• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    α Decay Properties of Even-Even Nuclei 296?308120 Within the Two-Potential Approach?

    2019-11-07 02:58:46JunYaoXu徐俊瑤JiuLongChen陳玖龍JunGangDeng鄧軍剛JunHaoCheng程俊皓HongMingLiu劉宏銘andXiaoHuaLi李小華
    Communications in Theoretical Physics 2019年11期
    關(guān)鍵詞:徐俊

    Jun-Yao Xu (徐俊瑤), Jiu-Long Chen (陳玖龍), Jun-Gang Deng (鄧軍剛), Jun-Hao Cheng (程俊皓), Hong-Ming Liu (劉宏銘), and Xiao-Hua Li (李小華),2,3

    1School of Nuclear Science and Technology, University of South China, Hengyang 421001, China

    2Cooperative Innovation Center for Nuclear Fuel Cycle Technology & Equipment, University of South China, Hengyang 421001, China

    3Key Laboratory of Low Dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha 410081, China

    Abstract In the present work, we predict the α decay half-lives of unknown even-even nuclei 296?308120 within the two-potential approach, whose α decay energy Qα is calculated using WS3+ mass model.To reduce the deviations between the predictions and experimental data due to nuclear shell effect, the analytic formula of α decay hindrance factor is introduced to the two-potential approach, whose parameters had been extracted from even-even nuclei in the region of 82 < Z ≤126 and 152 < N ≤184 in our previous work [Deng et al., Chin.Phys.C 42 (2018) 044102].In addition, for comparing, we use a type of α decay general formula Universal Decay Law (UDL) and a semi-empirical formula in the superheavy nucleus (SEMFLS) to calculate the half-lives of even-even nuclei 296?308120.The results indicate that our predicted values and the calculated values of the above two empirical formulas are mutually confirmed.Meanwhile, we systematically study α decay chains of 296?308120 and predict the decay modes for superheavy nuclei to help to identify new superheavy isotopes.

    Key words: α decay, two-potential approach, even-even nuclei with Z=120, hindrance factor

    1 Introduction

    The synthesis of heavy elements are of great significance to expand the periodic table of elements and prove the existence about the island of the stable superheavy element.However, the synthesis of superheavy elements and superheavy nuclei containing more neutrons is facing many challenges.It requires that closely combining theory and experiment, and exploring the properties and synthetic mechanism of superheavy nuclei to board the island of the stable superheavy element.[1]In recent years,through hot-fusion reactions between48Ca beams and radioactive actinide targets, element 118 had been successfully synthesized.[2]In the future,if the nucleus ofZ=120 is successfully synthesized, it will be the nucleus with the largest number of protons and neutrons, and be closest to the predictedN=184 shell closure, which will promote the development of heavy ion physics[1]and help to prove the existence of the island of the stable superheavy element.

    Spontaneous fission andαdecay are the two main decay modes of superheavy nuclei.For the most of the synthesized proton-rich superheavy nuclei,αdecay is more dominant than spontaneous fission.[3]Recent works[4?6]shown that the decay modes of even-even nuclei296?308120 wereαdecay.Through studyingαdecay, we can obtain some important information about nuclear shell structure such as ground state properties,energy level structure and so on.[7]

    Up to now, there are many theoretical models and formulas have been used to describe the process ofαdecay such as the cluster model,[8?10]the liquid drop model,[11?15]the unified model forαdecay andαcapture,[16?17]the empirical formulas,[18?22]the ImSahu formula,[23]the effective liquid drop model (ELDM),[24]the Xu formula[25]and so on.Recently, the two-potential approach (TPA), which can obtain a simple algebraic formula for theαdecay width,[26]has been widely used to calculate the half-life ofαdecay.[27?34]In our previous works,[30?38]we systematically studied theαdecay halflives andαdecay preformation probabilities or hindrance factor of heavy nuclei and superheavy nuclei.Meanwhile,we also predicted theαdecay half-lives of superheavy nuclei within the two-potential approach.Our calculations and predictions can well conform to the experimental data.

    In this work,for providing theoretical reference for experiment synthesizing the even-even nuclei296?308120,we predictαdecay half-lives of these nuclei.Because theαdecay half-life is sensitive toαdecay energyQα, how to calculateQαof unknown nuclei becomes a key question.Recently, Sobiczewski[39]analyzedαdecay energyQαusing nine different mass models as follow M?lleret al.(FRDM)[40]Duflo and Zuker (DZ),[41]Nayak and Satpathy (INM),[42]Wang and Liu (WS3+),[43]Wanget al.(WS4+),[45?46]and Muntianet al.(HN),[47?48]Kuzminaet al.(TCSM),[49]Gorielyet al.(HFB31),[50]and Liranet al.(SE).[51]It was found that the deviation between theQαcalculated by WS3+ and the experimental data is the minimal.Therefore in this work we use the WS3+ mass model to calculate theαdecay energyQαof even-even nuclei296?308120.To reduce the deviations between the predictions and experimental data due to the nuclear shell structure,the analytic formula ofαdecay hindrance factor is introduced to the two-potential approach,whose parameters are given in our previous work extracted from eveneven nuclei in region of 82

    Because many new superheavy isotopes were identified by theαdecay chain.For helping the future experimental synthesis more effectively, it is significant to predict theαdecay and spontaneous fission half-lives along theαdecay chain.Recently, there are many models had been used to describe the process of spontaneous fission such as the generalized Swiatecki’s formula,[54?56]the Santhosh(KPS) formula,[57]the Karpov (AVK) formula,[58]and so on.Compared to AVK formula without isospin effect,Zhaoet al.[44]find that the isospin effect contributions are considered in the analytical formula (KPS formula),the theoretical results can better reproduce the experimental spontaneous fission half-lives.In this work, we calculat theαdecay half-lives along296?308120 of theαdecay chain by TPA, UDL, SEMFLS2.While the calculations of spontaneous fission half-lives are carried out by KPS formula.

