10]computed the flow noise of a single circular cylinder by solving the linearized Euler equations with source terms (LEEs).

    In this paper, the flow-induced noise of single circular cylinders at Re=200 and Ma=0.2 is first calculated to test the accuracy and the mesh independence of the viscous/acoustic splitting method. Then the acoustic characteristics of three different flow patterns for two circular cylinders in tandem and side-by-side arrangements are simulated at Re=200 and Ma=0.2.The calculations of the fluid dynamics and acoustic equations are both performed with the general fluid flow solver, GTEA, which is a self-developed unstructured grids finite volume solver.

    1 Governing equations

    The viscous/acoustic splitting method (VASM) was first initiated by Hardin and Pope[11]and then improved by Shen et al[12]by changing the decomposed equations for the basic variables. The derivation of the viscous/acoustic splitting method is based on the compressible NS equations:

    Compressible continuity equation:

    Compressible momentum equation:

    State equation for isentropic flow:

    where ρ, u and p are the compressible density, velocity and pressure, respectively; c is the speed of sound; and μ is the dynamic viscosity.

    The viscous/acoustic splitting method uses a splitting approach introduced by Hardin and Pope for the flows at a small Mach number (Ma≤0.3). The variables (ρ, u, p) in Eqs.(1)-(3)could be split into incompressible and fluctuating acoustic parts as shown in Eqs.(4)-(6):

    where P, U and ρ0stand for the pressure, velocity, and density of the incompressible flow, respectively; and p′, u′ and ρ′ are the acoustic pulsating pressure, velocity and density, respectively.

    The variables of incompressible flow are solved by the incompressible N-S equations:

    Introducing the decomposed variables into Eqs.(1)-(3) and considering Eqs.(7)-(8), the final perturbed acoustics equations could be

    Acoustic continuity equation:

    Acoustic momentum equation:

    Acoustic state equation:

    where A stands for the acoustic co-velocity vector, A= ρu′+ρ′U, and S is the acoustic source and could be written as:

    where μAis equal to μ over ρ.

    The equations of the acoustic boundary condition are shown below:

    Acoustic non-sliding boundary:

    Acoustic non-reflecting boundary[13]:

    where unis the normal compressible velocity, f is the transform function from ?/?xjto ?/?r, r is the distance from acoustic source to the far-field boundary, and (θ,φ )are the underlying variables of spherical coordinates.

    2 Numerical methods

    The collocated finite volume method (CFVM) is adopted for the numerical discretization of both the incompressible fluid dynamics equations and the VASM equations. The SIMPLE algorithms are both used to calculate the fluid and the acoustic equations. The details are described in early publications[14].

    In the flow-induced noise solution process, the flow equations are solved immediately and the acoustic equations are solved after the flow field becomes regular. After the acoustic equations solution process starts, the equations of flow and acoustics are solved, in turn, in each time step so that the flow variables used in acoustic equations can be updated before the calculation of the acoustic equations.

    3 Mathematical model and boundary condition

    Fig.1 Computational domain

    Fig.2 Computational grid of single circular cylinder

    The boundary conditions for each case are the same. In flow simulation, the velocity inlet condition (u=0.2, Ma=68.6 m/s, v=0) is applied on the left semi-circumference and the pressure outlet condition is applied on the right semi-circumference. In calculating the acoustic equations, the inner cylinder surface uses the acoustic non-sliding condition and the acoustic non-reflecting condition is applied on the two semi-circumferences. The time step chosen in the simulation is 0.001 s for Grid A, 0.002 5 s for Grid B, and the acoustic solver is activated at t=3.5 s.

    4 Results and analysis

    4.1 Single circular cylinder

    where U is the free-stream velocity, Fdragand Fliftare the total drag force and lift force on the cylinder, and f is the main peak frequency of Cl.

    Fig.3 Comparison of curves between Henderson and the current work

    Tab.1 The results of the single circular cylinder at Re=200

    Continue Tab.1

    Fig.4 shows the instantaneous sound pressure of the single cylinder. The acoustic results of Grid A and Grid B have a similar distribution: the flow noise of the single cylinder is symmetrically generated by each side of the cylinder and is propagated perpendicular to the stream direction.

    Fig.4 Contour of instantaneous acoustic field

    Fig.5 Curves of sound pressure at points in the time domain

    Fig.6 Curves of sound pressure at points in the frequency domain

    Two monitor points are chosen to study the acoustic characteristic along and vertical to the stream direction: A (0, 20, 0), B (20, 0, 0). Fig.5 shows the sound pressure (p′) curves at two monitor points in the time domain. As shown, the sound pressure curve of point A, Grid B, is close to the result of Shen[20]in the same time period, whereas the period of Grid A’s curve is a little smaller. The sound pressure curve of point B, Grid A, has the same small highfrequency fluctuation and the amplitudes of Grid A’s and Grid B’s curves are the same. Fig.6 shows the sound pressure level (SPL) curves in the frequency domain. According to Fig.6, the main peak frequency of the SPL at point A (vertical to the stream direction) is 13.3 Hz for Grid A and 13.05 Hz for Grid B, which equal the frequency of Cl, and the main peak frequency of the SPL at point B corresponds to the frequency of Cd.

