• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Motions of the Floating VAWT Considering the Viscous Damping of the Spar Type Floating Foundation

    2019-12-10 01:06:18LIULiqinZHAOHaixiangZHAOJingruiGUOYing
    船舶力學(xué) 2019年9期

    LIU Li-qin, ZHAO Hai-xiang , ZHAO Jing-rui , GUO Ying

    (1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China;2. Technology Research Dept., CNOOC Research Institute Co., Ltd, Beijing 100028, China)

    Abstract: The motion performance of a 5MW Φ-type Darrieus VAWT (vertical axis wind turbine)was studied in this paper. The floating foundation was of Spar type with heave plates, the viscous damping of which was calculated by using the CFD (Computational Fluid Dynamics) method. The surge, heave and pitch nonlinear coupling dynamic equations of the floating VAWT were established;three typical cases were used to assess the responses of the floating VAWT, and the effects of the aerodynamic loads on the motions of the floating VAWT were analyzed. The results show that the amplitudes of surge, heave and pitch of the floating VAWT are small for the three cases, while the mean values of surge and pitch for case 2 are relatively large due to the blades bearing large aerodynamic loads and the chord of the blades is large.

    Key words: offshore wind power; truss Spar-type floating foundation; VAWT;dynamic response

    0 Introduction

    Based on the direction of the wind wheel rotation axis in space, the wind turbines are divided into horizontal axis and vertical axis wind turbines. Due to the relatively low cost, the horizontal axis wind turbine has developed rapidly in the last 30 years and occupied most of the wind power market share. With the increase of unit capacity (from 50 kW 30 years ago to the current 5 MW and planned 10-20 MW), the size of the wind turbine is becoming larger.The drivetrain of the horizontal axis wind turbine is placed at the top of the wind turbine. The placement of a large drivetrain at the top of the horizontal axis wind turbine will make it a less stable system, especially for the floating offshore wind turbines. Therefore, researchers recommended the vertical axis wind turbine again, such as the Deep Wind project in Denmark[1]and the Inflow project in France[2]. The drive system of the vertical axis wind turbine is located at the bottom of it, which has little effect on the wind turbine tower. Moreover, compared with the horizontal axis wind turbine, the vertical axis wind turbines have the advantages of working properly without an orientation mechanism, of a higher operation wind speed, of less fatigue failure, etc.

    Vita et al[3]designed a preliminary offshore floating vertical axis wind turbine system, with the upper part containing a 5 MW Darrieus wind turbine and the lower part containing a Spartype floating foundation, and analyzed the technical feasibility and economic performance of the wind turbine system. Collu et al[4-5]developed the program FloVAWT for the offshore floating vertical axis wind turbine by using Matlab/Simulink software for the preliminary design.Borg et al[6]verified the reliability of the FloVAWT code by comparing with the Simo-Riflex-DMS code. Their research shows that the aerodynamic characteristics of the vertical axis wind turbine are more complicated than those of the horizontal axis and a more comprehensive model is needed for evaluation. The current program focuses on the motion responses of the floating foundation, the tower, the mooring force and the wind turbine power, and these factors should be further considered; the failure of the mooring cable and the capsizing of the floating foundation should also be studied. Berthelsen[7]improved the HAWC2 software by increasing the DLLS (Dynamic Data Link Library) and made it applicable for aerodynamic load calculation of the floating foundation vertical axis wind turbine. Blusseau[8]analyzed the gyroscopic effect of the vertical axis wind turbine on the motion of the semi-submersible floating foundation in the frequency domain. Owens et al[9]developed a rigid-flexible coupling calculation package which can be used to analyze the effect of rotational motions on the vibration of the flexible structure and the interactions between the blade and the tower. Li et al[10-11]proposed a hybrid numerical wave absorption method for the fully nonlinear fluid structure simulation,and investigated the nonlinear seakeeping problem of a submerged or floating body.

    In this paper, a new truss Spar-type foundation was used to support a 5 MW Φ-type Darrieus wind turbine. Compared with the existing floating foundation used to support the same wind turbine, it has a shorter length than the Spar-type floating foundation (such as the floating foundation presented in Vita’s paper), and has a lighter weight than the semi-submersible type floating foundation (such as the floating foundation presented in Collu’s paper[4]). The feasibility of the new floating vertical wind turbine was preliminarily verified by analyzing its motion performances.

