• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrical transport and optical properties of Cd3As2 thin films?

    2019-11-06 00:46:28YunKunYang楊運坤FaXianXiu修發(fā)賢FengQiuWang王楓秋JunWang王軍andYiShi施毅
    Chinese Physics B 2019年10期
    關鍵詞:王軍

    Yun-Kun Yang(楊運坤),Fa-Xian Xiu(修發(fā)賢),Feng-Qiu Wang(王楓秋),Jun Wang(王軍),and Yi Shi(施毅),6,?

    1Collaborative Innovation Center of Advanced Microstructures,Nanjing 210093,China

    2State Key Laboratory of Surface Physics and Department of Physics,Fudan University,Shanghai 200433,China

    3School of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China

    4School of Optoelectronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China

    5State Key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 610054,China

    6National Laboratory of Solid State Microstructures,School of Physics,Nanjing University,Nanjing 210093,China

    Keywords:topological Dirac semimetals,thin films,photodetectors,ultra-fast optical switches

    1.Introduction

    In remembrance of the renowned Chinese physicist Professor Kun Huang,who made significant contributions to the development of solid-state physics,we start with a brief introduction of his pioneering achievement. Huang’s research was mainly involved with many aspects of phonon physics in solids. He is widely known for his collaboration with Max Born in writing the classic monograph—Dynamical Theory of Crystal Lattices.His contributions include the concept of polaritons,Huang scattering of x-ray,the Huang–Rys factor used for describing electron–phonon interaction,and the Huang–Zhu model used for calculating electron–longitudinal phonon interaction in quantum wells and superlattices.[1–8]In recent years,Huang’s research has been widely used to study various physical problems related to low-dimensional semiconductor materials and phonons,including transport phenomena,Raman scattering,phonon polaritons,and many other frontier problems.[9–11]

    While the theoretical development of phonon dynamics has tremendously benefited the academia and semiconductor industries,the novel concept of topological matters was proposed and specific material systems were discovered in recent years.One representative example of topological systems is the topological insulator(TI),which features bulk states that have an energy bandgap and gapless surface states,allowing surface carriers to have zero effective mass.[12,13]Another intriguing example is topological Dirac semimetals(TDSs).They are a new kind of Dirac material that exhibits linear energy dispersion in the bulk and can be viewed as 3D graphene.It has been proposed that TDSs can be driven to other exotic phases like Weyl semimetals and topological insulators by breaking certain symmetries.One of the most exotic physical properties of these new materials is the chirality of electrons,where the spins of electrons are in parallel or antiparallel to the direction of their motion and thus develop the righthanded or left-handed chiral electrons(widely conceived as chiral anomaly).Theories also predict that topological Dirac semimetals can be driven into a quantum spin Hall insulator with a sizeable bandgap by reducing dimensionality.Driven by these exotic physical properties,extensive experiments on angle-resolved photoemission spectroscopy,[14–17]and scanning tunneling microscopy[18]were carried out to identify the 3D Dirac fermions in these materials.

    The intriguing physics of these TDSs has motivated a surge of research activities towards the development of largescale single-crystalline films for potential applications in electronics and optics. The Cd3As2is considered to be an excellent 3D TDS due to its chemical stability in air, and it also possesses novel transport phenomena such as ultrahigh mobility,[19]large magnetoresistance(MR),[20]nontrivial π Berry’s phase of Dirac fermions,[21]and chiral anomaly induced negative MR.[22,23]Previously, Cd3As2bulk materials,amorphous films,[24]nanowires,[25]and platelets[26]were prepared by various growth methods, and most of magneto-transport measurements so far have focused on Cd3As2bulk materials. However,few efforts were devoted to thin films[27–29]and nanostructures,[25,30]which may exhibit surface phase-coherent transport and quantum size limit effect,[31–33]leading to Aharonov–Bohm oscillations[34]and quantum Hall insulator states.[35]Importantly,a theoreticallypredicted TI phase and thickness-dependent quantum oscillations may also eventually emerge when the dimensionality of the system is reduced.[35,36]Therefore,it is highly desirable to fabricate superb crystallinity Cd3As2thin films for the transport study,and to develop the possible optoelectronic applications by using the Cd3As2thin film system.Here we present a brief review of our recent progress in making such ultra-high mobility Cd3As2thin films via the post-annealing process and in making heterojunction photodetectors and ultrafast optical switches.[37–40]

    2.Electrical transport study in intrinsic Cd3As2 thin films

    A series of wafer-scale Cd3As2thin films were grown via a molecular beam ppitaxy(MBE)system at a base pressure lower than 2×10?10mbar(1 bar=105Pa). Singlepolished sapphire and clean cleaved mica substrates were selected for electrical transport measurements.Before growing the Cd3As2layer,the substrates were degassed at 400?C for 30 min to remove gas molecules absorbed on the surface.Especially,a buffer layer of CdTe was deposited on the substrates in order to achieve a better crystalline match. The Cd3As2thin film deposition was carried out on the top of the buffer layer with high-purity Cd3As2(99.999%)from dualfilament and valve-cracker effusion cells.The growth process and film thickness awere in situ monitored by the reflection high-energy electron diffraction(RHEED).

    3.Results

    Fig.1.(a)Schematic diagram of standard six-probe Hall bar fabricated on Cd3As2 thin films with mica substrate,used for transport measurements in the PPMS system. Crystal orientation is(112),which is perpendicular to the magnetic field(up to 9 T).(b)Zero-field temperature-dependent longitudinal resistance Rxx curves for five Cd3As2 thin films with different thicknesses ranging from 50 nm to 900 nm;Rxx drops with sample thickness reducing,indicating a thickness-induced insulator-to-metal transition.(c)Variations of carrier mobilityμwith temperature.Carrier mobility is about 3750 cm2·V?1·s?1–9750 cm2·V?1·s?1 at 2 K.(d)Sketch of band structure with band gap opening for Cd3As2 thin films.(e)MR ratio at 2 K,showing non-saturation behavior and the largest ratio reaching 343.5%.(f)Nearly linear relationship between MR and electron mobility,which drops from 343.5%to 58.8%.Figure 1 is adapted from Ref.[38].