    Fig.7 SPL directivity diagram of the single circular cylinder

    Fig.7 shows the directivity distribution of the SPL for the single circular cylinder with different r. SPL is calculated by Eq.(19):

    where pref=2e-5Pa and peffis the effective sound pressure.

    The correctional equation of r is used to remove the effect of the Mach number on the acoustic directivity:

    As shown in Fig.7, the acoustic directivity distribution of Grid A and Grid B are the same:the directivity distribution of the SPL in the far field has the figure-of-eight shape and the SPL directivity in the near field has two extra small crests in the downstream direction. These two small crests are generated by the non-propagated perturbed wave (pseudo-sound), which quickly disappears along the stream direction. As shown in Fig.4, the domain of the non-propagated perturbed wave of Grid A is a little bigger than that of Grid B.

    According to the discussion above, the flow and acoustic accuracy between Grid A and Grid B are almost the same. Grid B is used in the analysis of two cylinders below and the size of the grid is about 67 340~70 281 for the tandem cylinders and 68 289 ~69 366 for the sideby-side cylinders.

    4.2 Two tandem circular cylinders

    Three different vortex shedding patterns of two tandem cylinders are obtained at s=1.1~5.0 and Re=200, which is close to the result of Vu (2016). Fig.8 gives the vorticity contour of flow with different patterns.

    As shown in Fig.8(a), the flow field of two tandem cylinders with small s is similar to the single cylinder result and is called the single-body (SB) flow pattern. According to Figs.8(b)and 8(c) with middle s, the reattach point appears on the downstream surface of the cylinder and the flow can be classified as the reattachment flow (RF). For Figs.8(d) and 8(e) with large s, the vortex shedding can be clearly seen in the gap between the two cylinders and the flow is the typical vortex shedding (VS) flow.

    Fig.8 Contours of vorticity of two tandem circular cylinders

    Fig.9 Curves of mean drag force coefficients(Cd1, upstream; Cd2, downstream)

    Fig.10 shows the instantaneous sound pressure of two tandem cylinders. The directivity distribution of tandem cylinder noise with different s and different vortex shedding behavior retains the basic figure-of-eight shape. With the increase of s, the center of the acoustic field slightly deviates from the central point of two cylinders.

    Fig.10 Instantaneous sound pressure of two tandem cylinders

    The acoustic source superposition method is used to study the flow noise of two tandem cylinders. The sound field generated by two acoustic dipoles with the same uniform flow velocity is calculated. The location of the source point for the dipoles is the center of each cylinder and the source strength is proportional to Clof each cylinder, respectively. The sound pressure, p′, is calculated:

    where U0is the velocity of uniform flow.

    The acoustic field, calculated by the viscous/ acoustic splitting method and the superposition method, is shown in Fig.11. The far-field acoustic directivity of the two methods have a similar distribution. So the noise caused by flow passing around two tandem cylinders could be approximate to the superposition of two acoustic dipoles, whose source intensity is proportional to the lift force coefficient of each cylinder, respectively.

    Fig.11 Contour of instantaneous acoustic field at s=5 with two different methods

    4.3 Two side-by-side circular cylinders

    Three different vortex shedding behaviors are successfully observed for the two side-byside cylinders at Re=200, s=1.05~4.0 in this article: (1) single-body (SB) flow with small s(s=1.05, 1.1); (2) flip-flopping (FF) flow, in which the two vortices flip-flop in the gap with a random model (s=1.7); and (3) synchronized vortex shedding (VS) flow, in which the shedding vortex of each cylinder is synchronized.

    Fig.12 Curves of mean drag force coefficient

    Fig.13 Vorticity of cylinders at s=1.05, 1.1 with the side-by-side arrangement

    Fig.13 shows the vorticity contours at s=1.05 and s=1.1 with the single-body flow wave pattern. At Re=200, the flow of two cylinders in the side-by-side arrangement with small s could only generate one vortex street but the interference of vortices appears at x>20D in the downstream region and breaks the regular vortex street trace.

