• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    圓錐曲線中有關(guān)斜率類型的定值定點(diǎn)問題

    2019-11-29 09:35:58河南省禹州市第一高級(jí)中學(xué)趙會(huì)貞
    關(guān)鍵詞:過點(diǎn)定值斜率

    ■河南省禹州市第一高級(jí)中學(xué) 趙會(huì)貞

    圓錐曲線中的定點(diǎn)、定值問題是高考中的??碱}型,難度較大,考查知識(shí)間的聯(lián)系與綜合,并且此類題一般計(jì)算量都較大,費(fèi)時(shí)費(fèi)力難以攻破,令很多同學(xué)望而生畏。

    下面給出圓錐曲線中有關(guān)斜率類型的定值定點(diǎn)問題的求解方法,希望對(duì)同學(xué)們的學(xué)習(xí)有所幫助。

    一、常用的結(jié)論

    已知點(diǎn)P(x0,y0)是橢圓=1(a>b>0)上一點(diǎn),過點(diǎn)P作兩條直線交橢圓于A、B兩點(diǎn),則有以下結(jié)論:

    ①kPA+kPB為定值?直線AB過定點(diǎn);②kPA·kPB為定值?直線AB過定點(diǎn)。

    二、應(yīng)用舉例

    例1(2017 年全國(guó)新課標(biāo)Ⅰ卷)已知橢圓=1(a>b>0),四點(diǎn)P1(1,1),P2(0,1)中恰有三點(diǎn)在橢圓C上。

    (1)求橢圓C的方程;

    (2)設(shè)直線l不經(jīng)過P2點(diǎn)且與橢圓C相交于A、B兩點(diǎn),若直線P2A與直線P2B的斜率的和為-1,證明:直線l過定點(diǎn)。

    解析:(1)由于P3,P4兩點(diǎn)關(guān)于y軸對(duì)稱,故由題設(shè)知C經(jīng)過P3,P4兩點(diǎn)。

    (2)設(shè)直線P2A與直線P2B的斜率分別為k1,k2。

    如果直線l與x軸垂直,設(shè)l:x=t,由題設(shè)知t≠0,且|t|<2,可得A,B的坐標(biāo)分別為。則k1+k2==-1,解得t=2,不符合題意。

    從而可設(shè)l:y=kx+m(m≠1)。

    將y=kx+m代入+y2=1得:

    例2已知橢圓=1(a>b>0)過點(diǎn)P(2,1),且離心率為,過點(diǎn)P作兩條互相垂直的直線分別交橢圓于A、B兩點(diǎn)(A、B不與點(diǎn)P重合),求證:直線AB過定點(diǎn),并求該點(diǎn)的坐標(biāo)。

    例3(2019 年全國(guó)新課標(biāo)Ⅱ卷)已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)M(x,y)滿足直線AM與BM的斜率之積為。記M的軌跡為曲線C。

    (1)求C的方程,并說明C是什么曲線。

    (2)過坐標(biāo)原點(diǎn)的直線交C于P,Q兩點(diǎn),點(diǎn)P在第一象限,PE⊥x軸,垂足為E,連接QE并延長(zhǎng)交C于點(diǎn)G。

    (i)證明:△PQG是直角三角形;

    (ii)求△PQG面積的最大值。

    三、小結(jié)

    圓錐曲線中的直線斜率類型的定點(diǎn)、定值問題是高考命題的熱點(diǎn)問題,也是圓錐曲線的難點(diǎn)問題,而此類問題隱藏著很多優(yōu)美的幾何性質(zhì)及圓錐曲線的統(tǒng)一性,很好地體現(xiàn)了數(shù)學(xué)美,同時(shí)在性質(zhì)的探究過程中能培養(yǎng)同學(xué)們的猜想、論證、類比的數(shù)學(xué)思想和能力。

    猜你喜歡
    過點(diǎn)定值斜率
    圓錐曲線的一類定值應(yīng)用
    “大處著眼、小處著手”解決圓錐曲線中的定值問題
    物理圖像斜率的變化探討
    物理之友(2020年12期)2020-07-16 05:39:16
    一個(gè)圓錐曲線性質(zhì)的推廣
    10kV線路保護(hù)定值修改后存在安全隱患
    電子制作(2018年10期)2018-08-04 03:25:02
    10kV線路保護(hù)定值修改后存在安全隱患
    電子制作(2018年12期)2018-08-01 00:48:08
    求斜率型分式的取值范圍
    基于子孔徑斜率離散采樣的波前重構(gòu)
    MMC-MTDC輸電系統(tǒng)新型直流電壓斜率控制策略
    數(shù)學(xué)(二)
    长寿区| 呈贡县| 汨罗市| 红原县| 阿城市| 东乌| 栾川县| 石屏县| 安西县| 镇远县| 巩留县| 永嘉县| 壶关县| 天等县| 伊金霍洛旗| 怀化市| 镇江市| 鹤峰县| 宜黄县| 阜城县| 岫岩| 洪江市| 工布江达县| 仁怀市| 施甸县| 花垣县| 建平县| 珠海市| 秭归县| 普兰店市| 鲁甸县| 昌都县| 白玉县| 漳浦县| 丰镇市| 南岸区| 九龙坡区| 锦州市| 阿克| 乐平市| 醴陵市|