    This article is organized as follows.In the next section,theoretical framework for calculatingαdecay half-life is briefly described.The detailed calculations and discussion are presented in Sec.3.Finally, a summary is given in Sec.4.

    2 Theoretical Framework

    In the framework of the TPA, the expression of theαdecay half-life is as follows

    whereμ=mdmα/(md+mα) is the reduced mass of the daughter nucleus andαparticle, withmdandmαbeing the mass of the daughter nucleus andαparticle, respectively.In accordance with the calculations by adopting the density-dependent cluster model (DDCM),[59]theαpreformation factorP0is 0.43 for even-even nuclei.

    his the hindrance factor denoting the deviation between the experimentalαdecay half-life and calculation,which can be written as

    where,represent experimental and calculated values.Recently,a simple formula for estimating the variation in theαdecay hindrance factor,which considers the nuclear shell effect and proton-neutron interaction, was put forward[30,60?61]and written as

    wherea,b,c,dandeare adjustable parameters.Z,NandAare the proton number, neutron number and mass number of the parent nucleus, respectively.Z1,Z2andN1,N2denotes proton and neutron magic numbers withZ1

    The normalized factorFis given by internal integration, which can be written as

    wherek(r)=is the wave number ofαparticle withrbeing the mass center distance between theαparticle and the daughter nucleus.

    P, the semiclassical Wentzel-Kramers-Brillouin (WK B) barrier penetration probability, can be calculated by

    wherer1,r2andr3(Eq.(5)) are the classical turning points, which can be obtained by through equationsV(r1)=V(r2)=V(r3)=Qα.

    Theα-core potentialV(r)is composed of the Coulomb potentialVC(r),nuclear potentialVN(r)and the centrifugal potentialVl(r), which is expressed as

    The Coulomb potentialVC(r)is taken as the potential of a uniformly charged sphere with sharp radiusR, which is expressed as follows

    whereZdandZαare the proton numbers of daughter nucleus and theαparticle, respectively.In this work,we choose a type of cosh parametrized form forVN(r),obtained by analyzing experimental data ofαdecay,[62]which is written as

    where the nuclear potential depthV0=192.42 +31.059[(Nd ?Zd)/Ad]MeV withNd,ZdandAdbeing denoted the number of neutron,proton and mass of daughter nucleus, respectively.The nuclear potential diffusenessa0=0.5958 fm.Ris calculated by the nuclear droplet model and proximity energy, and expressed as

    Becausel(l+1)→(l+1/2)2is a necessary correction for one-dimensional problems,[63]in this work we adopt the Langer modified centrifugal barrierVl(r), which can be expressed as

    whereldenotes the orbital angular momentum taken away by theαparticle.l=0 for the even-even nucleiαdecays.

    3 Results and Discussion

    From Sec.2, we can know thatαdecay energy and the hindrance factors are important inputs for calculatingαdecay half-life.Based on the conclusion of Ref.[39],we use the WS3+ mass model to calculate theαdecay energy.In our previous works,[36]theαdecay energy for the nuclei from250Cm to294Og were also calculated by WS3+.The calculations can reproduce the experimental data well.

    In our previous works,[30,32?33,37]the two-potential approach (TPA)[26,64]was used to systematically study theαdecay hindrance factors and/or preformation probabilities for even-even, odd-A and doubly-odd nuclei.It is found that the behaviors of theαdecay hindrance factors and/or preformation probabilities of the same kinds of nuclei (even-even nuclei, odd-A nuclei and doubly-odd nuclei) in the same region are similar, while the regions are divided by the magic numbers of proton and neutron.Meanwhile, theαdecay half-lives of 20 even-even nuclei in region of 82< Z ≤126 and 152< N ≤184(from250Cm to294Og)[36]were systematically calculated by adopting the TPA in Ref.[36].The correspondingαdecay hindrance factors as well as a new set of parameters of hindrance factors considering the nuclear shell effect were extracted.The standard deviations ofαdecay halflives between predictions considering the hindrance factor correction and experimental data for these 20 even-even nuclei, which is from 0.32 to 0.26 when the new parameters are used.For comparing to TPA with unconsidering theαhindrance factors, our model obviously improved by (0.32?0.26)/0.32=18.75%.To clearly observe the reduction of standard deviation, which is considering the hindrance factors, we plot the decimal logarithm deviations between the experimental data of 20 even-even nucleiαdecay half-lives and calculations in Fig.1.In this figure, it obviously indicates that the half-lives calculated by the TPA with consideringαdecay hindrance factors are better than the ones unconsidering.

    Fig.1 (Color online) Decimal logarithm deviations between the experimental data of α decay half-lives and calculations.The circles and diamonds refer to results obtained by the TPA with the hindrance factors being considered and unconsidered, denoted as Calc1 and Calc2,respectively.