    The interference of vortices directly influences the distribution of flow-induced noise.Fig.14 shows the instantaneous sound pressure contours at s=1.05 and 1.1. As shown in Fig.14,the acoustic field of two side-by-side cylinders with the SB flow pattern at Re=200 is not as regular as that of the tandem cylinders. The flow noise generated by the single vortex street does not regularly propagate perpendicular to the stream direction. The direction of sound propagation is not fixed and the acoustic wave petals are not perfectly symmetrical about the x-axis. With the increase of s, the interference of vortices becomes more severe and some small acoustic perturbation appears in the downstream direction.

    Fig.15 Comparison diagram of the SPL curves and Cd, Cl at s=1.1 (1-upstream; 2-downstream)

    Four acoustic monitor points are chosen to study the acoustic characteristic along and vertical to the stream direction with the same radius (20D). Fig.15 shows diagram of the SPL curves of each monitor point and the curves of Cd, Clin the frequency domain. As shown in Fig.15(a),the SPL curves of the symmetry points vertical to the stream direction keep the same shape and the main peak frequency of points A and B is equal to the main frequency of Cl, 6.8 Hz.The SPL of point C in the upstream direction is 10 dB lower than point A and the main peak frequency is 13.6 Hz, which is the main frequency of Cd. The SPL curve of point D in the downstream direction includes some high-frequency disturbance (60-80 Hz), which is caused by the pseudo-sound wave and the main acoustic peak frequency is still 13.6 Hz.

    Fig.16 shows the SPL directivity diagrams with different r values at s=1.05 and 1.1. The SPL directivity distribution of the SB flow pattern retains the figure-of-eight shape in the far field. With the increase of s, some small perturbation appears in the left lobes as the effect of the interference of vortices in the downstream region.

    Fig.16 The sound pressure directivity diagram of two side-by-side circular cylinders

    Fig.17 shows the vorticity distribution of the FF flow pattern at s=1.7. As shown in Fig.17, vortices form in the small gap and there is strong interference from vortices in the downstream domain. The vortices that shed from the inward and outward edge of cylinders crash, break, and coalesce in the downstream region.

    Fig.17 Vorticity of two cylinders at s=1.7 with the side-by-side arrangement

    The intense interference of each vortex directly influences the acoustic field. The perturbation of P on the pressure-out condition with r=150D could not fit the acoustic radiation boundary and the computation region of s=1.7 extends to 400D. Fig.18 gives the distribution of instantaneous sound pressure with s=1.7. The acoustic field of the FF flow pattern could not retain the dipole noise shape and the sound petals generated by the irregular vortices propagate in random directions. The instantaneous distribution of sound pressure is similar to that generated by multipole noise.

    Fig.18 Instantaneous sound pressure of cylinders at s=1.7 with the side-by-side arrangement

    Fig.19 shows the SPL curves of points on the x-axis and y-axis, which are compared with the curves of Cdand Clin the frequency domain. As shown in Fig.19, Cdand Clof each cylinder are irregular in the time domain, but the frequency curves retain similar distributions. So the SPL of points A and B retain similar distribution and the main peak frequencies are 6.65 Hz, 13.3 Hz and 19.95 Hz, which are equal to the peak frequencies of Cl. The SPL of point C in the upstream direction could not maintain the same distribution as the one at point A or B.The peak at 6.65 Hz disappears and the highest SPL appears at 13.3 Hz. Because of the intense interference of the vortices in the downstream domain, the SPL of point D is 20 dB higher than the one at point A or B and does not have the typical peak frequency.

    Fig.19 Comparison diagram of the SPL curves and Cd, Cl at s=1.7 (1-upstream; 2-downstream)

    Fig.20 shows the directivity diagram of the SPL at s=1.7 with different r values. As shown in Fig.20, the SPL directivity diagram of the noise generated by the FF wake pattern did not maintain the figure-of-eight shape. According to the time average, the directivity of the SPL calculated by the effective sound pressure maintains the shape of two unobvious lobes at 80 and 215 degrees.

    Fig.20 SPL directivity diagram of cylinders at s=1.7 with the side-by-side arrangement

    Fig.21 shows the vorticity contours of the VS flow pattern at s=3.0 and 4.0. With an increased gap, the gap flow becomes regular and the vortices that shed from each circular cylinder become two independent processes.

    Fig.21 Vorticity of cylinders at s=3.0, 4.0 with the side-by-side arrangement

    Fig.22 shows the distribution of the instantaneous sound pressure at s=3.0 and 4.0. The acoustic field generated by the VS flow is regular and the sound waves caused by the two regular vortex streets propagate perpendicular to the stream direction. According to Fig.22,the acoustic transmission effect of the gap becomes obvious and the sound wave generated in the downstream region propagates to the upstream region through the gap.