    Fig.1 The floating VAWT

    1 The parameters of the floating VAWT

    The floating VAWT is conceptually designed as shown in Fig.1. The blades drive the tower to rotate, the mechanical energy is converted into electrical energy by the drive mechanism, and the generating device is located in the upper tank of the floating foundation. The wind turbine is a Darrieus-type VAWT, and the main technical parameters are shown in Tab.1[3]. The support foundation is the truss Spar-type floating foundation and the hydrodynamic performance of the floating foundation was studied by Liu et al[12]. The dimensional parameters of the floating foundation are selected as shown in Tab.2.

    Tab.1 Parameters of the wind turbine

    Tab.2 Parameters of the floating foundation

    There are many studies about the Spar-type floating foundation used to support the horizontal axis wind turbine. Karimira et al[13]investigated the influence of wind loads on the motions of the Spar-type floating foundation. Ma et al[14]calculated the dynamic response of the Spar-type wind turbine using the FAST software. Seebai et al[15]analyzed the responses of the Spar platform supporting a 5 MW wind turbine in regular and random waves by experimental and numerical methods. In this paper, the Spar-type floating foundation with heave plates is used to support the VAWT, and the motion performances of the floating VAWT are discussed.

    The floating VAWT is moored by three groups and a total of six catenary mooring lines.The angle between each group of mooring line is 120°. The line is designed in the form of chaincable-chain, and they are connected with the floating foundation through the fairleads. The horizontal distance between the anchor and the fairlead is 162 m and the vertical distance is 90 m. The specific parameters of the mooring line are shown in Tab.3.

    Tab.3 Parameters of the mooring line

    Continue Tab.3

    2 The surge-heave-pitch coupling nonlinear motion equations of the floating VAWT

    2.1 Establishment of the motion equations

    Regarding the whole floating VAWT as a rigid body, considering the inertia force (moment), damping force (moment), restoring force (moment), mooring force, wind and wave loads,the surge-heave-pitch coupled equations of the floating VAWT can be presented as follows,

    For the Spar type floating foundation, the nonlinear coupling between the heave and pitch motions is significant. Referring the nonlinear heave-pitch coupling motions equations of the deep sea truss Spar platform[14-15], the restoring matrix can be written as follows:

    2.2 Aerodynamic loads and wind pressure

    The aerodynamic loads acting on the blades were calculated based on the double-multiple- stream tube theory (Paraschivoiu, 1988). The floating VAWT was dealt as a rigid body,variable interference factors, the dynamic stall (Gormont-Berg model), tower shadow, and Reynolds number variation were considered. The velocities considered the influences of blade rotation, and surge, pitch and heave motions of the floating foundation. The stream tubes were divided into upwind and downwind sectors, the influences of floating foundation motions on the induced velocities of upwind and downwind sectors were considered. Specific derivation process and validation of this model can be found in the work presented by Liu et al[16].

    The steady wind pressure and wind heeling moment acting on the tower and the blades(in the parking state) were calculated in accordance with the rules of the API[17], and the formulas are as follows:

    The wind pressure is acting on the tower at different heights. By taking the moment about the center of gravity of the floating VAWT, the wind heeling moment acting on the pitch motion of the floating VAWT can be obtained.

    2.3 Hydrodynamics and mooring loads

    The hydrodynamic calculation is carried out with Sesam/Wadam[18]. This modular is widely used in calculating the hydrodynamics of the offshore structures including the floating foundation. The structure of the floating foundation is divided into the panel model and the Morison model according to the dimensions of the components. The panel model is used to calculate the hydrodynamics of a large-scale structure (upper buoyancy tank, upper ballast tank, heaving plates, and bottom ballast tank) based on the potential flow theory[19].

    The fairleads are near the center of gravity of the wind turbine system. The mooring restoring forces acting on the surge and heave of the floating VAWT are considered. The restoring forces of the mooring system are calculated based on the catenary theory[20].

    2.4 Damping of the floating foundation

    The damping of the floating foundation moved in water is calculated using the CFD method. Liu et al[21]calculated the damping of a truss Spar platform by the CFD method. The same methods are used to calculate the damping of the truss Spar type floating foundation in this paper, including the model establishment and mesh, the free surface tracking and the motion of the structure, etc.

    The governing equations are the continuous equations and the Navier-Stokes equation, and to avoid grid quality reduction caused by the large difference in the structure sizes, the truss structures are neglected[21].The incoming and outgoing flow regions of the computational region and the distance from the structure to the left and right walls are all 5 times as much as the maximum radius of the floating foundation. The boundary conditions of the computational region are as follows: the floating foundation surface is set as the wall boundary, the upper part of the tank is set as the pressure outlet boundary, the bottom of the tank is set as the wall boundary, and the surroundings of the tank are set as the symmetrical boundary. The numerical tank model established in the Fluent software is shown in Fig.2.