    Table 1 The parameters of α decay hindrance factor for even-even nuclei from 82

    These phenomena motivate our interest to further predict the half-lives of superheavy nuclei.The aim of this work is to predict theαdecay half-lives of unknown eveneven nuclei with296?308120 within the two-potential approach, whoseαdecay energyQαare calculated using WS3+ mass model.To reduce the deviations of the predictions due to the nuclear shell effect,the analytic expression of hindrance factorsh?is employed, whose parameters had been extracted from Ref.[36].The calculations ofQα,h?which are obtained by Eq.(4) andare shown in column 2, 3 and 4 of Table 2, respectively.

    For comparatively, we use aαdecay general formula Universal Decay Law (UDL), which the agreement between experiment and the UDL is excellent,[53]and a semiempirical formula in the superheavy nucleus (SEMFLS2).Wanget al.[52]compared 18 different models and found that the half-life calculated by SEMFLS2 model has the smallest deviation from the experimental value.The halflives of nuclei with296?308120 calculated using UDL and SEMFLS2 are shown in column 5 and 6 of Table 2.From this table,we can see thatαdecay half-lives calculated by three models agree well with each other.

    In order to compare the calculated results of the three methods with a more intuitive view, we take the logarithmic form of the calculation results, as shown in Fig.2.From this figure,we can clearly observe that the half-lives calculated by the TPA is well in between the values calculated by the other two methods.

    Fig.2 (Color online) The three theoretical methods are used to calculate the Logarithmic half-lives data of even-even nuclei with Z=120 and its isotopes.The blue triangle,black square and red dot represent the T1/2 predicted by the SEMFLS2 TPA and UDL, respectively.

    Fig.3 (Color online)Comparison of the calculated α decay half-lives with the corresponding spontaneous fission(SF) half-lives of the isotopes 296?308120 and products on its α decay chain.

    Table 2 The calculated results of T1/2 for Z=120, N=176, 178,..., 188 by TPA, UDL, and SEMFLS2.Meanwhile, from WS3+.[43]

    Table 2 The calculated results of T1/2 for Z=120, N=176, 178,..., 188 by TPA, UDL, and SEMFLS2.Meanwhile, from WS3+.[43]

    Nuclei Qα/MeV h?TTPA 1/2 /s TUDL 1/2 /s TSEM2 1/2 /s 296120 13.19 1.52 1.92×10?6 9.25×10?7 5.65×10?6298120 12.90 1.35 5.76×10?6 3.26×10?6 1.80×10?5300120 13.29 1.23 8.40×10?7 5.02×10?7 2.52×10?6302120 12.88 1.13 4.47×10?6 3.10×10?6 1.19×10?5304120 12.75 1.06 7.17×10?6 5.42×10?6 1.54×10?5306120 13.82 1.02 5.60×10?8 3.78×10?8 9.85×10?8308120 13.04 1.00 1.49×10?6 1.17×10?6 1.66×10?6

    Table 3 The calculated results of α decay chain of 296?308120 by TPA, UDL, SEMFLS2 and KPS.Meanwhile, from WS3+.[31]

    Table 3 The calculated results of α decay chain of 296?308120 by TPA, UDL, SEMFLS2 and KPS.Meanwhile, from WS3+.[31]