    Fig.22 Instantaneous sound pressure of cylinders at s=3, 4 with the side-by-side arrangement

    Fig.23 Comparison diagram of the SPL curves and Cd, Cl at s=3.0 (1-upstream; 2-downstream)

    Fig.23 and Fig.24 show the SPL curves of points on the x-axis and y-axis at s=3.0 and 4.0.As shown in Fig.23(a), the SPL of the points vertical to the stream direction and the upstream point at s=3.0 have a similar distribution in the frequency domain. The peak frequency of the SPL curves at point A, B and C is 13.8 Hz, which is the peak frequency of Cl. As shown in Fig.21,point D is located in the symmetry axis of the two regular vortex streets and the effect of the pseudo-sound wave becomes small. The SPL curve of point D at s=3.0 has the same peak frequency of Cland the frequency of the pseudo-sound wave appears at the fifth-order harmonic frequency of Cl. According to Fig.24, the SPL curve of the acoustic monitor points at s=4.0 keeps the same regularity of that at s=3.0 and the peak frequency is 13.35 Hz.

    Fig.24 Comparison diagram of the SPL curves and Cd, Cl at s=4.0 (1-upstream; 2-downstream)

    Fig.25 The SPL directivity diagram of cylinders with the side-by-side arrangement

    Fig.25 shows directivity diagrams of the SPL at s=3.0 and 4.0. The SPL directivity distribution of cylinders with the VS flow pattern retains the figure-of-eight shape with an added lobe in the upstream direction.

    5 Conclusions

    The noise generated by flow passing around two tandem or side-by-side circular cylinders was studied by using the viscous/acoustic splitting method. The flow noise of two tandem cylinders with different vortex shedding behaviors maintains similar distribution regularity and could approximate the superposition of two acoustic dipoles with the same spacing and the source intensity of each dipole is proportional to the lift force coefficient of each cylinder. The acoustic field caused by flow passing around two circular cylinders in the side-by-side arrangement is influenced by the different flow patterns. The SPL directivity distributions in the far field retain the following shapes:

    (1) Figure-of-eight with small perturbation of the lobe in the downstream direction (single-body flow pattern);

    (2) Two unobvious lobes at 80 and 215 degrees (flip-flopping flow pattern);

    (3) Figure-of-eight with an added obvious lobe in the upstream direction (synchronized flow pattern).