    As displayed in Fig.1(a),a standard six-probe Hall bar geometry is patterned on the Cd3As2thin film with a channel size of 1.5 mm×1 mm.Low-temperature electrical transport measurements are carried out for samples with filme different thickness in a physical properties measuring system(PPMS,up to 9 T).The zero-field resistance–temperature(R–T)curves of longitudinal magnetoresistance Rxxof the Cd3As2thin films with different thicknesses are shown in Fig.1(b)(Σ1–Σ5).Meanwhile,the transverse resistance(Rxy)versus magnetic field B is measured at T=2 K,where the negative slope of Rxyshows that electrons are the dominant charge carriers in intrinsic Cd3As2thin films.As shown in Fig.1(c),derived from the Rxy–B linear parts,the typical temperature-dependence of Hall mobility(μ)is in a range of 3.8×103cm2·V?1·s?1–9.1×103cm2·V?1·s?1at 2 K.The mobility significantly increases as the temperature T drops,which can be attributed to the alleviated electron–phonon scattering at low temperatures.Besides,the sheet carrier density(ns)at 2 K changes from 3.4×1012cm?2to 24×1012cm?2,and the corresponding carrier concentration(n3D)is determined to be 1×1017cm?3–8×1017cm?3.Figure 1(d)shows a band schematic structure for a typical Cd3As2thin film. When the dimensionality is reduced,a gap is expected to open.The Fermi levels marked in the diagrams are calculated from Shubnikov–de Haas(SdH)quantum oscillations,which will be discussed below.Comparing with the Rxx–T curves mentioned above,the relative position between Fermi levels and band edges is almost consistent with each other. Moreover,figure 1(e)exhibits that a large positive magnetoresistance(MR)at 2 K in a series of Cd3As2films shows a parabolic behavior at low fields and quasi-linear property at high fieldsIt does not show a saturated tendency when the magnetic field increases,and the maximum MR ratio is close to 343.5%at B=9 T.Especially,related to the electron mobility,the corresponding MR ratio at 9 T drops from 343.5%to 58.8%. As shown in Fig.1(f),there exists an almost linear relationship between the MR ratio and mobility,which is consistent with the previous study.[41]Due to the Dirac band structure and the high mobility in Cd3As2thin films,there are strong SdH quantum oscillations in Rxxfor most of our samples at 2 K as shown in Fig.1(e).

    3.1.Post-annealing effect on intrinsic and Zn-dopedthin films

    In order to further enhance the crystalline quality,the asgrown films were annealed at elevated temperatures after depositing a 120-nm-thick Al2O3capping layer on the top.It can protect the underlying thin films from being oxidized in the annealing process.Figure 2(a)illustrates the structure of the multi-layered film.Figure 2(b)shows the XRD spectra which are enlarged to highlight the change of the Cd3As2(224)peaks marked by the grey dashed line.The broader peak at the left of the(224)peak comes from CdTe(111).It is evident that(224)peaks become sharper as the annealing temperature increases.In Fig.2(c)summarized is the variation of the full width at half maximum(FWHM),which indicates that the Cd3As2film undergoes recrystallization after annealing procedure that effectively reduces the FWHM.

    Fig.2.(a)Schematic illustration of capping and annealing film structure,(b)XRD patterns at different annealing temperatures,(c)value of FWHM varying with annealing temperature.Experimental data denoted as 0 ?C in panels(b)and(c)represent the results for samples before annealing but after ALD process;and origin and OG in panels(b)and(c),respectively,represent samples before the ALD process.

    The post-annealing process brings about a significant enhancement of quantum oscillations. Figures 3(a)and 3(b)show the normalized resistance changes with temperature at different annealing temperatures.Below 650?C,the samples show a metallic behavior with a small upturn at low temperatures. In a temperature range of 0?C–550?C,the residue resistance ratio(RRR)decreases with the increase of annealing temperature. Once the temperature reaches 650?C,the film shows a semiconducting behavior.

    The small upturn in the R–T curves at low temperatures could have two origins.One is electron–electron interaction,and the other is weak localization. Both of the two mechanisms will lead to a very similar upturn feature in the R–T curve,i.e.,the R–T curve will be linear in the logarithmic scale at low temperatures. We examine the linear behaviors of several samples and suggest that the contribution from localization is the main contribution to the metallic-insulating transition.We then study the MRs of these samples at 2 K.As shown in Figs.3(c)and 3(d),the sample without and with annealing(at 200?C)shows a negative MR accompanied by SdH oscillations.By further increasing the annealing temperature,the negative MR decreases but the oscillation amplitude is unchanged. When the annealing temperature exceeds 400?C,the amplitude of oscillation is dramatically enlarged.

    Fig.3.(a)and(b)R–T curves with different annealing temperatures,showing that RRR decreases with annealing temperature increasing when T<550 ?C,tendency is opposite above 550 ?C,and a semiconducting property occurs at higher annealing temperatures;(c)and(d)curves of oscillation amplitudes versus field,indicating that amplitude increases with annealing temperature rising.

    Further,Zn is doped into Cd3As2to reduce the Fermi level.The size of Fermi surface can be extracted from the SdH oscillations.With the Zn concentration increasing,the oscillation frequency(SF)decreases and the Fermi level decreases as summarized in Table 1.For the samples with low Zn concentration,it is easier to reach a quantum limit at high magnetic fields.

    Table 1.Fermi level decreasing with Zn concentration increasing.