    Nuclei Qα/MeV TTPA 1/2 /s TUDL 1/2 /s TSEM2 1/2 /s TKPS 1/2 /s 296120→292Og→288Lv→284 Fl→280Cn→276Ds→272Hs→268Sg 296120 13.19 1.84×10?6 9.25×10?7 5.65×10?6 2.66×10+12292Og 12.01 1.92×10?4 8.40×10?5 4.18×10?4 1.87×10+9288Lv 11.11 8.43×10?3 3.28×10?3 1.39×10?2 2.15×10+6284Fl 10.67 3.11×10?2 1.11×10?2 4.03×10?2 4.17×10+3280Cn 10.91 2.02×10?3 6.88×10?4 2.17×10?3 4.69×10+0276Ds 10.98 3.56×10?4 1.26×10?4 3.50×10?4 2.42×10+0272Hs 9.54 4.36×10?1 1.90×10?1 4.23×10?1 1.22×10+1268Sg 8.03 6.70×10+3 3.43×10+3 6.88×10+3 4.14×10+1298120→294Og→290Lv→286Fl→282Cn→278Ds→274Hs→270Sg→266Rf→262No 298120 12.90 5.51×10?6 3.26×10?6 1.80×10?5 3.40×10+11294Og 11.97 1.95×10?4 9.59×10?5 4.32×10?4 2.15×10+8290Lv 10.88 2.61×10?2 1.14×10?2 4.24×10?2 4.39×10+5286Fl 9.94 2.43×10+0 9.69×10?1 3.07×10+0 1.13×10+3282Cn 10.11 2.11×10?1 8.05×10?2 2.11×10?1 1.94×10+0278Ds 10.31 1.40×10?2 5.51×10?3 1.23×10?2 5.44×10?2274Hs 9.54 3.89×10?1 1.76×10?1 3.20×10?1 1.61×10?1270Sg 8.62 4.97×10+1 2.73×10+1 4.04×10+1 1.65×10+0266Rf 7.50 9.33×10+4 6.22×10+4 7.83×10+4 1.79×10+1262No 6.94 2.32×10+6 2.07×10+6 2.14×10+6 1.96×10+2300120→296Og→292Lv→288Fl→284Cn 300120 13.29 8.05×10?7 5.02×10?7 2.52×10?6 6.33×10+9296Og 11.56 1.43×10?3 8.05×10?4 2.96×10?3 1.85×10+7292Lv 10.92 1.77×10?2 8.34×10?3 2.52×10?2 5.49×10+4288Fl 9.47 5.41×10+1 2.31×10+1 5.77×10+1 1.45×10+2284Cn 9.48 1.17×10+1 4.75×10+0 9.54×10+0 2.26×10?1302120→298Og→294Lv→290 Fl→286Cn 302120 12.88 4.29×10?6 3.10×10?6 1.19×10?5 3.73×10+7298Og 12.12 6.83×10?5 3.92×10?5 1.18×10?4 1.45×10+5294Lv 10.45 2.55×10?1 1.31×10?1 2.86×10?1 1.16×10+3290Fl 9.36 1.07×10+2 4.76×10+1 8.25×10+1 6.00×10+0286Cn 8.97 4.42×10+2 1.83×10+2 2.51×10+2 7.74×10?3304120→300Og→296 Lv→292Fl→288Cn 304120 12.75 6.87×10?6 5.42×10?6 1.54×10?5 5.42×10+4300Og 11.91 1.76×10?4 1.09×10?4 2.31×10?4 3.72×10+2296Lv 10.78 3.11×10?2 1.64×10?2 2.49×10?2 5.24×10+0292Fl 8.84 5.21×10+3 2.35×10+3 2.50×10+3 7.87×10?2288Cn 9.04 2.47×10+2 1.05×10+2 8.68×10+1 5.53×10?5306120→302Og→298Lv→294Fl 306120 13.82 5.37×10?8 3.78×10?8 9.85×10?8 4.88×10+0302Og 12.00 9.90×10?5 6.32×10?5 9.18×10?5 2.58×10?1298Lv 10.71 4.20×10?2 2.28×10?2 2.15×10?2 7.39×10?3294Fl 8.63 2.59×10+4 1.17×10+4 6.59×10+3 2.55×10?4308120→304Og→300Lv→296Fl 308120 13.04 1.42×10?6 1.17×10?6 1.66×10?6 1.65×10?3304Og 13.10 4.77×10?7 2.68×10?7 3.42×10?7 9.75×10?6300Lv 10.86 1.61×10?2 8.76×10?3 4.92×10?3 2.24×10?6296Fl 8.50 7.33×10+4 3.25×10+4 8.50×10+3 1.01×10?7

    Because many new superheavy isotopes were identified by theαdecay chain of unknown nuclei to known nuclei.In this work, we also systematically studyαdecay chains of296?308120 and predict the decay modes of nuclei on the decay chains.Theαdecay half-lives are calculated by TPA, UDL and SEMFLS2.The calculations of spontaneous fission half-lives are carried out by KPS formula,[44]whose theoretical results can well reproduce the experimental spontaneous fission half-lives.The calculations are listed in columns 3, 4, 5, and 6 of Table 3, respectively.To intuitively know the decay modes of each nuclei, theαhalf-lives and spontaneous fission half-lives of each nuclei along the chain are shown in Fig.3.In this figure, we know the decay modes of each nuclei in theαdecay chains of296?308120 clearly, and the results are agreed well with NUBASE2003[65]and AME2003.[66?67]The calculations are extended to provide some predictions forαdecay and spontaneous fission half-lives, which will be useful for future experiments to synthesize and detect new superheavy nuclei.

    4 Summary

    In summary,we adopt the two-potential approach taking the analytic formula ofαdecay hindrance factors,which is considered the nuclear shell effect and protonneutron interaction and inputαdecay energyQαcalculated by WS3+ mass model to predictαdecay half-lives of unknown even-even nuclei296?308120.In addition, our results are compared with calculations of UDL and SEMFLS2.The three calculations are mutually confirmed.It is indicated that our predicted theαdecay half-lives of nucleus296?308120 are credible.For predicting the decay modes for superheavy nuclei, we compareαhalf-lives and spontaneous fission half-lives.The values are agreed well with experimental result.It will be more helpful for future experiments.