    搞女人的毛片| 亚洲男人天堂网一区| 日韩欧美免费精品| 国产97色在线日韩免费| 搡老熟女国产l中国老女人| 妹子高潮喷水视频| 久久久久久久久久黄片| 男人操女人黄网站| 日韩大尺度精品在线看网址| 妹子高潮喷水视频| 日本精品一区二区三区蜜桃| 高清毛片免费观看视频网站| 日本三级黄在线观看| 亚洲最大成人中文| 亚洲欧美日韩无卡精品| 搡老妇女老女人老熟妇| 熟女少妇亚洲综合色aaa.| 美国免费a级毛片| 日韩精品青青久久久久久| 亚洲精品美女久久久久99蜜臀| 国产精品久久久久久人妻精品电影| 操出白浆在线播放| 在线永久观看黄色视频| a在线观看视频网站| 午夜成年电影在线免费观看| 侵犯人妻中文字幕一二三四区| 丁香欧美五月| 午夜亚洲福利在线播放| 精品午夜福利视频在线观看一区| 白带黄色成豆腐渣| 欧美午夜高清在线| 亚洲成av人片免费观看| 精品一区二区三区av网在线观看| 亚洲成人免费电影在线观看| 国产av不卡久久| 久久午夜亚洲精品久久| 国产激情欧美一区二区| 妹子高潮喷水视频| 色综合站精品国产| 很黄的视频免费| 中文字幕高清在线视频| 最好的美女福利视频网| а√天堂www在线а√下载| 美女 人体艺术 gogo| 可以在线观看毛片的网站| 妹子高潮喷水视频| 亚洲av日韩精品久久久久久密| 精品熟女少妇八av免费久了| 久久精品国产综合久久久| 欧美+亚洲+日韩+国产| 久久香蕉国产精品| 亚洲人成伊人成综合网2020| 欧美绝顶高潮抽搐喷水| 黄色女人牲交| 欧美人与性动交α欧美精品济南到| xxx96com| 丝袜在线中文字幕| 成人亚洲精品一区在线观看| 免费在线观看亚洲国产| 免费在线观看视频国产中文字幕亚洲| 国产精品香港三级国产av潘金莲| 久久精品成人免费网站| 精品国产乱子伦一区二区三区| 一边摸一边做爽爽视频免费| 精品乱码久久久久久99久播| 99精品久久久久人妻精品| 夜夜躁狠狠躁天天躁| 亚洲精品中文字幕在线视频| 国产精品爽爽va在线观看网站 | 亚洲 欧美一区二区三区| 久久久久久免费高清国产稀缺| 岛国视频午夜一区免费看| 国产精华一区二区三区| 怎么达到女性高潮| 午夜免费成人在线视频| 丝袜美腿诱惑在线| 美女扒开内裤让男人捅视频| 欧美三级亚洲精品| 午夜福利免费观看在线| 精品午夜福利视频在线观看一区| 欧美成人午夜精品| 黄色视频不卡| 女人被狂操c到高潮| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩免费av在线播放| 成人免费观看视频高清| 亚洲免费av在线视频| 欧美乱色亚洲激情| 在线视频色国产色| 国产精品久久视频播放| 国产在线精品亚洲第一网站| 亚洲电影在线观看av| 亚洲精品久久成人aⅴ小说| 一级片免费观看大全| 国产激情久久老熟女| 国产精品99久久99久久久不卡| 精品国产美女av久久久久小说| 十八禁人妻一区二区| 国产精品一区二区免费欧美| 午夜福利在线在线| 国产成人精品久久二区二区91| 亚洲男人的天堂狠狠| 侵犯人妻中文字幕一二三四区| 亚洲,欧美精品.| 精品欧美国产一区二区三| 国产1区2区3区精品| 久久久久亚洲av毛片大全| 国产精品av久久久久免费| 99久久综合精品五月天人人| 免费无遮挡裸体视频| 精品国产美女av久久久久小说| 久久九九热精品免费| 免费观看精品视频网站| 在线视频色国产色| 国产色视频综合| 脱女人内裤的视频| www日本黄色视频网| a级毛片在线看网站| xxx96com| 久久久国产欧美日韩av| 亚洲精品久久国产高清桃花| 精品高清国产在线一区| 91成人精品电影| 免费人成视频x8x8入口观看| 人妻丰满熟妇av一区二区三区| 亚洲全国av大片| 叶爱在线成人免费视频播放| 成人18禁在线播放| 韩国精品一区二区三区| 国产精品 国内视频| 久久久久久久久免费视频了| 久久久国产欧美日韩av| 最近最新免费中文字幕在线| 淫妇啪啪啪对白视频| 日韩精品青青久久久久久| 午夜亚洲福利在线播放| 91大片在线观看| 老熟妇仑乱视频hdxx| 黄色视频,在线免费观看| 亚洲av电影不卡..在线观看| 12—13女人毛片做爰片一| 午夜福利免费观看在线| www.