    In short,the rapid annealing process can enhance the crystal quality by reducing defects via developing a recrystallization process.After annealing,the mobility of thin films rises,while the SdH oscillations become strikingly stronger.

    3.2.Cd3As2 heterojunction photodetectors

    Based on the high-quality Cd3As2thin films, a Cd3As2/pentacene heterojunction photodetector is fabricated as shown in Fig.4(a).The diagram of Cd3As2/pentacene heterojunction is described in Fig.4(b). A positively-charged empty state exists in the depletion region in n-type Cd3As2,when electrons move from the n-type Cd3As2into the lower energy states of the p-type pentacene. The band is bent up near the heterojunction to form a built-in field.Pentacene,as a kind of organic matter,is chosen as the p-type material in heterojunction photodetector.The organics is accessible and low-cost so that they are hopeful to be applied to large-scale devices.Besides,the dark current of organics is low,which is important for photodetectors.

    For heterojunction-based photodetectors,the I–V curve shows a rectification characterisitics of the photodetector with or without illumination,and we select the appropriate bias voltage(Vbias)which is exhibited in Fig.5(a). We chose 0.5 mV to be the main test Vbiasaccording to the Iill/Idarkratio.The photocurrent curves of the Cd3As2/pentacene heterojunction are measured under different wavelengths 450 nm–1550 nm,with a laser power of 10 mW while 2800 nm and 10600 nm whose laser powers are nearly 5.8 mW and 50 mW.Figures 5(b)and 5(c)show the photocurrents of Cd3As2/pentacene heterojunction photodetectors without and with the bias voltage,respectively.Obviously,the photocurrents with Vbiasare higher than those without Vbias. The wide-waveband photoelectric response is associated with the Cd3As2/pentacene heterojunction absorption.Figure 5(d)indicates that the photocurrent increases almost linearly with Vbiasincreasing,which means that the device is stable and consistent.The amplitude of the light current increases with the Vbiasincreasing.The above results manifest good periodicity and switching characteristics of the devices.

    As shown in Fig.5(e),the responsivity Riis calculated with a bias voltage of 500 mV,for both Cd3As2/pentacene heterojunction photodetector and Cd3As2thin film photodetector. The Riof Cd3As2thin film photodetector maximizes at 520 nm(12.5 mA/W),indicating a good current response. Compared with the Cd3As2thin film photodetector,the Cd3As2/pentacene heterojunction displays an obvious advantage in the current response at every frequency. The largest Ri,i.e.,36.15 mA/W appears at 650 nm. Besides,the Riof pentacene has a maximum value of 8.6 mA/W at 650 nm.Furthermore,the external quantum efficiency(EQE)can describe the efficiency of light energy utilization. Figure 5(f)shows the dependence of EQE on wavelength of the Cd3As2/pentacene structure,indicating that the largest EQE is 7.29%at 650 nm.The high infrared response highlights the high performance of Cd3As2/pentacene heterojunction photodetector.For instance,the photodetector has the outstanding responsivity varying from 17.03 mA/W to 1.55 mA/W at different wavelengths,which is usually rare in graphene-based photodetectors.Because the communication band is located in a wavelength range between 980 nm and 1550 nm,[41,42]these photodetectors can be hopefully used in information communications.

    Fig.4.(a)Schematic diagram of photocurrent measurement of Cd3As2/pentacene heterojunction and transmission electron microscopy(TEM)diagram for the cross-section view.(b)Energy-band diagrams of ideal Cd3As2/pentacene heterojunction,where LUMO means the lowest unoccupied molecular orbital and HOMO means the highest occupied molecular orbital.This figure is partially adapted from Ref.[39],ACS Publications Group.

    Fig.5.(a)I–V curves of the Cd3As2 thin film/pentacene heterojunction photodetector with and without illumination at the wavelength of 650 nm.(b)and(c)Photocurrent curves of Cd3As2/pentacene heterojunction measured under different wavelengths without and with bias voltage,respectively.(d)Photocurrent curves with bias voltage at wavelengths of 450,520,650,780,980,1310,and 1550 nm.(e)Comparison between responsivity(Ri)of Cd3As2 thin films/pentacene heterojunction photodetector and Cd3As2 thin film photodetector.(f)Wavelength-dependent EQE of Cd3As2/pentacene heterojunction photodetectors.This figure is adapted from Ref.[39],ACS Publications Group.

    Compared with the pure Cd3As2photodetector, the Cd3As2/pentacene photodetectors achieve an obvious improvement of Ri. The pentacene layer plays important roles in both the visible band and the infrared band.It has a good absorption in the visible spectrum,which means that it can absorb the light and then produce charges when the light is incident in the junction area of pentacene and Cd3As2.Thus,the Riof the Cd3As2/pentacene heterostructure detector is much higher than that of the pure Cd3As2thin film detector in the visible band. Since pentacene has proved to have a single peak exciton fission effect at about 660 nm,more conductive charges are generated when the light irradiates,which causes Rito reach a maximum value at 650 nm.As a result,the Rivalue of the Cd3As2/pentacene detector is also higher than that of the pure Cd3As2thin film detector in the infrared band.

    3.3.Cd3As2 mid-infrared optical switches

    Since the early 1990 s,semiconductor saturable absorber mirrors(SESAMs)have been an important approach in the near-infrared field.Flexibility and preciseness make SESAMs one of the most important saturating absorber technologies,and it can be adapted into various laser formats,such as fibre,solid-state or semiconductor chip lasers.[43–45]By detecting the mid-infrared optical response of the bulk Dirac fermions,it is found that MBE-grown Cd3As2thin films can act as an excellent ultra-fast(<10 ps)optical switch in the mid-infrared,with a working range covering at least 3μm–6μm.