    猜你喜歡
    徐俊
    Controlling stationary one-way steering in a three-level atomic ensemble
    跤壇名宿“毯子徐”
    寬帶磁共振T/R開關(guān)的設(shè)計與實現(xiàn)
    Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells?
    充 滿
    散文詩(2019年10期)2019-11-20 03:09:26
    充滿
    愛我就抱抱我
    中華家教(2018年9期)2018-10-19 09:38:54
    于情于詩,曰俊曰麗——青年女詩人徐俊麗和她的無題詩
    中華詩詞(2017年5期)2017-11-08 08:48:18
    特別的考題
    水果大賽
    久久久精品94久久精品| 午夜福利免费观看在线| 国产深夜福利视频在线观看| www.自偷自拍.com| 91精品国产国语对白视频| 亚洲精品自拍成人| 久久精品aⅴ一区二区三区四区| 黑人欧美特级aaaaaa片| 国产av精品麻豆| 午夜两性在线视频| 亚洲av电影在线进入| 国产精品一区二区免费欧美 | 可以免费在线观看a视频的电影网站| 国产精品免费视频内射| 在线av久久热| 国产亚洲一区二区精品| 中文字幕亚洲精品专区| 高清视频免费观看一区二区| 日本av手机在线免费观看| 国产精品久久久久久人妻精品电影 | 亚洲久久久国产精品| 1024视频免费在线观看| 亚洲精品av麻豆狂野| 欧美97在线视频| 99国产精品99久久久久| 久久精品久久久久久噜噜老黄| 赤兔流量卡办理| 看免费成人av毛片| 国产精品一区二区免费欧美 | 国产一级毛片在线| 99国产精品99久久久久| 日韩大片免费观看网站| 51午夜福利影视在线观看| 晚上一个人看的免费电影| 成人手机av| 新久久久久国产一级毛片| 一级毛片女人18水好多 | 色精品久久人妻99蜜桃| 午夜福利视频在线观看免费| 夫妻午夜视频| 久久久精品免费免费高清| 9191精品国产免费久久| 老司机深夜福利视频在线观看 | 在线 av 中文字幕| 麻豆乱淫一区二区| 亚洲国产成人一精品久久久| 免费黄频网站在线观看国产| 亚洲人成网站在线观看播放| 男女床上黄色一级片免费看| 国产免费现黄频在线看| 99国产精品一区二区蜜桃av | 久久久久视频综合| 国产亚洲欧美精品永久| 欧美国产精品一级二级三级| 欧美久久黑人一区二区| 黄色怎么调成土黄色| 免费一级毛片在线播放高清视频 | 亚洲精品成人av观看孕妇| 日韩 欧美 亚洲 中文字幕| 久久人妻福利社区极品人妻图片 | 久久亚洲精品不卡| 亚洲精品自拍成人| 久久热在线av| 飞空精品影院首页| 国产精品.久久久| av福利片在线| 国产成人a∨麻豆精品| 三上悠亚av全集在线观看| 国产成人一区二区在线| 午夜av观看不卡| av天堂久久9| 国产亚洲av高清不卡| 国产淫语在线视频| 视频在线观看一区二区三区| 久久影院123| 欧美成人午夜精品| 亚洲中文av在线| 汤姆久久久久久久影院中文字幕| 电影成人av| 一边摸一边做爽爽视频免费| 国产精品国产三级国产专区5o| 三上悠亚av全集在线观看| 亚洲精品美女久久久久99蜜臀 | 久久久亚洲精品成人影院| 一边摸一边做爽爽视频免费| 中文字幕高清在线视频| 欧美日韩一级在线毛片| 国产成人91sexporn| 欧美日韩福利视频一区二区| 亚洲男人天堂网一区| 建设人人有责人人尽责人人享有的| 亚洲免费av在线视频| 后天国语完整版免费观看| 后天国语完整版免费观看| 女警被强在线播放| 久9热在线精品视频| 亚洲黑人精品在线| 亚洲精品久久成人aⅴ小说| 亚洲免费av在线视频| 久久九九热精品免费| 后天国语完整版免费观看| 国产精品免费大片| 色视频在线一区二区三区| 男女边吃奶边做爰视频| 午夜福利视频精品| 丝袜美足系列| 欧美日韩一级在线毛片| 国产精品亚洲av一区麻豆| www.精华液| 国产成人av激情在线播放| 精品国产一区二区久久| av在线app专区| 亚洲黑人精品在线| 成年动漫av网址| 国产精品一二三区在线看| 国产亚洲午夜精品一区二区久久| 午夜激情av网站| 国产日韩一区二区三区精品不卡| 后天国语完整版免费观看| 国产精品麻豆人妻色哟哟久久| 成年动漫av网址| 黄色视频在线播放观看不卡| 免费在线观看日本一区| 伦理电影免费视频| 高清av免费在线| 亚洲成国产人片在线观看| 色综合欧美亚洲国产小说| 国产av国产精品国产| 又紧又爽又黄一区二区| 亚洲国产毛片av蜜桃av| 国产欧美日韩精品亚洲av| 婷婷色麻豆天堂久久| 成年女人毛片免费观看观看9 | 观看av在线不卡| 99九九在线精品视频| 