精华液| 在线观看www视频免费| 女生性感内裤真人,穿戴方法视频| 成年免费大片在线观看| 亚洲中文字幕一区二区三区有码在线看 | 国产一级毛片七仙女欲春2 | 亚洲国产高清在线一区二区三 | 九色国产91popny在线| 午夜视频精品福利| 亚洲精品中文字幕一二三四区| 国产久久久一区二区三区| 亚洲精品国产区一区二| 性色av乱码一区二区三区2| 国产片内射在线| 午夜视频精品福利| 亚洲精华国产精华精| 成人国语在线视频| 欧美精品亚洲一区二区| 波多野结衣高清作品| 99热6这里只有精品| 日本熟妇午夜| 国产又色又爽无遮挡免费看| 日本一区二区免费在线视频| 亚洲专区国产一区二区| 天天添夜夜摸| 50天的宝宝边吃奶边哭怎么回事| 午夜福利18| 夜夜爽天天搞| 99久久99久久久精品蜜桃| 男人舔女人下体高潮全视频| 99久久国产精品久久久| 又紧又爽又黄一区二区| 99国产综合亚洲精品| 法律面前人人平等表现在哪些方面| 999精品在线视频| 丝袜美腿诱惑在线| 怎么达到女性高潮| 在线观看一区二区三区| 欧美日韩一级在线毛片| 少妇 在线观看| 黄色视频不卡| 色综合欧美亚洲国产小说| 国产99白浆流出| 俄罗斯特黄特色一大片| 夜夜躁狠狠躁天天躁| 亚洲精品一区av在线观看| 欧美黑人巨大hd| 日日爽夜夜爽网站| 国产主播在线观看一区二区| 老司机午夜十八禁免费视频| 亚洲精品中文字幕在线视频| 亚洲欧美一区二区三区黑人| 精品国产乱子伦一区二区三区| 国产亚洲精品第一综合不卡| 黄片大片在线免费观看| 亚洲国产精品合色在线| 久久精品影院6| 精品欧美一区二区三区在线| 一进一出抽搐gif免费好疼| 午夜亚洲福利在线播放| 人妻丰满熟妇av一区二区三区| 亚洲国产毛片av蜜桃av| 长腿黑丝高跟| 久久久国产成人精品二区| 亚洲av五月六月丁香网| 黄色视频不卡| svipshipincom国产片| 精品电影一区二区在线| 欧美成人一区二区免费高清观看 | 成人国语在线视频| 亚洲精品中文字幕在线视频| 久久精品91无色码中文字幕| 不卡av一区二区三区| 波多野结衣高清作品| 91麻豆av在线| 久久欧美精品欧美久久欧美| 国产精品久久视频播放| 欧美性长视频在线观看| 久久久水蜜桃国产精品网| 国产v大片淫在线免费观看| 精品国产超薄肉色丝袜足j| 国产亚洲精品久久久久5区| 淫妇啪啪啪对白视频| www日本黄色视频网| av福利片在线| 亚洲国产高清在线一区二区三 | 窝窝影院91人妻| 啦啦啦免费观看视频1| 麻豆国产av国片精品| 女性被躁到高潮视频| 变态另类丝袜制服| 国产高清videossex| 亚洲专区中文字幕在线| 成人手机av| 熟妇人妻久久中文字幕3abv| 国产精品爽爽va在线观看网站 | 国产精品香港三级国产av潘金莲| 夜夜夜夜夜久久久久| 亚洲电影在线观看av| 亚洲精品中文字幕一二三四区| 国产精品电影一区二区三区| 精品乱码久久久久久99久播| 欧美国产日韩亚洲一区| www日本黄色视频网| 18禁黄网站禁片午夜丰满| 国产精品98久久久久久宅男小说| 性色av乱码一区二区三区2| 欧美最黄视频在线播放免费| 岛国视频午夜一区免费看| 成人亚洲精品av一区二区| 日韩精品青青久久久久久| 99riav亚洲国产免费| 又黄又粗又硬又大视频| 亚洲无线在线观看| 免费观看精品视频网站| 免费在线观看完整版高清| 亚洲第一欧美日韩一区二区三区| 久久欧美精品欧美久久欧美| 日韩有码中文字幕| 妹子高潮喷水视频| a在线观看视频网站| 欧美国产精品va在线观看不卡| 亚洲精品美女久久av网站| 亚洲精品国产一区二区精华液| 亚洲精品在线观看二区| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产国语对白av| 国产真人三级小视频在线观看| 色播亚洲综合网| 午夜福利成人在线免费观看| 成人精品一区二区免费| 日韩欧美 国产精品| 亚洲狠狠婷婷综合久久图片| 少妇的丰满在线观看| 久久久久九九精品影院| 国产人伦9x9x在线观看| 12—13女人毛片做爰片一| 国产三级黄色录像| 黄色片一级片一级黄色片| 亚洲欧洲精品一区二区精品久久久| 亚洲专区国产一区二区| 精品乱码久久久久久99久播| 午夜精品久久久久久毛片777| 99国产精品99久久久久| 国产三级在线视频| 亚洲欧美一区二区三区黑人| 国产av一区在线观看免费| 国产99白浆流出| 久久久精品欧美日韩精品| 精品日产1卡2卡| 久久国产精品影院| 亚洲成av片中文字幕在线观看| 三级毛片av免费| 韩国av一区二区三区四区| 99re在线观看精品视频| 久久午夜亚洲精品久久| 在线观看舔阴道视频| 国产不卡一卡二| 欧美成狂野欧美在线观看| 国产精品免费视频内射| 国产精品 国内视频| 超碰成人久久| 国产精品av久久久久免费| 日日爽夜夜爽网站| 