    Fig.2 Numerical tank model

    The tetrahedral grids are used to mesh the structure. To improve the calculation accuracy,the size of the grid increases from the structure to the boundaries gradually and the grids are refined around the structure and the free surface. The smallest grids are around the heave plates,and the smallest grid dimensions of 0.2 m and 0.25 m are calculated and compared. It is shown that the calculation results have no obvious difference. Therefore, the smallest grids dimension 0.25 m is selected (around the heave plates), and the total grid number is about one million.The turbulence model is the k-ε model[22], and the free surface is the gas-liquid two-phase flow boundary. The VOF (Volume of Fluid) method is used to track the fluctuation of the free surface where the air is set as the main phase and the water is set as the second phase. The motion of the structures is controlled by using the UDF (the user defined function). The calculations are carried out in the workstation with Intel E5-2687W CPU, 3.4 GHz Turbo, and internal memory with a capacity of 32 GB.

    Considering the mass and inertia moment of the upper wind turbine (the wind turbine is in the state of parked), the free decay motions of surge, heave and pitch of the floating VAWT in the calm water are simulated, as shown in Figs.3(a)-5(a).

    Fig.3 Free decay curve and extinction curve of surge of the floating VAWT

    Fig.4 Free decay curve and extinction curve of heave of the floating VAWT

    Fig.5 Free decay curve and extinction curve of pitch of the floating VAWT

    The natural periods of surge, heave and pitch are obtained by the average of 7-10 consecutive period cycles of the free decay curves, and the results of natural periods and damping coefficients of the floating VAWT are shown in Tab.4.

    Tab.4 Natural periods and damping coefficients of the floating VAWT

    Tab.4 shows that natural periods of surge, heave and pitch of the floating VAWT are 46 s,23.5 s and 34.0 s, respectively, and they all avoid the range of 3-18 s within which the main wave energy is concentrated.

    3 Results and analysis

    3.1 Control strategy

    Considering the same directions of winds and waves, Eq.(1) are numerically solved by using the Runge-Kuta method. According to the wind speed, the working goals of the wind turbine can be divided into the following three stages:

    (1) When the wind speed is larger than 5 m/s and less than 10 m/s, achieving a higher power coefficient is the goal. The rotation speed of the wind turbine increases until it obtains a higher power coefficient.

    (2) When the wind speed is in the range of 10-16 m/s, it is near the rated wind speed and achieving a higher power is the goal. The corresponding rotation rate is adjusted accordingly.

    (3) When the wind speed is in the range of 16-25 m/s, to ensure safe operation, the rotation rate of the wind turbine is reduced gradually in order to reduce the aerodynamic loads.

    3.2 The response analysis of time histories

    Three groups of environmental parameters are considered as shown in Tab.5. Considering the directions of wind and wave are the same, the motion responses of the floating VAWT are calculated and the corresponding power spectrums are obtained by using the FFT (Fast Fourier Transformation) of the time histories. The calculated results are shown in Figs.6-8. The response amplitude, mean values, and frequency characteristics are further analyzed in Tabs.6 and 7.

    Tab.5 Calculation parameters

    Fig.6 Surge responses of the floating VAWT

    Fig.7 Heave responses of the floating VAWT

    Fig.8 Pitch responses of the floating VAWT

    Tab.6 Analysis of the calculated results

    Tab.7 Frequency components (rad/s)

    Tab.6 shows that the motion amplitudes of surge, heave and pitch of the wind turbine are small. For the extreme wind speed (case 3), the amplitudes are 5.56 m, 0.29 m, and 1.33 degrees for surge, heave and pitch, respectively. The floating VAWT bears large wind loads as the wind wheel is very high and the mean values of surge and pitch motions are relatively large for the case of cut-out wind speed (case 2), the mean value of the pitch motion is 11.61 degrees and that of the surge is 7.75 m. In the actual design, the diameter of the main hull of the floating foundation and the mooring stiffness can be further increased to reduce the mean values of pitch and surge of the floating VAWT.

    The frequency characteristics of the responses of the floating VAWT are different under the three cases. In case 1, the surge frequencies are dominated by the wave frequency (1.26 rad/s). The component of the aerodynamic load frequency (1.15 rad/s) is also included, but the value is small as shown in Fig.6(b). The heave frequency equals the wave frequency; the pitch frequency equals the aerodynamic load frequency. In case 2, the response frequencies of surge,heave and pitch all contain the wave frequency (0.63 rad/s) and the aerodynamic load frequency (0.86 rad/s), where the response frequencies of surge and heave are dominated by the wave frequency, and the pitch frequency is dominated by the aerodynamic load frequency. In case 3, the aerodynamic load is not considered, and the response frequencies of the three degrees of freedom all equal to the wave frequency (0.48 rad/s).