国产xxxxx性猛交| 亚洲精品日韩在线中文字幕| 啦啦啦中文免费视频观看日本| 女人被躁到高潮嗷嗷叫费观| 久久国产精品大桥未久av| 91麻豆av在线| 国产高清视频在线播放一区 | 大码成人一级视频| 另类精品久久| 久久精品国产亚洲av高清一级| 国产片内射在线| 欧美成人精品欧美一级黄| 丝袜美腿诱惑在线| 搡老乐熟女国产| 国产高清视频在线播放一区 | 自拍欧美九色日韩亚洲蝌蚪91| 午夜激情av网站| 国产精品国产av在线观看| 汤姆久久久久久久影院中文字幕| 国产亚洲欧美精品永久| 午夜日韩欧美国产| 久久 成人 亚洲| 中文字幕人妻熟女乱码| 国产麻豆69| 亚洲精品国产色婷婷电影| 夜夜骑夜夜射夜夜干| 十八禁高潮呻吟视频| 人妻 亚洲 视频| 大型av网站在线播放| 最新在线观看一区二区三区 | 一二三四在线观看免费中文在| 午夜影院在线不卡| 国产熟女欧美一区二区| 精品久久久久久电影网| 国产成人免费无遮挡视频| 另类精品久久| 日韩欧美一区视频在线观看| 国产男女超爽视频在线观看| 最近最新中文字幕大全免费视频 | 精品卡一卡二卡四卡免费| 另类精品久久| 欧美老熟妇乱子伦牲交| 色精品久久人妻99蜜桃| 大片电影免费在线观看免费| 黄片播放在线免费| 亚洲一区二区三区欧美精品| 亚洲人成电影观看| 精品一区在线观看国产| 五月天丁香电影| 每晚都被弄得嗷嗷叫到高潮| 日本欧美视频一区| 看十八女毛片水多多多| 天天躁夜夜躁狠狠久久av| 各种免费的搞黄视频| 日日摸夜夜添夜夜爱| 2021少妇久久久久久久久久久| 国产男人的电影天堂91| 青春草亚洲视频在线观看| 午夜激情av网站| 日韩制服丝袜自拍偷拍| 久久av网站| 婷婷色麻豆天堂久久| 青春草亚洲视频在线观看| 97精品久久久久久久久久精品| 乱人伦中国视频| 亚洲第一av免费看| 精品少妇黑人巨大在线播放| 一区二区三区精品91| 制服人妻中文乱码| 妹子高潮喷水视频| 国产在线视频一区二区| 欧美日韩成人在线一区二区| 人人妻人人添人人爽欧美一区卜| 欧美成人午夜精品| 亚洲精品久久成人aⅴ小说| 亚洲伊人久久精品综合| 黄色片一级片一级黄色片| 亚洲欧美一区二区三区久久| 天堂中文最新版在线下载| 操美女的视频在线观看| 午夜91福利影院| 50天的宝宝边吃奶边哭怎么回事| 免费观看a级毛片全部| 少妇被粗大的猛进出69影院| 久久精品久久久久久久性| 伦理电影免费视频| 99国产精品一区二区蜜桃av | 日韩熟女老妇一区二区性免费视频| 一级毛片我不卡| 男女边吃奶边做爰视频| 91国产中文字幕| 男女床上黄色一级片免费看| 成年人午夜在线观看视频| 男女下面插进去视频免费观看| 黑丝袜美女国产一区| 午夜两性在线视频| 50天的宝宝边吃奶边哭怎么回事| 精品国产超薄肉色丝袜足j| 午夜久久久在线观看| 婷婷丁香在线五月| 亚洲色图综合在线观看| 国产日韩一区二区三区精品不卡| 色网站视频免费| av线在线观看网站| 国产亚洲av高清不卡| 免费在线观看完整版高清| 在线 av 中文字幕| 狂野欧美激情性bbbbbb| 热re99久久国产66热| 菩萨蛮人人尽说江南好唐韦庄| 国产一区二区三区av在线| 少妇人妻 视频| 一本—道久久a久久精品蜜桃钙片| 国产一区二区 视频在线| 国精品久久久久久国模美| 9191精品国产免费久久| 18在线观看网站| 最新的欧美精品一区二区| 精品卡一卡二卡四卡免费| 美女高潮到喷水免费观看| 韩国精品一区二区三区| 国产一卡二卡三卡精品| 亚洲第一青青草原| 欧美精品一区二区大全| 少妇人妻久久综合中文| 一级毛片女人18水好多 | 好男人视频免费观看在线| 精品少妇一区二区三区视频日本电影| 一边亲一边摸免费视频| 久久综合国产亚洲精品| 丝袜脚勾引网站| 日本五十路高清| 90打野战视频偷拍视频| 免费人妻精品一区二区三区视频| 2018国产大陆天天弄谢| 脱女人内裤的视频| 亚洲精品国产av成人精品| 亚洲精品中文字幕在线视频| 精品国产一区二区三区四区第35| 欧美黄色片欧美黄色片| 国产男女超爽视频在线观看| 国产精品国产三级专区第一集| 亚洲天堂av无毛| 一边亲一边摸免费视频| 一级毛片我不卡| 久久精品久久久久久久性| 精品亚洲成a人片在线观看| 亚洲国产精品999| 亚洲情色 制服丝袜| 中国国产av一级| √禁漫天堂资源中文www| 七月丁香在线播放| 亚洲欧美成人综合另类久久久| 国产成人啪精品午夜网站| 最新美女视频免费是黄的| 欧美日韩亚洲国产一区二区在线观看| 美女 人体艺术 gogo| 1024手机看黄色片| 99国产精品一区二区蜜桃av| 午夜福利在线观看吧| 99国产综合亚洲精品| 欧美激情极品国产一区二区三区| 国产一区二区三区在线臀色熟女| 亚洲无线在线观看| 亚洲熟妇熟女久久| 久久久久久大精品| 亚洲熟妇熟女久久| 