亚洲精品粉嫩美女一区| 欧美最黄视频在线播放免费| 亚洲熟妇熟女久久| 欧美大码av| 一区二区日韩欧美中文字幕| 亚洲avbb在线观看| av欧美777| 可以免费在线观看a视频的电影网站| 韩国精品一区二区三区| 99热6这里只有精品| 12—13女人毛片做爰片一| 桃红色精品国产亚洲av| 一边摸一边做爽爽视频免费| 国产成人影院久久av| 超碰成人久久| 国产高清有码在线观看视频 | 亚洲午夜精品一区,二区,三区| 久久中文字幕一级| 国产亚洲精品综合一区在线观看 | 黄色片一级片一级黄色片| 亚洲一区二区三区色噜噜| 免费看十八禁软件| 精品少妇一区二区三区视频日本电影| 免费看十八禁软件| 国产亚洲精品久久久久久毛片| 一级片免费观看大全| 国产精品乱码一区二三区的特点| 国产高清有码在线观看视频 | 熟女电影av网| 午夜福利视频1000在线观看| 久久香蕉精品热| 久久精品91无色码中文字幕| 在线观看免费视频日本深夜| 男人的好看免费观看在线视频 | 精品乱码久久久久久99久播| 精品久久久久久久久久免费视频| 天堂动漫精品| 欧美最黄视频在线播放免费| 久久久久久国产a免费观看| 怎么达到女性高潮| 亚洲精品粉嫩美女一区| 男男h啪啪无遮挡| 啦啦啦 在线观看视频| 中文字幕久久专区| 国产一区二区激情短视频| 黄色a级毛片大全视频| 国产av一区二区精品久久| 熟女少妇亚洲综合色aaa.| 国产一区在线观看成人免费| www.精华液| 久久人人精品亚洲av| 麻豆av在线久日| 免费在线观看视频国产中文字幕亚洲| 精品免费久久久久久久清纯| 免费在线观看日本一区| 两个人免费观看高清视频| 亚洲av电影不卡..在线观看| 黄色女人牲交| 久久热在线av| 变态另类丝袜制服| 国产成人精品久久二区二区免费| 成在线人永久免费视频| 搡老熟女国产l中国老女人| av有码第一页| 在线观看舔阴道视频| 极品教师在线免费播放| 老司机深夜福利视频在线观看| 国产精品av久久久久免费| 香蕉久久夜色| 亚洲一码二码三码区别大吗| 一级a爱视频在线免费观看| 免费搜索国产男女视频| 欧美成人午夜精品| 男人操女人黄网站| 少妇粗大呻吟视频| 99热6这里只有精品| 婷婷精品国产亚洲av在线| 国产日本99.免费观看| 国产男靠女视频免费网站| 两人在一起打扑克的视频| av中文乱码字幕在线| 两人在一起打扑克的视频| 久久人人精品亚洲av| 国产单亲对白刺激| 欧美黑人精品巨大| 中文字幕最新亚洲高清| 男女床上黄色一级片免费看| 久久青草综合色| 国产精品九九99| 国产精品野战在线观看| 免费高清在线观看日韩| 无限看片的www在线观看| а√天堂www在线а√下载| 成人国产综合亚洲| 国产成人影院久久av| 在线观看www视频免费| 好男人在线观看高清免费视频 | 婷婷丁香在线五月| 少妇被粗大的猛进出69影院| 国产在线精品亚洲第一网站| 国产三级黄色录像| 久久精品亚洲精品国产色婷小说| 亚洲av熟女| 欧美不卡视频在线免费观看 | 亚洲天堂国产精品一区在线| 深夜精品福利| 午夜免费鲁丝| 亚洲狠狠婷婷综合久久图片| 色婷婷久久久亚洲欧美| 一边摸一边抽搐一进一小说| 欧美亚洲日本最大视频资源| 久久这里只有精品19| 日韩精品青青久久久久久| 成年免费大片在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 免费观看精品视频网站| 亚洲人成77777在线视频| 又黄又粗又硬又大视频| 亚洲五月天丁香| 亚洲中文字幕日韩| 日本一区二区免费在线视频| 亚洲欧美日韩无卡精品| 欧美国产日韩亚洲一区| 美女高潮喷水抽搐中文字幕| 久久国产亚洲av麻豆专区| 国产亚洲欧美在线一区二区| 成人永久免费在线观看视频| 国产高清有码在线观看视频 | 成人国语在线视频| 精品电影一区二区在线| 亚洲成a人片在线一区二区| 久久久国产欧美日韩av| 精品久久久久久成人av| 欧美黑人欧美精品刺激| 精品国产乱子伦一区二区三区| 女性生殖器流出的白浆| 亚洲va日本ⅴa欧美va伊人久久| 久久精品人妻少妇| 欧美中文日本在线观看视频| 国产精品香港三级国产av潘金莲| 九色国产91popny在线| 国产一区二区激情短视频| 中文资源天堂在线| 一个人观看的视频www高清免费观看 | 日韩大码丰满熟妇| 日韩欧美 国产精品| 非洲黑人性xxxx精品又粗又长| 美女大奶头视频| 亚洲第一电影网av| 日韩三级视频一区二区三区| 亚洲一区二区三区不卡视频| 精品久久久久久久末码| 国产精品综合久久久久久久免费| 欧美黄色淫秽网站| 少妇被粗大的猛进出69影院| 窝窝影院91人妻| 日韩欧美免费精品| 亚洲五月色婷婷综合| 别揉我奶头~嗯~啊~动态视频| 婷婷精品国产亚洲av在线| 人妻久久中文字幕网| 香蕉av资源在线| 脱女人内裤的视频| 免费观看人在逋| 亚洲专区国产一区二区| 在线观看免费午夜福利视频| 天天躁狠狠躁夜夜躁狠狠躁| 制服人妻中文乱码| 精品久久久久久久毛片微露脸| 亚洲国产精品合色在线| 成年人黄色毛片网站| 久久久久亚洲av毛片大全| 亚洲av电影不卡..