    4 Conclusions

    The motion responses of a 5 MW floating VAWT are studied considering the wind and wave loads. The viscous damping of the floater is calculated by the CFD method. The nonlinear coupling motion equations of surge, heave and pitch of the floating VAWT are established and the motion responses are analyzed. The conclusions are as follows:

    (1) The natural periods of surge, heave and pitch of the floating VAWT are 46 s, 23.5 s,and 34.5 s, respectively, and all avoid the range of 3-18 s where the main wave energy concentrates.

    (2) In cases 1 and 2, the response frequencies of the pitch of the floating VAWT are dominated by the aerodynamic load frequency; the response frequencies of surge are dominated by the wave load frequency and a little component of the aerodynamic load frequency is included; the heave frequencies are dominated by the wave frequency. Therefore, aerodynamic load significantly affects the pitch of this floating VAWT.

    (3) The response amplitudes of surge, heave and pitch of the floating wind turbine are small for the three typical cases. The mean values of the surge and pitch responses of the floating VAWT are relatively large for case 2 as the height of the wind wheel is very high and the large chord of the blades. In the actual design, the diameter of the floating foundation and the mooring stiffness can be further increased to reduce mean values of pitch and surge of the floating VAWT, and the chord of the blades can be further optimized.

    Acknowledgments

    This project is supported by the Natural Science Foundation of China under Grant No.51579176, the Natural Science Foundation of Tianjin (No.16JCYBJC21200), and the Fund of the State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University (No.1501).