琪琪午夜伦伦电影理论片6080| АⅤ资源中文在线天堂| 国产精品,欧美在线| 亚洲男人天堂网一区| 精品国产美女av久久久久小说| 日韩 欧美 亚洲 中文字幕| 午夜影院日韩av| 女人高潮潮喷娇喘18禁视频| 一进一出抽搐gif免费好疼| 国产精品一区二区精品视频观看| 成人永久免费在线观看视频| 热re99久久国产66热| 精品国产国语对白av| 国产视频一区二区在线看| 亚洲欧美日韩无卡精品| 19禁男女啪啪无遮挡网站| 免费看十八禁软件| 精品第一国产精品| 在线观看免费视频日本深夜| av欧美777| 久久精品成人免费网站| 国产精品九九99| av超薄肉色丝袜交足视频| 亚洲男人的天堂狠狠| 777久久人妻少妇嫩草av网站| 国产主播在线观看一区二区| 最近最新免费中文字幕在线| 国产片内射在线| 中文亚洲av片在线观看爽| 国产私拍福利视频在线观看| 久久中文字幕人妻熟女| 久久精品国产99精品国产亚洲性色| 国产成+人综合+亚洲专区| av中文乱码字幕在线| videosex国产| 三级毛片av免费| 在线观看舔阴道视频| 亚洲精品一区av在线观看| 老汉色av国产亚洲站长工具| 好男人在线观看高清免费视频 | av天堂在线播放| 最好的美女福利视频网| 十八禁网站免费在线| 在线观看午夜福利视频| 成年女人毛片免费观看观看9| 亚洲欧美精品综合久久99| 香蕉久久夜色| 又黄又粗又硬又大视频| 日本黄色视频三级网站网址| av在线播放免费不卡| 久久亚洲真实| 欧美一级毛片孕妇| 久久精品亚洲精品国产色婷小说| 久久欧美精品欧美久久欧美| 亚洲精品美女久久久久99蜜臀| 757午夜福利合集在线观看| 91麻豆精品激情在线观看国产| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美乱码精品一区二区三区| 18禁黄网站禁片免费观看直播| 久久天躁狠狠躁夜夜2o2o| 亚洲在线自拍视频| 大型黄色视频在线免费观看| 99国产综合亚洲精品| 97超级碰碰碰精品色视频在线观看| 欧美绝顶高潮抽搐喷水| 在线观看一区二区三区| 久久久久九九精品影院| 精品第一国产精品| 97碰自拍视频| 叶爱在线成人免费视频播放| 久久草成人影院| 亚洲专区国产一区二区| 美女高潮喷水抽搐中文字幕| 麻豆av在线久日| 国产精品野战在线观看| 久久国产乱子伦精品免费另类| 日韩av在线大香蕉| 观看免费一级毛片| 999久久久国产精品视频| 少妇裸体淫交视频免费看高清 | 99久久无色码亚洲精品果冻| 黑人欧美特级aaaaaa片| 2021天堂中文幕一二区在线观 | 亚洲午夜精品一区,二区,三区| 88av欧美| 午夜老司机福利片| 久久精品亚洲精品国产色婷小说| 久久精品国产亚洲av香蕉五月| 最近在线观看免费完整版| 久久久久免费精品人妻一区二区 | 一个人观看的视频www高清免费观看 | 18美女黄网站色大片免费观看| 日日爽夜夜爽网站| 亚洲第一av免费看| tocl精华| 久久久久国产精品人妻aⅴ院| 成人免费观看视频高清| 久久久久精品国产欧美久久久| 成人三级黄色视频| 久久久久九九精品影院| 美女国产高潮福利片在线看| 久久久久久久久久黄片| 国内精品久久久久久久电影| 国产精品1区2区在线观看.| 久久久水蜜桃国产精品网| 一级作爱视频免费观看| 一本综合久久免费| 1024香蕉在线观看| 国产麻豆成人av免费视频| 777久久人妻少妇嫩草av网站| 亚洲av成人av| e午夜精品久久久久久久| 黑人巨大精品欧美一区二区mp4| 国产午夜精品久久久久久| 亚洲欧美精品综合久久99| 天堂动漫精品| 午夜亚洲福利在线播放| 国产精品 欧美亚洲| 日韩免费av在线播放| 久久精品91无色码中文字幕| 亚洲中文日韩欧美视频| 久久99热这里只有精品18| 国产视频内射| 欧美亚洲日本最大视频资源| 亚洲性夜色夜夜综合| 亚洲天堂国产精品一区在线| 亚洲欧美日韩无卡精品| 在线观看免费午夜福利视频| 精品少妇一区二区三区视频日本电影| 亚洲精品国产精品久久久不卡| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美国产一区二区入口| 两性夫妻黄色片| 欧美日韩瑟瑟在线播放| 色综合站精品国产| 制服人妻中文乱码| 亚洲国产精品999在线| 国产国语露脸激情在线看| 精品少妇一区二区三区视频日本电影| 午夜亚洲福利在线播放| 波多野结衣巨乳人妻| 十八禁人妻一区二区| 欧美激情 高清一区二区三区| 免费在线观看黄色视频的| 久热爱精品视频在线9| 精品免费久久久久久久清纯| 脱女人内裤的视频| 他把我摸到了高潮在线观看| 欧美中文日本在线观看视频| 国产99白浆流出| 99久久无色码亚洲精品果冻| 国产亚洲精品av在线| 免费高清视频大片| 久久伊人香网站| 亚洲自拍偷在线| 