在线观看| 波多野结衣高清作品| 女人爽到高潮嗷嗷叫在线视频| 99久久无色码亚洲精品果冻| 身体一侧抽搐| 少妇的丰满在线观看| 精品国产美女av久久久久小说| 可以在线观看毛片的网站| 国产伦人伦偷精品视频| 午夜两性在线视频| 在线看三级毛片| 18禁裸乳无遮挡免费网站照片 | 午夜免费激情av| 欧美一区二区精品小视频在线| 亚洲成国产人片在线观看| 久久天堂一区二区三区四区| 真人做人爱边吃奶动态| 国产精品久久久久久人妻精品电影| 不卡一级毛片| 亚洲成国产人片在线观看| 一进一出好大好爽视频| 一区二区三区国产精品乱码| 69av精品久久久久久| 亚洲一区二区三区色噜噜| 夜夜夜夜夜久久久久| 在线永久观看黄色视频| 色综合婷婷激情| 久久亚洲真实| 大型黄色视频在线免费观看| 亚洲男人的天堂狠狠| 亚洲精品美女久久av网站| 国产免费男女视频| 久久九九热精品免费| 午夜影院日韩av| www.熟女人妻精品国产| 欧美日韩中文字幕国产精品一区二区三区| 日韩精品中文字幕看吧| 99精品久久久久人妻精品| 巨乳人妻的诱惑在线观看| 黄色a级毛片大全视频| 日韩欧美免费精品| 欧美三级亚洲精品| 久久精品国产99精品国产亚洲性色| 久久精品国产清高在天天线| 欧美日本视频| 桃红色精品国产亚洲av| 色在线成人网| 人人澡人人妻人| 免费女性裸体啪啪无遮挡网站| 欧美三级亚洲精品| 久久精品国产99精品国产亚洲性色| 久久中文看片网| 在线观看舔阴道视频| 丝袜人妻中文字幕| 国产av在哪里看| 级片在线观看| 免费高清在线观看日韩| 亚洲人成网站在线播放欧美日韩| 亚洲成a人片在线一区二区| 1024香蕉在线观看| 搡老熟女国产l中国老女人| 十八禁人妻一区二区| 国产男靠女视频免费网站| 中文在线观看免费www的网站 | 久久久国产成人精品二区| 美女高潮喷水抽搐中文字幕| 亚洲自偷自拍图片 自拍| 久久午夜亚洲精品久久| www日本黄色视频网| 99精品在免费线老司机午夜| 免费人成视频x8x8入口观看| 好男人电影高清在线观看| 国内久久婷婷六月综合欲色啪| a级毛片a级免费在线| 日本成人三级电影网站| 国产亚洲欧美98| 在线免费观看的www视频| 又黄又粗又硬又大视频| 欧美色视频一区免费| 日韩 欧美 亚洲 中文字幕| 日日摸夜夜添夜夜添小说| 国产伦人伦偷精品视频| 12—13女人毛片做爰片一| 国产精品久久电影中文字幕| 久久久久久国产a免费观看| 国产精品1区2区在线观看.| 国产成人av教育| 国产欧美日韩一区二区三| av电影中文网址| 亚洲色图 男人天堂 中文字幕| 国产一区在线观看成人免费| 免费一级毛片在线播放高清视频| 啪啪无遮挡十八禁网站| 午夜福利在线在线| 男女那种视频在线观看| 最近最新中文字幕大全免费视频| 日本免费一区二区三区高清不卡| 国产成人啪精品午夜网站| 国产一区二区三区在线臀色熟女| 黄网站色视频无遮挡免费观看| 欧美中文日本在线观看视频| 亚洲熟妇熟女久久| 国产精品98久久久久久宅男小说| 99久久精品国产亚洲精品| 深夜精品福利| 婷婷亚洲欧美| 免费在线观看成人毛片| 99精品欧美一区二区三区四区| 女性被躁到高潮视频| 无人区码免费观看不卡| 国产精品,欧美在线| 天天一区二区日本电影三级| 国产国语露脸激情在线看| 丰满的人妻完整版| 搞女人的毛片| 18禁黄网站禁片午夜丰满| 午夜免费观看网址| 老司机深夜福利视频在线观看| 亚洲人成电影免费在线| 在线永久观看黄色视频| 国产免费男女视频| 精品熟女少妇八av免费久了| 一进一出好大好爽视频| 99国产精品一区二区三区| 国产国语露脸激情在线看| 久久中文看片网| 色老头精品视频在线观看| 非洲黑人性xxxx精品又粗又长| 99热只有精品国产| 曰老女人黄片| 桃色一区二区三区在线观看| 变态另类丝袜制服| 在线观看免费视频日本深夜| 国产v大片淫在线免费观看| 久久久久久大精品| 妹子高潮喷水视频| 国产精品 欧美亚洲|