    We carry out pump-probe measurements on the intrinsic and Cr-doped Cd3As2thin films. The non-degenerate transient transmission spectroscopy reveals photo-bleaching characteristics caused by Pauli blockage,according to which we show that Cd3As2has a saturated absorption characteristics over the entire spectral range(Fig.6(a)).We summarize all the fitted time constants in Fig.6(b),which clearly shows that MBE-grown Cd3As2films exhibit ultrafast saturated absorption at mid-infrared wavelengths ranging from 3μm to 6μm. Figure 6(c)displays the power-dependent transmittance of Cd3As2thin film. Here,the transmittance is determined from T(l)=1 ??T·exp[?I/Isat]?Tns,where I,Isat,?T,and Tnsrespectively denote input intensity,saturation intensity,modulation depth,and non-saturable absorbance. A simple saturation model[46]can fit the measurement data.As shown in Fig.6(c),this system can yield a modulation depth of ~4.4%.In addition,the powerful parametric customization of the Cd3As2allows the on-demand access to different pulse states in 3-μm fiber laser,indicating the potential for a significant increase in the performance level of mid-infrared pulsed laser.Compared with some lasers made of low-dimensional materials such as graphene and black phosphorus,[47,48]the laser made of Cd3As2film possesses advantages,such as scaling to longer mid-infrared wavelength as well as flexibility in customizing the relaxation time.

    To illustrate the benefits of expanding the parameter space through a delicate Cr doping,we demonstrate on-demand access to different pulse states for domestic 3-μm fluoride fiber lasers using Cd3As2films with different relaxation times.A fiber laser test bench is chosen,and the demonstration can also be carried out on other mid-infrared lasers,such as an extracavity semiconductor laser.The pulsed laser setup is shown in Fig.7(a).Firstly,we use an un-doped Cd3As2film with a relatively long time constant(~7 ps at a wavelength of ~3μm).As can be seen from Fig.7(b),it appears that the continuous wave(CW)emission becomes the Q-switched mode-lock envelope when the pump power reaches 58 mW.

    Fig.6.(a)Non-degraded ultrafast pump-probe results at probe wavelengths between 3μm and 6μm,and solid red line corresponding to single exponential fit of τnondeg.(b)Fitted plots of relaxation time constant τ versus probing wavelength for both degenerate(black and red points)and non-degenerate(blue points)measurements.(c)Nonlinear absorption at wavelength 3μm(black points)and fitting with simple saturation model(red line).This figure is adapted from Ref.[40],Nature Publishing Group.

    Fig.7.(a)Schematic diagram of fibre laser setup,where LD,PBS,and DM are diode laser,polarized beam splitter,and dichroic mirror,respectively.(b)Q-switched mode-locked pulses at pump power 57.6 mW.(c)CW mode-locked(CWML)pulses at pump power 286.9 mW.No discernable envelope modulation indicates stable operation.(d)Output optical spectrum.Because reduction in intracavity loss results in a lower initial Stark manifold of the 5I6 level,center wavelength of continuous wave operation is red-shifted to 2864.3 nm.At the same time,since required spectral Fourier component is small,the full width at a half maximum reduces to 1.7 nm.(e)Radio frequency(RF)spectra have scan range 0.8 MHz and resolution bandwidth 10 kHz,with repetition rate and signal-to-noise ratios being 14.28 MHz and 54 dB,respectively.Inset shows RF spectra with broader scans ranging from 0 to 160 MHz.(f)Autocorrelation curve measured with intensity autocorrelator.Blue points are experimental results,and red line refers to the fitting results from sech function.This figure is adapted from Ref.[40],Nature Publishing Group.

    As the pump power further increases,the duration and period of the Q-switched envelope both shorten as expected.As displayed in Fig.7(c),the Q-switched mode-locking state quickly changes into CW mode-locking when the pump power becomes 80 mW,and the pump power can be maintained up to 290 mW.The pulse period of 70 ns is consistent with the calculated cavity round trip time.Figure 7(d)displays the optical spectrum of the mode-locked pulses.The center wavelength can reach 2860 nm and the FWHM can be 6.2 nm. Moreover,as shown in Fig.7(e),the radio-frequency spectra of the pulses are also measured to determine a robust and stable mode-locking operation.Figure 7(f)shows that the pulse duration is measured by using a home-made mid-infrared autocorrelator and the pulse width is estimated at 6.3 ps. It is clear that un-doped sample could achieve stable mode locking.The Cr-doped Cd3As2film with a shorter relaxation time is then introduced into the cavity in turn.It is found that as the relaxation time of Cd3As2is shortened,the threshold for CW mode-locking increases because the higher intensity is now required to saturate the conduction band.

    4.Conclusions and perspectives

    Cd3As2, as a topological Dirac semimetal in threedimensionality,has shown a quantum Hall effect(QHE)in both nanostructures and thin films.[49–51]Particularly, our group has reported the 3D Weyl-orbit-based QHE in Cd3As2nanoplates.[52]Hence,with the mobility increasing,it is hopeful to achieve high-quality thin films in the quantum Hall regime.In this regard,the Zn doping can validly reduce the Fermi level,which makes the films easier to reach the quantum limit. Therefore,the electron–electron interactions can be significantly enhanced as demonstrated by several recent experiments on the phase transitions of several topological semimetals.[53,54]Thus,it is quite exciting to continue improving the crystalline quantity of Cd3As2films as well as the effective Zn doping,to envisage the exotic 3D quantum behavior in topological semimetal systems.

    While the fundamental research on new topological physics and the various emergent phenomena continue to be conducted,we attempt the potential utilization of topological properties in practice.The Cd3As2has proved to have an extraordinary optical response. Since the Cd3As2/pentacene heterojunction device can raise the responsivity and external quantum efficiency in a broad range from visible light to far-infrared light,it is feasible to use the heterostructures of Cd3As2and organic molecules to construct the photodetectors.Along this route,we expect to realize the devices with higher responsivity and external quantum efficiency with different organic molecules,and make the responsive range much broader(towards THz).[55]Considering the excellent broadband responsiveness of these Cd3As2/organic thin film photodetectors,our work provides a new approach to applying the 3D TDSs to optoelectronic devices.