    99在线视频只有这里精品首页| 午夜精品在线福利| 日韩精品青青久久久久久| 亚洲av中文字字幕乱码综合| 99久久综合精品五月天人人| 日本免费a在线| 久久精品国产亚洲av香蕉五月| 国产极品精品免费视频能看的| 欧美一级a爱片免费观看看| 老司机午夜十八禁免费视频| 久久香蕉国产精品| 亚洲乱码一区二区免费版| 黄色日韩在线| 99精品在免费线老司机午夜| 日本黄色片子视频| 国模一区二区三区四区视频| 高清日韩中文字幕在线| 成人av一区二区三区在线看| 欧美激情久久久久久爽电影| 最近最新中文字幕大全电影3| 国内精品久久久久久久电影| 日日干狠狠操夜夜爽| 他把我摸到了高潮在线观看| 伊人久久大香线蕉亚洲五| 天天一区二区日本电影三级| 欧美大码av| 99在线视频只有这里精品首页| 午夜亚洲福利在线播放| 俄罗斯特黄特色一大片| 九九久久精品国产亚洲av麻豆| 久久久久久九九精品二区国产| 国产精品一区二区三区四区免费观看 | 国产极品精品免费视频能看的| 香蕉久久夜色| 桃色一区二区三区在线观看| 69av精品久久久久久| 久久亚洲精品不卡| 免费在线观看影片大全网站| 亚洲国产欧美网| 老司机福利观看| 国产v大片淫在线免费观看| 亚洲成av人片免费观看| 免费观看人在逋| 色综合亚洲欧美另类图片| 日韩免费av在线播放| 亚洲中文字幕日韩| 国产成+人综合+亚洲专区| 欧美日韩综合久久久久久 | 三级男女做爰猛烈吃奶摸视频| 亚洲午夜理论影院| 精品久久久久久久久久久久久| 熟女人妻精品中文字幕| 亚洲七黄色美女视频| 国内揄拍国产精品人妻在线| 中文字幕av在线有码专区| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲av嫩草精品影院| 国产精品女同一区二区软件 | 美女高潮的动态| www.www免费av| 国产精品一区二区三区四区久久| 伊人久久大香线蕉亚洲五| 国产亚洲精品久久久久久毛片| 国产成人a区在线观看| 蜜桃亚洲精品一区二区三区| 亚洲五月婷婷丁香| 久久久久久久精品吃奶| 1000部很黄的大片| 丁香六月欧美| 亚洲国产精品久久男人天堂| 51国产日韩欧美| 欧美成人a在线观看| 国产亚洲欧美在线一区二区| 搡老岳熟女国产| 老熟妇仑乱视频hdxx| 国产毛片a区久久久久| av专区在线播放| 少妇人妻精品综合一区二区 | 淫秽高清视频在线观看| 在线观看一区二区三区| 男人舔奶头视频| 国产一区二区三区视频了| 国产精品1区2区在线观看.| 一级毛片高清免费大全| xxx96com| 国产精品永久免费网站| 美女高潮的动态| 在线观看日韩欧美| 18禁裸乳无遮挡免费网站照片| 岛国在线免费视频观看| 制服丝袜大香蕉在线| 亚洲av一区综合| 性色av乱码一区二区三区2| 国产精品精品国产色婷婷| АⅤ资源中文在线天堂| 中文字幕人妻丝袜一区二区| 搡女人真爽免费视频火全软件 | 国产亚洲精品综合一区在线观看| 欧美一级a爱片免费观看看| 精品久久久久久久久久免费视频| 国产精品 欧美亚洲| 午夜福利成人在线免费观看| 国产97色在线日韩免费| 国产精品嫩草影院av在线观看 | 日本在线视频免费播放| 亚洲国产欧美人成| av欧美777| 男人舔奶头视频| ponron亚洲| 亚洲人成网站在线播放欧美日韩| 在线观看66精品国产| 国产熟女xx| 亚洲人成网站高清观看| 亚洲第一电影网av| 亚洲成a人片在线一区二区| 91麻豆av在线| 老司机午夜十八禁免费视频| 国产成人aa在线观看| 精品欧美国产一区二区三| 亚洲精品久久国产高清桃花| 日韩av在线大香蕉| 黄色视频,在线免费观看| 丰满乱子伦码专区| 美女高潮喷水抽搐中文字幕| 国产欧美日韩一区二区三| 国产伦精品一区二区三区视频9 | 久久精品影院6| АⅤ资源中文在线天堂| 国产精品免费一区二区三区在线| 九九久久精品国产亚洲av麻豆| 九九久久精品国产亚洲av麻豆| 亚洲熟妇中文字幕五十中出| 18禁国产床啪视频网站| 国产欧美日韩一区二区三| 国内揄拍国产精品人妻在线| 国产精品久久久久久精品电影| 日韩欧美一区二区三区在线观看| 国产蜜桃级精品一区二区三区| 搡女人真爽免费视频火全软件 | 高潮久久久久久久久久久不卡| 亚洲国产色片| 久久久久国内视频| 精品一区二区三区视频在线 | 欧美日本视频| 国内精品久久久久精免费| 亚洲av不卡在线观看| 色视频www国产| 精品人妻一区二区三区麻豆 | 亚洲av成人av| 五月玫瑰六月丁香| 日韩欧美三级三区| 