99在线视频只有这里精品首页| 欧美乱码精品一区二区三区| 久久精品影院6| 久久久久精品国产欧美久久久| 最好的美女福利视频网| 在线观看免费午夜福利视频| 脱女人内裤的视频| 1024香蕉在线观看| 精品久久久久久成人av| 欧美又色又爽又黄视频| 高清毛片免费观看视频网站| 久久精品亚洲精品国产色婷小说| 免费高清视频大片| 午夜成年电影在线免费观看| 欧美+亚洲+日韩+国产| 欧美成人一区二区免费高清观看 | 巨乳人妻的诱惑在线观看| 一进一出抽搐动态| 欧美激情久久久久久爽电影| 母亲3免费完整高清在线观看| 色综合婷婷激情| 国产精品一区二区三区四区久久 | 老熟妇乱子伦视频在线观看| 女性生殖器流出的白浆| 最近最新中文字幕大全电影3 | cao死你这个sao货| 中文字幕高清在线视频| 亚洲国产欧洲综合997久久, | 婷婷六月久久综合丁香| 久久精品国产99精品国产亚洲性色| 午夜福利高清视频| 一边摸一边抽搐一进一小说| 色婷婷久久久亚洲欧美| 国产一区二区三区在线臀色熟女| 看免费av毛片| 男人舔女人下体高潮全视频| 午夜老司机福利片| 久久婷婷成人综合色麻豆| 啪啪无遮挡十八禁网站| 欧美日本视频| 90打野战视频偷拍视频| 亚洲avbb在线观看| 亚洲成人免费电影在线观看| 亚洲av熟女| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品久久久久久亚洲av鲁大| 给我免费播放毛片高清在线观看| 国产精品一区二区精品视频观看| cao死你这个sao货| 在线十欧美十亚洲十日本专区| 丝袜美腿诱惑在线| 久久精品国产综合久久久| 亚洲成av片中文字幕在线观看| 久久久久精品国产欧美久久久| 日韩欧美一区视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人精品中文字幕电影| 中文字幕精品亚洲无线码一区 | 国产精品九九99| 看免费av毛片| 免费高清视频大片| 人妻丰满熟妇av一区二区三区| 在线永久观看黄色视频| 日韩欧美在线二视频| 亚洲国产精品999在线| 亚洲成国产人片在线观看| 亚洲av成人不卡在线观看播放网| 最近在线观看免费完整版| 亚洲电影在线观看av| 国产精品久久久久久人妻精品电影| 久久精品国产综合久久久| 国产一区二区在线av高清观看| 中文字幕最新亚洲高清| 日韩欧美一区视频在线观看| 日韩欧美在线二视频| 久热这里只有精品99| 国产亚洲欧美精品永久| 国产在线观看jvid| 99久久综合精品五月天人人| 村上凉子中文字幕在线| 欧美中文日本在线观看视频| 欧美av亚洲av综合av国产av| 老司机午夜福利在线观看视频| 男女午夜视频在线观看| 夜夜夜夜夜久久久久| 国产亚洲精品第一综合不卡| 夜夜夜夜夜久久久久| 国产在线观看jvid| 亚洲欧美精品综合久久99| 久久狼人影院| 色av中文字幕| 一区福利在线观看| 亚洲av电影不卡..在线观看| 在线观看一区二区三区| 色尼玛亚洲综合影院| 黄色女人牲交| 亚洲天堂国产精品一区在线| 国产精品免费一区二区三区在线| 国产在线精品亚洲第一网站| 欧美黑人欧美精品刺激| 高潮久久久久久久久久久不卡| 免费在线观看完整版高清| 久久热在线av| 天堂动漫精品| 麻豆一二三区av精品| 国产精品av久久久久免费| av电影中文网址| 听说在线观看完整版免费高清| 超碰成人久久| 亚洲精品中文字幕一二三四区| 天天一区二区日本电影三级| 免费人成视频x8x8入口观看| 又紧又爽又黄一区二区| 十八禁人妻一区二区| 亚洲 欧美 日韩 在线 免费| 中国美女看黄片| 一二三四在线观看免费中文在| 一级片免费观看大全| 美女国产高潮福利片在线看| 欧美在线一区亚洲| 777久久人妻少妇嫩草av网站| 国产精品 国内视频| 女同久久另类99精品国产91| 18禁裸乳无遮挡免费网站照片 | 国产蜜桃级精品一区二区三区| 久久伊人香网站| 午夜免费观看网址| 黄片播放在线免费| 日本精品一区二区三区蜜桃| 日韩大尺度精品在线看网址| 国产一区二区激情短视频| 在线国产一区二区在线| 嫩草影院精品99| 超碰成人久久| 99久久无色码亚洲精品果冻| 黑人巨大精品欧美一区二区mp4| 给我免费播放毛片高清在线观看| 麻豆久久精品国产亚洲av| av超薄肉色丝袜交足视频| 不卡一级毛片| 中文字幕人妻熟女乱码| 大型黄色视频在线免费观看| 老司机午夜十八禁免费视频| 亚洲精品在线观看二区| 女警被强在线播放| 国内少妇人妻偷人精品xxx网站 | 国产一级毛片七仙女欲春2 | 久久婷婷成人综合色麻豆| 黄片大片在线免费观看| 国产黄片美女视频| 久久天躁狠狠躁夜夜2o2o| 不卡一级毛片| 99在线视频只有这里精品首页| 国产视频一区二区在线看| 1024视频免费在线观看| 老司机靠b影院| 两人在一起打扑克的视频|