    Furthermore,the attempt of using Cd3As2as a saturable absorber in the field of pulsed lasers seems to be quite successful. The key characteristics including comprehensive scalability,broadband operation,and flexible parameter control effectively establish Cd3As2as a highly adaptable near-infrared SESAM.[56–58]In development,we anticipate the proposed electrically contacted saturable absorber device.It can be further extended to active photonic devices operating in the nearto far-infrared range,including optical modulators and tunable light-emitting devices.

    In short,our research on high-quality Cd3As2thin films paves the way for applying the 3D TDSs to photodetectors and presents a feasible approach to preparing the large-scale array photodetectors.Meanwhile,our work represents a step forward in the development of compact mid-infrared ultrafast sources for advanced sensing,communication,spectroscopy,and medical diagnostics using topological Dirac semimetal materials.

    猜你喜歡
    王軍
    HITTING PROBABILITIES AND INTERSECTIONS OF TIME-SPACE ANISOTROPIC RANDOM FIELD
    石榴樹想法妙
    我要好好來欣賞
    好孩子畫報(2020年5期)2020-06-27 14:08:05
    不下戰(zhàn)場的士兵——王軍
    活力(2019年19期)2020-01-06 07:34:36
    蜜蜂和油菜花
    可愛的小丫丫
    生態(tài)景觀在城市規(guī)劃中的應用探索
    中華建設(2019年4期)2019-07-10 11:50:58
    Revisit submergence of ice blocks in front of ice cover-an experimental study *
    Impact of bridge pier on the stability of ice jam*
    Simulations of ice jam thickness distribution in the transverse direction*
    人妻一区二区av| 寂寞人妻少妇视频99o| 免费观看av网站的网址| 肉色欧美久久久久久久蜜桃 | 99视频精品全部免费 在线| 三级男女做爰猛烈吃奶摸视频| 三级男女做爰猛烈吃奶摸视频| 欧美xxⅹ黑人| 国产高潮美女av| 久久精品人妻少妇| 2021天堂中文幕一二区在线观| 少妇人妻一区二区三区视频| 少妇丰满av| 丰满人妻一区二区三区视频av| 麻豆国产97在线/欧美| 色综合亚洲欧美另类图片| 看黄色毛片网站| 国产综合懂色| 亚洲天堂国产精品一区在线| 80岁老熟妇乱子伦牲交| 国产伦在线观看视频一区| h日本视频在线播放| 麻豆久久精品国产亚洲av| 汤姆久久久久久久影院中文字幕 | 日韩av免费高清视频| 18禁在线播放成人免费| 色播亚洲综合网| 美女cb高潮喷水在线观看| 乱系列少妇在线播放| 成年免费大片在线观看| 精品99又大又爽又粗少妇毛片| 久久久久久久国产电影| 国产精品麻豆人妻色哟哟久久 | 久久久久久国产a免费观看| av在线天堂中文字幕| 毛片一级片免费看久久久久| 人体艺术视频欧美日本| 久久久午夜欧美精品| 亚洲国产精品专区欧美| 七月丁香在线播放| 美女脱内裤让男人舔精品视频| 最近中文字幕2019免费版| 五月伊人婷婷丁香| 国产亚洲91精品色在线| 国产黄a三级三级三级人| 一个人免费在线观看电影| 久久久色成人| 欧美成人午夜免费资源| 国产免费又黄又爽又色| 国产欧美日韩精品一区二区| 高清视频免费观看一区二区 | 男女边吃奶边做爰视频| 久久久久久久久久黄片| 丰满人妻一区二区三区视频av| 久久精品久久久久久噜噜老黄| 男人舔女人下体高潮全视频| av又黄又爽大尺度在线免费看| 91久久精品国产一区二区三区| 欧美激情在线99| 久久久久精品性色| 欧美高清性xxxxhd