91麻豆精品激情在线观看国产| 午夜免费成人在线视频| 久久精品91蜜桃| 身体一侧抽搐| 国产精品影院久久| 岛国视频午夜一区免费看| 天堂动漫精品| 露出奶头的视频| а√天堂www在线а√下载| 欧美成人a在线观看| 性色av乱码一区二区三区2| 搡老妇女老女人老熟妇| 日本 欧美在线| 欧美色视频一区免费| 欧美日韩一级在线毛片| 亚洲五月婷婷丁香| 免费在线观看成人毛片| 美女 人体艺术 gogo| 国内精品久久久久久久电影| 黄色丝袜av网址大全| 高清在线国产一区| www国产在线视频色| 精品久久久久久久久久免费视频| 男女那种视频在线观看| 精品一区二区三区av网在线观看| 首页视频小说图片口味搜索| 亚洲欧美日韩高清专用| 色综合站精品国产| 变态另类丝袜制服| 黄片小视频在线播放| 男女下面进入的视频免费午夜| 午夜福利18| 亚洲片人在线观看| 欧美成人性av电影在线观看| av女优亚洲男人天堂| 亚洲av不卡在线观看| 国产av麻豆久久久久久久| 久久国产精品影院| avwww免费| 女人十人毛片免费观看3o分钟| 国产v大片淫在线免费观看| 成人欧美大片| 欧美成人a在线观看| 亚洲男人的天堂狠狠| 天天一区二区日本电影三级| 男人舔女人下体高潮全视频| 最近视频中文字幕2019在线8| 可以在线观看的亚洲视频| 少妇的逼水好多| 久久久久久九九精品二区国产| 国产不卡一卡二| 嫩草影院精品99| 黄色片一级片一级黄色片| 18+在线观看网站| 一级a爱片免费观看的视频| 久久久久久久精品吃奶| 欧美一级毛片孕妇| netflix在线观看网站| 又黄又爽又免费观看的视频| 欧美成人免费av一区二区三区| 精品午夜福利视频在线观看一区| 天堂影院成人在线观看| 免费一级毛片在线播放高清视频| 天天一区二区日本电影三级| 亚洲成人免费电影在线观看| 国产野战对白在线观看| 少妇的逼好多水| 日本一二三区视频观看| 中文字幕人妻熟人妻熟丝袜美 | 99国产极品粉嫩在线观看| 国产私拍福利视频在线观看| 欧美激情在线99| 一进一出抽搐动态| 精品久久久久久久久久久久久| 搞女人的毛片| 一进一出抽搐gif免费好疼| 91麻豆精品激情在线观看国产| 女人十人毛片免费观看3o分钟| 尤物成人国产欧美一区二区三区| 亚洲色图av天堂| 日韩 欧美 亚洲 中文字幕| 免费大片18禁| 在线观看免费午夜福利视频| 国产在线精品亚洲第一网站| 久久香蕉精品热| 日本黄大片高清| 在线视频色国产色| 哪里可以看免费的av片| 午夜免费激情av| 亚洲av不卡在线观看| 99久久99久久久精品蜜桃| 久久精品91蜜桃| 在线观看一区二区三区| 一个人免费在线观看的高清视频| 一进一出抽搐动态| 最新在线观看一区二区三区| www.熟女人妻精品国产| 免费看光身美女| 亚洲真实伦在线观看| 久久久久久国产a免费观看| 成人无遮挡网站| 亚洲在线自拍视频| 熟女电影av网| 国产一区在线观看成人免费| 制服丝袜大香蕉在线| 麻豆国产av国片精品| 日日摸夜夜添夜夜添小说| 欧美三级亚洲精品| 久久国产乱子伦精品免费另类| 成人特级av手机在线观看| 一本一本综合久久| www.熟女人妻精品国产| 亚洲国产日韩欧美精品在线观看 | 18禁国产床啪视频网站| 狠狠狠狠99中文字幕| 欧美日韩福利视频一区二区| 一级黄片播放器| 国产激情欧美一区二区| 在线观看66精品国产| 午夜福利在线在线| 高清日韩中文字幕在线| 一个人免费在线观看的高清视频| 最近在线观看免费完整版| 尤物成人国产欧美一区二区三区| 三级男女做爰猛烈吃奶摸视频| 国内揄拍国产精品人妻在线| 久久6这里有精品| 亚洲一区高清亚洲精品| 欧美成人免费av一区二区三区| 午夜福利在线观看免费完整高清在 | 搡女人真爽免费视频火全软件 | 亚洲国产高清在线一区二区三| avwww免费| 精品免费久久久久久久清纯| 国产精品美女特级片免费视频播放器| 观看免费一级毛片| 一个人看的www免费观看视频| 亚洲精品日韩av片在线观看 | e午夜精品久久久久久久| 国产欧美日韩精品一区二区| 亚洲专区中文字幕在线| 男女床上黄色一级片免费看| 久久久久国内视频| 美女高潮的动态| 国产成人a区在线观看| 身体一侧抽搐| 一二三四社区在线视频社区8| 黄片大片在线免费观看| 久久久久精品国产欧美久久久| 岛国在线观看网站| av国产免费在线观看| 欧美一区二区亚洲| 亚洲一区高清亚洲精品| 欧美绝顶高潮抽搐喷水| 少妇人妻一区二区三区视频| 欧美在线一区亚洲| 欧美另类亚洲清纯唯美| 