video| 亚洲人成网站在线观看播放| 伊人久久精品亚洲午夜| 天天躁夜夜躁狠狠久久av| 国产成人精品婷婷| 韩国av在线不卡| 91狼人影院| 国产精品福利在线免费观看| 久久久久久伊人网av| 最近最新中文字幕免费大全7| 亚洲成人一二三区av| 日韩电影二区| 网址你懂的国产日韩在线| 国产爱豆传媒在线观看| 精品午夜福利在线看| 午夜老司机福利剧场| 国产视频内射| 久久久久久久大尺度免费视频| 观看免费一级毛片| 在线播放无遮挡| 免费观看av网站的网址| 日韩伦理黄色片| 免费看美女性在线毛片视频| 美女内射精品一级片tv| 亚洲欧美清纯卡通| 三级毛片av免费| 最近的中文字幕免费完整| 国产精品久久久久久久久免| 午夜精品一区二区三区免费看| 日韩国内少妇激情av| av网站免费在线观看视频 | 99久久中文字幕三级久久日本| 91久久精品国产一区二区三区| 亚洲高清免费不卡视频| 午夜激情欧美在线| 99久国产av精品| 青春草视频在线免费观看| 国产黄片美女视频| 日韩大片免费观看网站| 97精品久久久久久久久久精品| 亚洲人成网站在线观看播放| 成人国产麻豆网| 欧美成人一区二区免费高清观看| 十八禁国产超污无遮挡网站| 日日啪夜夜撸| 欧美成人a在线观看| 观看免费一级毛片| 国产黄频视频在线观看| 国产精品久久久久久av不卡| 十八禁国产超污无遮挡网站| 久久99蜜桃精品久久| 校园人妻丝袜中文字幕| 内地一区二区视频在线| 欧美精品一区二区大全| 亚洲av一区综合| 建设人人有责人人尽责人人享有的 | 青春草视频在线免费观看| 亚洲三级黄色毛片| 赤兔流量卡办理| 三级男女做爰猛烈吃奶摸视频| 亚洲精品,欧美精品| 亚洲精品乱久久久久久| 69人妻影院| 国产精品久久久久久精品电影小说 | 欧美精品一区二区大全| 亚洲伊人久久精品综合| 欧美日韩视频高清一区二区三区二| 中文乱码字字幕精品一区二区三区 | 女人久久www免费人成看片| 亚洲自拍偷在线| 男女视频在线观看网站免费| 亚洲丝袜综合中文字幕| 免费看a级黄色片| 日日干狠狠操夜夜爽| 精品久久久久久久久久久久久| 人体艺术视频欧美日本| 热99在线观看视频| 美女主播在线视频| 成年版毛片免费区| 欧美日韩在线观看h| 一级毛片电影观看| 男人爽女人下面视频在线观看| 久久精品国产亚洲av天美| 日韩一区二区视频免费看| 国产男女超爽视频在线观看| 久久久久免费精品人妻一区二区| 天天躁夜夜躁狠狠久久av| 我的女老师完整版在线观看| 水蜜桃什么品种好| 岛国毛片在线播放| 男女边吃奶边做爰视频| 国产久久久一区二区三区| 国内精品美女久久久久久| 久久久精品欧美日韩精品| 蜜桃久久精品国产亚洲av| 亚洲欧美一区二区三区黑人 | 免费人成在线观看视频色| 亚洲精品,欧美精品| 性插视频无遮挡在线免费观看| 国产高清三级在线| 精品久久久久久久久亚洲| 男插女下体视频免费在线播放| av专区在线播放| 亚洲成人中文字幕在线播放| 婷婷色综合www| 亚洲丝袜综合中文字幕| 在线天堂最新版资源| 亚洲精品乱久久久久久| 简卡轻食公司| 日韩欧美一区视频在线观看 | 国产亚洲av片在线观看秒播厂 | 美女cb高潮喷水在线观看| 欧美变态另类bdsm刘玥| 久久久久久久久大av| 午夜爱爱视频在线播放| 国产精品女同一区二区软件| 国产 一区 欧美 日韩| 国产乱人视频| 精品久久久精品久久久| 亚洲欧美成人精品一区二区| av免费在线看不卡| 亚洲欧美一区二区三区国产| 美女被艹到高潮喷水动态| 日韩 亚洲 欧美在线| 一级二级三级毛片免费看| 亚洲最大成人手机在线| 日韩欧美一区视频在线观看 | a级一级毛片免费在线观看| 黄色日韩在线| 少妇被粗大猛烈的视频| 国产黄片视频在线免费观看| 日本黄色片子视频| 亚洲精华国产精华液的使用体验| 亚洲精品日韩在线中文字幕| 18禁裸乳无遮挡免费网站照片| 18+在线观看网站| 久久精品夜夜夜夜夜久久蜜豆| 久久久色成人| 免费av不卡在线播放| 一级a做视频免费观看| 午夜精品国产一区二区电影 | 精品人妻视频免费看| 一区二区三区乱码不卡18| 看黄色毛片网站| 久久99热这里只有精品18| 欧美xxxx性猛交bbbb| 亚洲经典国产精华液单| 亚洲最大成人av| 日韩欧美国产在线观看| 国产三级在线视频| 水蜜桃什么品种好| 亚洲电影在线观看av| 中国国产av一级| 国产乱人偷精品视频| 久久久午夜欧美精品| 能在线免费看毛片的网站| 久久久欧美国产精品| 热99在线观看视频| 免费看日本二区| 日本黄大片高清| 日日干狠狠操夜夜爽| 国产淫语在线视频| 日韩大片免费观看网站| 欧美成人午夜免费资源| 亚洲精品,欧美精品| 国内精品宾馆在线| 色网站视频免费| 最近视频中文字幕2019在线8| 伊人久久国产一区二区| 亚洲精品日韩av片在线观看| 最近的中文字幕免费完整| 成人亚洲欧美一区二区av| 最近视频中文字幕2019在线8| 国产 一区 欧美 日韩| 国产午夜精品久久久久久一区二区三区| 毛片女人毛片| 久久久久久久久久人人人人人人| 观看美女的网站| 欧美97在线视频| 2021天堂中文幕一二区在线观| 乱人视频在线观看| 精品熟女少妇av免费看| 人妻夜夜爽99麻豆av| 国产亚洲5aaaaa淫片| 十八禁网站网址无遮挡 | 亚洲av日韩在线播放| av又黄又爽大尺度在线免费看| 