韩国av一区二区三区四区| 亚洲美女黄片视频| 91在线精品国自产拍蜜月 | 人人妻人人澡欧美一区二区| 男女视频在线观看网站免费| 一卡2卡三卡四卡精品乱码亚洲| 老鸭窝网址在线观看| 欧美丝袜亚洲另类 | 久久精品综合一区二区三区| 久99久视频精品免费| 免费人成在线观看视频色| 国产乱人视频| 亚洲国产精品成人综合色| 两个人看的免费小视频| 97人妻精品一区二区三区麻豆| 一本久久中文字幕| 日本三级黄在线观看| 午夜两性在线视频| 岛国视频午夜一区免费看| 99在线视频只有这里精品首页| 天堂影院成人在线观看| 精品不卡国产一区二区三区| 国产欧美日韩一区二区三| 十八禁人妻一区二区| 亚洲在线观看片| 夜夜看夜夜爽夜夜摸| 国产精品一区二区三区四区久久| 精品熟女少妇八av免费久了| 免费人成在线观看视频色| 精品久久久久久,| 欧美zozozo另类| 亚洲久久久久久中文字幕| 欧美最新免费一区二区三区 | 亚洲一区二区三区不卡视频| 久久精品国产自在天天线| 最后的刺客免费高清国语| 成人欧美大片| 国产一区二区三区视频了| 黄片小视频在线播放| 国产美女午夜福利| netflix在线观看网站| 精品人妻1区二区| 亚洲狠狠婷婷综合久久图片| xxxwww97欧美| 欧美乱码精品一区二区三区| 亚洲真实伦在线观看| 乱人视频在线观看| 国内精品久久久久久久电影| 91九色精品人成在线观看| 美女免费视频网站| 狠狠狠狠99中文字幕| 亚洲avbb在线观看| 国产精品99久久99久久久不卡| 国内揄拍国产精品人妻在线| 91久久精品国产一区二区成人 | 窝窝影院91人妻| 免费在线观看影片大全网站| 久久久久久大精品| 国产精品久久久久久久久免 | xxxwww97欧美| 国产精品一区二区三区四区免费观看 | 成人特级黄色片久久久久久久| 日本精品一区二区三区蜜桃| 亚洲五月婷婷丁香| 国产色婷婷99| 又粗又爽又猛毛片免费看| 天天添夜夜摸| 狂野欧美激情性xxxx| 757午夜福利合集在线观看| 亚洲片人在线观看| 一边摸一边抽搐一进一小说| 精品久久久久久久久久免费视频| 国产乱人视频| 午夜亚洲福利在线播放| 成熟少妇高潮喷水视频| 小说图片视频综合网站| 美女高潮喷水抽搐中文字幕| 麻豆成人午夜福利视频| 国产激情偷乱视频一区二区| 午夜福利在线在线| 18禁美女被吸乳视频| 欧美日韩亚洲国产一区二区在线观看| 一个人看的www免费观看视频| 宅男免费午夜| 可以在线观看的亚洲视频| 搡老熟女国产l中国老女人| 日韩 欧美 亚洲 中文字幕| 嫩草影院入口| 久久人妻av系列| 熟女电影av网| 亚洲精品粉嫩美女一区| 国产中年淑女户外野战色| 欧美绝顶高潮抽搐喷水| 亚洲美女视频黄频| 俺也久久电影网| a级一级毛片免费在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产一区在线观看成人免费| 国产高清有码在线观看视频| 99热这里只有精品一区| 成人特级黄色片久久久久久久| 亚洲精品日韩av片在线观看 | 18禁在线播放成人免费| 午夜精品久久久久久毛片777| 国产激情偷乱视频一区二区| 村上凉子中文字幕在线| 亚洲国产精品成人综合色| 最新美女视频免费是黄的| 1000部很黄的大片| 99国产综合亚洲精品| 午夜福利成人在线免费观看| 亚洲人成网站在线播放欧美日韩| АⅤ资源中文在线天堂| 欧美3d第一页| av天堂中文字幕网| 国产一区二区在线av高清观看| 美女高潮的动态| 99视频精品全部免费 在线| 亚洲内射少妇av| 亚洲第一欧美日韩一区二区三区| 久久国产精品影院| 国产一区二区在线av高清观看| 免费看日本二区| 九九在线视频观看精品| 国产一区二区亚洲精品在线观看| 亚洲欧美激情综合另类| 99久久九九国产精品国产免费| 变态另类丝袜制服| 久久久国产成人精品二区| 国产亚洲精品久久久久久毛片| 亚洲av日韩精品久久久久久密| 女人被狂操c到高潮| 久久中文看片网| 我要搜黄色片| 久久久久精品国产欧美久久久| 久久国产精品影院| 久久久久久国产a免费观看| 久久草成人影院| 亚洲 欧美 日韩 在线 免费| 久久久久久久午夜电影| 特大巨黑吊av在线直播| 在线a可以看的网站| 女生性感内裤真人,穿戴方法视频| 桃色一区二区三区在线观看| 小说图片视频综合网站| 成人特级av手机在线观看| 亚洲人成网站在线播| 老汉色∧v一级毛片| 免费观看人在逋| 九色国产91popny在线| av中文乱码字幕在线| 一边摸一边抽搐一进一小说| 