午夜精品在线福利| 国产免费又黄又爽又色| 精品人妻偷拍中文字幕| 成人特级av手机在线观看| 建设人人有责人人尽责人人享有的 | 国产爱豆传媒在线观看| av一本久久久久| 女人被狂操c到高潮| 国产成人精品久久久久久| 丝袜美腿在线中文| 国产精品99久久久久久久久| 中文精品一卡2卡3卡4更新| 亚洲成人久久爱视频| av在线播放精品| 免费观看的影片在线观看| 欧美xxxx性猛交bbbb| 国产成人freesex在线| 国产一区二区在线观看日韩| 久久午夜福利片| 蜜桃久久精品国产亚洲av| 欧美激情久久久久久爽电影| 精品一区二区免费观看| 午夜免费激情av| 成人美女网站在线观看视频| av网站免费在线观看视频 | 插逼视频在线观看| 91在线精品国自产拍蜜月| 少妇的逼水好多| 亚洲自偷自拍三级| 亚洲av在线观看美女高潮| 欧美日韩在线观看h| 熟女人妻精品中文字幕| 亚洲精品aⅴ在线观看| 美女内射精品一级片tv| 看十八女毛片水多多多| 69av精品久久久久久| 午夜免费男女啪啪视频观看| 亚洲内射少妇av| 精品亚洲乱码少妇综合久久| 精品国产三级普通话版| 欧美极品一区二区三区四区| 亚洲国产精品sss在线观看| 成人性生交大片免费视频hd| 三级国产精品欧美在线观看| 亚洲国产最新在线播放| 日韩,欧美,国产一区二区三区| 久久精品综合一区二区三区| 免费人成在线观看视频色| 七月丁香在线播放| 中文在线观看免费www的网站| 精品久久久久久久久亚洲| a级毛色黄片| 亚洲国产高清在线一区二区三| 69av精品久久久久久| 麻豆成人av视频| 亚洲欧洲日产国产| 日韩欧美一区视频在线观看 | 欧美人与善性xxx| 精品一区在线观看国产| 久久久久久久久中文| 五月玫瑰六月丁香| 国产免费又黄又爽又色| 国产精品国产三级国产av玫瑰| 蜜桃久久精品国产亚洲av| 97人妻精品一区二区三区麻豆| 国产乱来视频区| 永久免费av网站大全| 日本一二三区视频观看| 天堂中文最新版在线下载 | 欧美xxxx性猛交bbbb| 精品一区二区三区人妻视频| 日韩欧美精品免费久久| 精品不卡国产一区二区三区| 日韩欧美精品免费久久| 在线天堂最新版资源| 在线观看免费高清a一片| 久久久久久久久久成人| 一夜夜www| 亚洲,欧美,日韩| 亚洲av电影在线观看一区二区三区 | 色5月婷婷丁香| 久久久精品94久久精品| 中文字幕av在线有码专区| 亚洲av福利一区| 十八禁国产超污无遮挡网站| 亚洲18禁久久av| 天堂影院成人在线观看| 久久久久久伊人网av| 国产在线一区二区三区精| 最新中文字幕久久久久| 中文字幕免费在线视频6| 国产一区二区三区av在线| 麻豆乱淫一区二区| 人妻夜夜爽99麻豆av| 亚洲最大成人手机在线| 1000部很黄的大片| 精品一区二区三区视频在线| 一区二区三区高清视频在线| 欧美xxxx性猛交bbbb| 国内少妇人妻偷人精品xxx网站| 国产老妇伦熟女老妇高清| 在线天堂最新版资源| 午夜老司机福利剧场| 三级男女做爰猛烈吃奶摸视频| 色播亚洲综合网| 精品酒店卫生间| 欧美激情在线99| 黄色一级大片看看| 毛片一级片免费看久久久久| 国产精品.久久久| 一区二区三区四区激情视频| 岛国毛片在线播放| 国产精品久久视频播放| 在线天堂最新版资源| 国语对白做爰xxxⅹ性视频网站| 在线a可以看的网站| 亚洲婷婷狠狠爱综合网| 成人亚洲欧美一区二区av| 97热精品久久久久久| 久久久久久久久久久免费av| 97热精品久久久久久| 人体艺术视频欧美日本| 国产精品熟女久久久久浪| 国产午夜福利久久久久久| 禁无遮挡网站| 男的添女的下面高潮视频| av女优亚洲男人天堂| 欧美精品一区二区大全| 亚洲精品成人av观看孕妇| 午夜福利在线在线| 男人狂女人下面高潮的视频| 久久精品夜夜夜夜夜久久蜜豆| 九九爱精品视频在线观看| 婷婷六月久久综合丁香| 真实男女啪啪啪动态图| 精品久久久久久久久av| 人人妻人人看人人澡| a级毛片免费高清观看在线播放| 久久久久久久久中文| 舔av片在线| 91精品一卡2卡3卡4卡| 欧美性感艳星| 日本熟妇午夜| 美女内射精品一级片tv| 亚洲第一区二区三区不卡| 久久久色成人| 亚洲av中文av极速乱| 久久99热6这里只有精品| 亚洲乱码一区二区免费版| 啦啦啦啦在线视频资源| 国内揄拍国产精品人妻在线| 精品人妻一区二区三区麻豆| 亚洲精品色激情综合| 久久久久久久亚洲中文字幕| av国产免费在线观看| 春色校园在线视频观看| av女优亚洲男人天堂| 午夜福利成人在线免费观看| 国产精品久久久久久久电影| 一级二级三级毛片免费看| 亚洲人成网站高清观看| 久久精品久久久久久噜噜老黄| 最近2019中文字幕mv第一页| 老司机影院毛片| 视频中文字幕在线观看| 80岁老熟妇乱子伦牲交| 亚州av有码| 日本三级黄在线观看| 亚洲成人精品中文字幕电影| 国产精品一区www在线观看| 在线a可以看的网站| 嫩草影院新地址| 国产精品人妻久久久久久| 欧美精品国产亚洲| 精品久久久久久久久久久久久| 97人妻精品一区二区三区麻豆| 国产麻豆成人av免费视频| 午夜福利网站1000一区二区三区| 久久精品国产亚洲网站| 男人舔女人下体高潮全视频| 男女那种视频在线观看| 麻豆国产97在线/欧美| 亚洲精品一二三| 免费大片18禁| 