久久久久久久久中文| 久久久成人免费电影| 狂野欧美白嫩少妇大欣赏| 手机成人av网站| 免费av毛片视频| 精品无人区乱码1区二区| 亚洲av二区三区四区| 成年女人永久免费观看视频| 特大巨黑吊av在线直播| 1000部很黄的大片| 亚洲av熟女| 国产欧美日韩精品一区二区| 男人舔女人下体高潮全视频| 久99久视频精品免费| 99视频精品全部免费 在线| 亚洲性夜色夜夜综合| 国产高清三级在线| 亚洲国产精品999在线| 欧美乱妇无乱码| 久久精品国产亚洲av涩爱 | 丰满人妻熟妇乱又伦精品不卡| 欧美日韩黄片免| 亚洲七黄色美女视频| 日日摸夜夜添夜夜添小说| 久久精品夜夜夜夜夜久久蜜豆| 最近在线观看免费完整版| 久久久久国产精品人妻aⅴ院| 国产一区二区激情短视频| 国产精品永久免费网站| 女人高潮潮喷娇喘18禁视频| 美女cb高潮喷水在线观看| 国产亚洲精品av在线| 99久久精品热视频| 亚洲欧美激情综合另类| 亚洲 欧美 日韩 在线 免费| 性色av乱码一区二区三区2| 免费在线观看日本一区| 搡女人真爽免费视频火全软件 | 久久久精品欧美日韩精品| 国产色爽女视频免费观看| 精华霜和精华液先用哪个| 十八禁人妻一区二区| 亚洲va日本ⅴa欧美va伊人久久| АⅤ资源中文在线天堂| 亚洲av不卡在线观看| 97碰自拍视频| 俺也久久电影网| 成年版毛片免费区| 乱人视频在线观看| 久久久精品大字幕| 亚洲美女视频黄频| 成熟少妇高潮喷水视频| 久久久久亚洲av毛片大全| 久久久久九九精品影院| 久久精品国产亚洲av涩爱 | 精品无人区乱码1区二区| 久久精品91蜜桃| 免费搜索国产男女视频| 欧美乱码精品一区二区三区| 哪里可以看免费的av片| 国产在视频线在精品| 国产成人系列免费观看| 狂野欧美白嫩少妇大欣赏| 成年女人看的毛片在线观看| 69av精品久久久久久| 搡老熟女国产l中国老女人| 少妇的逼好多水| 国产综合懂色| 一区福利在线观看| 欧美3d第一页| 午夜福利在线在线| 成人性生交大片免费视频hd| 成人特级黄色片久久久久久久| 日韩av在线大香蕉| 欧美+日韩+精品| 国产精品爽爽va在线观看网站| 啦啦啦观看免费观看视频高清| 国产精品久久久久久精品电影| 一卡2卡三卡四卡精品乱码亚洲| 久久人人精品亚洲av| 久99久视频精品免费| 国产一级毛片七仙女欲春2| 一区二区三区免费毛片| 国产精品99久久久久久久久| 一个人免费在线观看的高清视频| 麻豆一二三区av精品| 亚洲精品国产精品久久久不卡| 国产精品一区二区免费欧美| 国产91精品成人一区二区三区| 亚洲国产中文字幕在线视频| 97人妻精品一区二区三区麻豆| aaaaa片日本免费| 91av网一区二区| 99久久成人亚洲精品观看| 亚洲精品色激情综合| a级一级毛片免费在线观看| 一个人免费在线观看的高清视频| 久久久久久久久中文| or卡值多少钱| 久久精品亚洲精品国产色婷小说| 亚洲av一区综合| 激情在线观看视频在线高清| 一边摸一边抽搐一进一小说| 不卡一级毛片| 国产真实乱freesex| 亚洲av成人不卡在线观看播放网| 国产成人aa在线观看| 欧美日本亚洲视频在线播放| 免费看日本二区| 一区福利在线观看| 亚洲国产精品久久男人天堂| 国产精品,欧美在线| 国产成人啪精品午夜网站| 男女做爰动态图高潮gif福利片| 国产又黄又爽又无遮挡在线| 国产欧美日韩精品亚洲av| 精品久久久久久久人妻蜜臀av| 观看美女的网站| 欧美日韩瑟瑟在线播放| 69av精品久久久久久| 久久国产精品影院| 久久性视频一级片| 又紧又爽又黄一区二区| 亚洲最大成人手机在线| 又粗又爽又猛毛片免费看| 国产视频内射| 亚洲精品成人久久久久久| 高清在线国产一区| 美女高潮喷水抽搐中文字幕| 免费一级毛片在线播放高清视频| 午夜福利免费观看在线| 伊人久久精品亚洲午夜| 18美女黄网站色大片免费观看| a在线观看视频网站| 熟女电影av网| 1024手机看黄色片| 久久久久久人人人人人| 非洲黑人性xxxx精品又粗又长| 无遮挡黄片免费观看| 色综合欧美亚洲国产小说| 亚洲片人在线观看| 99久久成人亚洲精品观看| 深夜精品福利| 国产激情偷乱视频一区二区| 最近视频中文字幕2019在线8| 欧美日韩国产亚洲二区| 亚洲av第一区精品v没综合| 久久精品亚洲精品国产色婷小说| 日日干狠狠操夜夜爽| 三级男女做爰猛烈吃奶摸视频| 禁无遮挡网站| 亚洲精品亚洲一区二区| 蜜桃久久精品国产亚洲av| 长腿黑丝高跟| 搡老熟女国产l中国老女人|