免费无遮挡裸体视频| 能在线免费看毛片的网站| 亚洲av日韩在线播放| 欧美xxxx性猛交bbbb| 91aial.com中文字幕在线观看| 亚洲精品国产av蜜桃| av免费在线看不卡| 久久久精品免费免费高清| 搡老乐熟女国产| 久久鲁丝午夜福利片| 亚洲精品影视一区二区三区av| 欧美三级亚洲精品| 久久人人爽人人片av| 日本色播在线视频| 又爽又黄a免费视频| 国产欧美另类精品又又久久亚洲欧美| 人体艺术视频欧美日本| 国产成人a∨麻豆精品| 亚洲国产高清在线一区二区三| 国产精品一区www在线观看| 久久99精品国语久久久| 中文字幕免费在线视频6| 国产 亚洲一区二区三区 | 男人狂女人下面高潮的视频| 国产成人91sexporn| 精品久久久噜噜| 嫩草影院精品99| 亚洲欧美日韩东京热| 午夜老司机福利剧场| 中文天堂在线官网| 国产一级毛片在线| 日日撸夜夜添| 精品久久久久久久人妻蜜臀av| 天美传媒精品一区二区| 国产熟女欧美一区二区| 非洲黑人性xxxx精品又粗又长| 婷婷色综合大香蕉| 免费黄频网站在线观看国产| 狂野欧美激情性xxxx在线观看| 黄色配什么色好看| 免费观看的影片在线观看| 亚洲av中文av极速乱| 亚洲国产成人一精品久久久| 亚洲av免费在线观看| 波多野结衣巨乳人妻| 偷拍熟女少妇极品色| 熟妇人妻久久中文字幕3abv| 黑人高潮一二区| 欧美性猛交╳xxx乱大交人| 又黄又爽又刺激的免费视频.| 免费av毛片视频| 欧美成人午夜免费资源| 中文欧美无线码| 麻豆精品久久久久久蜜桃| 天天躁夜夜躁狠狠久久av| 亚洲精品日本国产第一区| 欧美三级亚洲精品| 久久国内精品自在自线图片| 黄色日韩在线| 国产在视频线精品| 我的老师免费观看完整版| 简卡轻食公司| 神马国产精品三级电影在线观看| 狂野欧美白嫩少妇大欣赏| 久久热精品热| 国产美女午夜福利| 91久久精品电影网| 成人性生交大片免费视频hd| 男的添女的下面高潮视频| 久久久久网色| 人体艺术视频欧美日本| 六月丁香七月| 成人亚洲精品一区在线观看 | 乱码一卡2卡4卡精品| 99热网站在线观看| 99久久人妻综合| 免费av毛片视频| 久久精品国产鲁丝片午夜精品| 日本wwww免费看| 伊人久久国产一区二区| www.色视频.com| 在线观看人妻少妇| 日韩三级伦理在线观看| 观看免费一级毛片| 亚洲自偷自拍三级| 天堂网av新在线| 天堂√8在线中文| 久久这里有精品视频免费| 色哟哟·www| 亚洲人成网站在线观看播放| 成人午夜高清在线视频| 国产女主播在线喷水免费视频网站 | av在线亚洲专区| 久久综合国产亚洲精品| 赤兔流量卡办理| av一本久久久久| 精品久久久久久久人妻蜜臀av| 深爱激情五月婷婷| 色综合色国产| 毛片一级片免费看久久久久| 亚洲第一区二区三区不卡| 人妻少妇偷人精品九色| 纵有疾风起免费观看全集完整版 | 久久久久久久久久成人| 欧美一区二区亚洲| 天堂av国产一区二区熟女人妻| 日本猛色少妇xxxxx猛交久久| 日韩视频在线欧美| 精品久久久久久久久av| 亚洲人成网站在线观看播放| 噜噜噜噜噜久久久久久91| 久久亚洲国产成人精品v| 超碰av人人做人人爽久久| 大香蕉久久网| 禁无遮挡网站| 午夜福利高清视频| 国产一级毛片在线| 九色成人免费人妻av| 女人久久www免费人成看片| 亚洲欧美一区二区三区国产| 国产伦精品一区二区三区视频9| 秋霞伦理黄片| 男女视频在线观看网站免费| 久久久午夜欧美精品| 国产大屁股一区二区在线视频| 国产精品女同一区二区软件| 永久网站在线| 中文字幕免费在线视频6| 成人特级av手机在线观看| 久久久久久久久久人人人人人人| 国产精品国产三级国产专区5o| 日韩大片免费观看网站| 国产探花极品一区二区| 好男人在线观看高清免费视频| 哪个播放器可以免费观看大片| 精品国内亚洲2022精品成人| 一个人免费在线观看电影| 纵有疾风起免费观看全集完整版 | 街头女战士在线观看网站| 国产成人a区在线观看| 一区二区三区四区激情视频| 中文字幕av成人在线电影| av线在线观看网站| 我要看日韩黄色一级片| 成年女人看的毛片在线观看| 亚洲av不卡在线观看| 丰满乱子伦码专区| 熟女电影av网| 欧美 日韩 精品 国产| 九色成人免费人妻av| 欧美最新免费一区二区三区| 麻豆av噜噜一区二区三区| 又粗又硬又长又爽又黄的视频| 精品酒店卫生间| 韩国av在线不卡| 国产一区亚洲一区在线观看| 亚洲欧美日韩东京热| 最近2019中文字幕mv第一页| 我的女老师完整版在线观看| 天天一区二区日本电影三级| 国产黄色视频一区二区在线观看| 久久99热这里只有精品18| 国产伦一二天堂av在线观看| 亚洲国产精品成人久久小说| 精品人妻视频免费看| 久久久久久久久久久丰满| 男女下面进入的视频免费午夜| 成人特级av手机在线观看| 亚洲国产日韩欧美精品在线观看| 综合色丁香网| 国产精品一区二区在线观看99 | 女的被弄到高潮叫床怎么办| 久久99热这里只有精品18| 亚洲在线观看片| 听说在线观看完整版免费高清| 看十八女毛片水多多多| 国产精品嫩草影院av在线观看| 免费看a级黄色片| av线在线观看网站| 国产成人福利小说| 国产伦在线观看视频一区| 大片免费播放器 马上看| 国产免费福利视频在线观看| 超碰97精品在线观看|